This page is for Content Controls that apply to this document. If no Content Controls apply, none will be listed.

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 2 of 172

Information Use

Revision History

Rev. No.	Date	Details of Rev.	Prepared By	Reviewed By		Approved By
0	2023/04/28	Issued as "Approved for Use".	S. Rheubottom	S. Morris		M. Hughey
D3	2023/03/28	Issued for "Review and Comment".	S. Rheubottom	S. Brewer M. Conan C. Gallagher M. Hughey		N/A
D2	2023/03/16	Issued for "Review and Comment".	S. Rheubottom	E. Ballachey A. Coulas S. Faught A. Ghuman A. Golbabai B. Gummow S. Muccuth- Henry	S. Mistry S. Morris C. O'Neill D. Thiru J. Turner N. van Dijk	N/A
D1	2023/02/01	Issued for "Input, Review and Comment".	S. Rheubottom	S. Anderson S. Beauchamp T. Bhatti M. Boucher A. Burke K. Fraser	T. Honey P. LeBel H. Simpson D. Snowden J. Vu S. Weeks	N/A

EXECUTIVE SUMMARY

This annual compliance monitoring report for the 2022 calendar year is produced to demonstrate that Canadian Nuclear Laboratories (CNL) has successfully met the requirements of the *Nuclear Safety and Control Act*, associated regulations, the *Port Granby Long-Term Low-Level Radioactive Waste Management Project Licence WNSL-W1-2311.00/2022* (PGP Licence), and the *Port Granby Long-Term Low-Level Radioactive Waste Management Project Licence Conditions Handbook* (LCH). This report has been prepared based on Canadian Nuclear Safety Commission (CNSC) REGDOC -3.1.3, *Reporting Requirements for Waste Nuclear Substance Licensees, Class II Nuclear Facilities and Users of Prescribed Equipment, Nuclear Substances and Radiation Devices*.

This stand-alone, unrestricted document provides CNL compliance monitoring and performance information for the Port Granby Project (PGP) and is organized by CNSC's 14 Safety and Control Areas (SCA). This report provides site-specific information to supplement information in the *Annual Compliance Monitoring Report for Canadian Nuclear Laboratories* for 2022, which provides programmatic updates and performance of the 14 SCAs and CNL's Public Information and Disclosure program as applicable to all CNL sites.

The Port Granby Long-Term Low-Level Radioactive Waste Management Project (PGP) is part of the larger Port Hope Area Initiative (PHAI). The PHAI is a community-based project designed to develop and implement a safe, local, long-term management solution for historic low-level radioactive waste within the Port Hope and Clarington municipalities. The PHAI is defined by *An Agreement for the Cleanup and Long-Term Safe Management of Low-Level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope, and the Municipality of Clarington* (Legal Agreement), which took effect on 2001 March 29, between the Government of Canada and the municipalities of Port Hope and Clarington for the management of the low-level radioactive waste within each of the communities. CNL is responsible for the direction and execution of the PHAI in compliance with the Legal Agreement, licences, and Environmental Assessment decisions. CNL has overall responsibility for managing the PHAI on behalf of Atomic Energy of Canada Limited, a federal Crown corporation.

Land Acknowledgement

CNL's Historic Waste Program Management Office and the Port Hope Area Initiative projects are situated on the traditional and treaty lands of the Williams Treaties First Nations, specifically the Gunshot Treaty signed with the Mississauga First Nations of Alderville, Curve Lake, Hiawatha and Scugog Island.

These Mississauga Nations are also signatories to various 18th and 19th century treaties that covered lands in different parts of south-central Ontario. In 1923, the Mississauga First Nations and the Chippewa First Nations consisting of Rama, Beausoleil and Georgina Island signed the Williams Treaties and together, over 90 years later in June 2018, joined to ensure that their

rights to and the relationship with these lands are respected through a renewed agreement with Canada and the Province of Ontario.

The area in which we are situated is also home to Indigenous Peoples from across the region and Canada. CNL is grateful to have the opportunity to work on these traditionally and culturally significant lands and waterways.

Engagement with Indigenous Communities and Organizations

Historically, the <u>PHAI Phase 2 Public Information Program</u> (PIP) has included Indigenous communities and organizations as a priority audience. In support of CNL's objective to advance reconciliation through meaningful actions and move toward increased inclusion and participation, CNL is developing a distinct program for engagement with Indigenous communities and organizations. The program will be implemented in tandem with the PIP and aligned with CNL company-wide Indigenous relations efforts. CNL continued to host monthly meetings with members of the Williams Treaties First Nations in 2022 and held several meetings and tours of the PGP site with Indigenous representatives.

Overall Performance Highlights

Following a one-day hearing, the CNSC has renewed the licence for the PHAI (<u>Summary Record of Decision - Port Hope Project Renewal</u>), for a 10-year period beginning 2023 January 01. As part of the licence renewal, a single licence consolidates four previous licences for PHAI activities, authorizing CNL to continue the safe cleanup and management of low-level radioactive waste in Port Hope, Ontario. The licence will also facilitate the ongoing monitoring and maintenance of the Port Granby Long-Term Waste Management Facility (PG LTWMF).

CNL continued to manage the PGP site during remediation activities in accordance with approved procedures, as outlined in the PGP LCH. The following is a list of overall performance highlights at PGP for 2022 activities:

- All licensed activities continue to be carried out safely and securely.
- No members of the public received a radiation dose that exceeded any regulatory limit.
- No worker received a dose in excess of any of the respective radiation dose limits as defined by the Radiation Protection Regulations.
- All effluent releases were below their respective release limits.

Management System

CNL has a well-established and effective management system that defines the requirements to ensure that applicable work is conducted in accordance with requirements and best practices. Internal audits and self-assessments were conducted as required. ISO 9001:2015 certification was maintained. The management system was effectively implemented at the PGP site in the reporting period.

Human Performance Management

CNL has a well-established and effective training program. It is in place to enhance human performance through the development and implementation of processes that ensure workers are sufficient in numbers in all relevant job areas, and have the necessary knowledge, skills, and tools in place to safely carry out their duties. The PGP maintained a sufficient number of qualified workers to carry on the licensed activities safely. A range of mandatory and other job-specific training activities were carried out in the reporting period to ensure that all PGP employees and contractors acquired mandated training (including refresher training) as appropriate for their duties to ensure the safe operation of the PGP, and to conduct work under the PGP Licence.

Operating Performance

CNL has a well-established and effective conduct of operations program. CNL completed all required reporting as outlined in Licence Condition 3.1 of the PGP LCH. There were three events reported to the CNSC in the reporting period, as outlined in the applicable SCA. The reported events did not have any adverse effect on the health, safety and security of persons or the environment.

Safety Analysis

As per the PGP LCH, the Safety Analysis SCA is not applicable to the PGP.

Physical Design

Changes made to the physical facility, equipment, processes, procedures, or practices that could adversely affect the design basis are identified and assessed by key stakeholders through the Engineering Change Control program. In 2022 November, CNSC staff raised concerns with CNL's management oversight of changes and its adherence to the change control process. CNL acknowledged that the implementation of the change management process is an area needing improvement and initiated a Root Cause Analysis to identify and correct the programmatic issues. Program improvement continues through 2023.

Fitness for Service

As per the PGP LCH, the Fitness for Service SCA is not applicable to the PGP.

Radiation Protection

CNL has a well-established and effective Radiation Protection program. As Low As Reasonably Achievable (ALARA) initiatives and activities continued to be at the forefront of the PGP Radiation Protection Program. Radiation Protection doses for workers remained ALARA and estimated doses to the public remain low. There were no exceedances of regulatory limits or action levels in the dose monitoring program.

Conventional Health and Safety

CNL has a well-established and effective conventional health and safety program to manage non-radiological workplace safety hazards and to protect personnel and equipment. All licensed activities continued to be carried out safely and securely. The Site Safety and Health Committee met and conducted inspections as required by regulations. No reportable occupational health and safety events or investigations occurred at the PGP in the reporting period.

Environmental Protection

CNL has a well-established and effective environmental and biophysical protection program that monitors radiological and hazardous substances to minimize risk to employees and the public. Environmental protection and mitigation continue to be effective; changes from the baseline are minimal and generally within the Environmental Assessment predictions. Environmental Assessment follow-up and operational monitoring continued in the reporting period. No reportable environmental events occurred at the PGP in the reporting period.

Emergency Management and Fire Protection

CNL has well-established emergency management and fire protection programs that are in place to reduce the risk of fires and assist emergency staff in responding to events, and assist in the protection of employees, the local community, and the environment. All required annual fire response drills, were completed as per program and regulatory requirements. Fire screening assessments were completed in support of CNL's Engineering Change Control process for capital and maintenance/ repair projects. One unplanned reportable emergency event occurred at the PGP in the reporting period. The reported event did not have any adverse effect on the health, safety and security of persons or the environment.

Waste Management

As per the PGP LCH, the Waste Management SCA is not applicable to the PGP. CNL has a wellestablished and effective waste management program, and it is described in this report for information. During the reporting period, on-site management of waste occurred safely and without incident. There were 3,497 tonnes of reverse osmosis concentrate sent to the Port Hope WWTP for treatment, and 1,779 tonnes of process residuals sent to the PH LTWMF.

Security

CNL has a well-established and effective security program that is in place to implement and support the security requirements stipulated in the regulations and the LCH. Contractors conducting work at the PGP site continued to follow CNL's security policies and programs, as confirmed through CNL's oversight program. There was one security event reported to CNSC in the reporting period. The reported event did not have any adverse effect on the health, safety and security of persons or the environment.

Safeguards and Non-Proliferation

As per the PGP LCH, the Safeguards and Non-Proliferation SCA is not applicable to the PGP.

Packaging and Transport

The PHAI Transportation of Dangerous Goods Program continued to safely operate the off-site transport and shipment of dangerous goods by conforming to all applicable laws and regulations, including company policies and procedures. Shipments of dangerous goods continued to be safely received from offsite vendors at the PGP site (consumable chemicals, diesel fuel, and propane). There was one reportable Transportation of Dangerous Goods event at the PGP in the reporting period. The reported event did not have any adverse effect on the health, safety and security of persons or the environment.

Public Information Program

CNL has a well-established and effective public information program that includes a public disclosure protocol regarding events and developments involving PGP facilities or activities - two public disclosures related to the PGP were made in the reporting period. Stakeholder and public engagement continued in 2022 in accordance with the PIP with a total of seven presentations and four site tours, along with a community celebration of the completion of the construction and remediation phase of the PGP in May.

Conclusion

CNL is committed to achieving high standards of operational safety and security. The information and data presented in this report support the conclusion that safe and secure performance was achieved at the PGP site in 2022, while enhancements were implemented to further improve results.

ACKNOWLEDGEMENTS

The "Author" of this document would like to thank the many contributors and reviewers from Facilities and Program for their production of the individual sections of the report.

Table of Contents

SECTION	l de la construcción de la constru	PAGE
Introduc	tion	19
1. Mar	nagement System	22
1.1	Management System Program	22
1.2	Audits, Inspections and Self-Assessments	22
1.3	Management Reviews	24
1.4	Compliance Oversight	24
2. Hun	man Performance Management	25
2.1	Human Performance Program	25
2.2	Training program	25
3. Ope	erating Performance	29
3.1	Operating Program	29
3.2	Reporting Requirements	32
4. Safe	ety Analysis	34
4.1	Safety Analysis Program	34
5. Phy	vsical Design	35
5.1	Design Program	35
6. Fitn	ness for Service	37
6.1	Fitness for Service Program	37
7. Rad	liation Protection	
7.1	Radiation Protection Program	
7.2	Dosimetry	
8. Con	nventional Health and Safety	45

UNRESTRICTED / ILLIMITÉE

Informa	Page 9 of 172
8.1	Conventional Health and Safety Program45
9. E	nvironmental Protection
9.1	Environmental Protection Program48
9.2	Effluent Monitoring
9.3	Operational Environmental Monitoring54
9.4	Environmental Assessment Follow-Up Environmental Monitoring
10.	Emergency Management and Fire Protection
10.1	Emergency Preparedness Program66
10.2	2 Fire Protection Program
11.	Waste Management
11.1	L Waste Management Program68
11.2	2 Waste Management Operations
12.	Security71
12.1	L Security Program
13.	Safeguards and Non-Proliferation72
13.1	L Safeguards Program72
14.	Packaging and Transport Program73
14.1	L Shipments
14.2	Packaging and Transport Events73
15.	Engagement with Indigenous Communities and Organizations
15.1	Indigenous Communities and Organizations75
15.2	2 Public Information Program80
15.3	Monitoring Public Opinion and Media Coverage85
15.4	Documentation and Reporting
16.	Acronyms

Page 10 of 172

17. Refer	ences90
Appendix A	Environmental Assessment Monitoring Locations94
Appendix B	Port Granby Environmental Monitoring Results102
Appendix C	Port Granby Groundwater Monitoring Results134
Appendix D	Environmental Assessment Follow-Up Program Summary Table

LIST OF FIGURES

Figure 1: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (pH, Total Arsenic Uranium)	
Figure 2: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Cobalt and Copper)	
Figure 3: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Molybdenu Total Vanadium)	
Figure 4: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Ammonia, I Nitrite)	
Figure 5: 2022 Engagement with Indigenous Communities and Organizations	75
Figure 6: 2022 PHAI and Port Granby Public Engagement	80
Figure 7: PGP EA Air Monitoring Locations	94
Figure 8: PGP EA Noise Monitoring Locations	95
Figure 9: PGP EA Groundwater Monitoring Locations	96
Figure 10: PGP EA Soil Sampling Locations	97
Figure 11: PGP EA Sediment Sampling Locations	98
Figure 12: PGP EA Surface Water Sampling Locations	99
Figure 13: PGP EA Drainage Water Monitoring Locations	
Figure 14: PG WMF Bluff Seepage Sampling Locations	

LIST OF TABLES

Table 1: CNSC Inspections Summary	.23
Table 2: List of Self-Assessments	. 23
Table 3: Federally/Provincially Legislated Training in 2022	. 27
Table 4: PG WWTP Production Quantities of Effluent	.31
Table 5: PG WWTP Waste Processing, Solids Production	. 32
Table 6: Reportable Events to CNSC	. 32
Table 7: Number of ImpActs Raised at PGP	. 33
Table 8: Contamination Events	. 39
Table 9: Effective Dose for 2022	.41
Table 10: Distribution of Equivalent Dose to the Skin for 2022	. 42

Table 11: Summary of Dose Components Received as a Result of Licensed Activities for 2022 ^a 43
Table 12: Summary of Injury Rate Data47
Table 13: Stored Waste Inventory in PG LTWMF 69
Table 14: Waste Transfers from Port Granby70
Table 15: 2020 - 2022 Port Granby Waste Water Treatment Plant – Results of Water Sampling Analysis (Effluent – Monthly Average)102
Table 16: 2020 - 2022 Port Granby Interceptor Discharge – Toxicity Testing Summary
Table 17: 2020 – 2022 Port Granby Waste Water Treatment Plant – Results of Water Sampling Analysis (Influent – Monthly Average)107
Table 18: Air Quality Monitoring – PG East 109
Table 19: Air Quality Monitoring – PG South110
Table 20: Air Quality Monitoring – PG Northwest111
Table 21: Metals and Radionuclides Concentrations in Total Suspended Particulate – PG East 112
Table 22: Metals and Radionuclides Concentrations in Total Suspended Particulate – PG South
Table 23: Noise Monitoring Results – PG LTWMF114
Table 24: PG LTWMF Groundwater Levels115
Table 25: Soil Monitoring – PG LTWMF – Location 1 (PG-LTWMF-SS-01)116
Table 26: Soil Monitoring – PG LTWMF – Location 2 (PG-LTWMF-SS-02)117
Table 27: Soil Monitoring – PG LTWMF – Location 3 (PG-LTWMF-SS-03)118
Table 28: Soil Monitoring – PG LTWMF – Location 4 (PG-LTWMF-SS-04)119
Table 29: Soil Monitoring – PG LTWMF – Location 5 (PG-LTWMF-SS-05)
Table 30: Bluff Seepage Water Quality (PG-S-1) 121
Table 31: Bluff Seepage Water Quality (PG-S-2) 122
Table 32: Sediment Quality – Location 1 (PG-BS-6)
Table 33: Sediment Quality – Location 2 (PG-BS-7)
Table 34: Surface Water Quality – Port Granby Creek (PGC-D) 125
Table 35: Surface Water Quality – Port Granby Creek (PGC-U)126
Table 36: Storm Event Sampling – Port Granby Creek (PGC-D)127
Table 37: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-D) 128

Table 38: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-E) 129
Table 39: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-W) 130
Table 40: Surface Water Quality – North Storm Water Pond – Location 1 (PG-SP1)
Table 41: Surface Water Quality – South Storm Water Pond – Location 2 (PG-SP2)
Table 42: Drainage Water Quality – PG LTWMF (PG-SW-1/DP1-02)
Table 43: PG-BH1002A
Table 44: PG-BH1003A
Table 45: PG-BH1003B
Table 46: PG-BH1003C
Table 47: PG-BH1003D138
Table 48: PG-MW03-01B
Table 49: PG-MW03-01C
Table 50: PG-MW03-02A
Table 51: PG-MW03-02B
Table 52: PG-MW03-02C
Table 53: PG-MW03-03A
Table 54: PG-MW03-03B
Table 55: PG-MW03-03C146
Table 56: PG-MW1A-02
Table 57: PG-MW1B-02
Table 58: PG-MW1C-02
Table 59: PG-MW1D-02
Table 60: PG-MW2B-02151
Table 61: PG-MW2C-02152
Table 62: PG-MW3A-02153
Table 63: PG-MW3B-02154
Table 64: PG-MW3C-02155
Table 65: PG-MW3D-02156
Table 66: PG-MW4A-02157

Table 67: PG-MW4B-02	
Table 68: PG-MW4C-02	159
Table 69: EA Follow-Up Monitoring Plan Summary, 2022	

Land Acknowledgement

CNL's Historic Waste Program Management Office and the Port Hope Area Initiative (PHAI) projects are situated on the traditional and treaty lands of the Williams Treaties First Nations, specifically the Gunshot Treaty signed with the Mississauga First Nations of Alderville, Curve Lake, Hiawatha and Scugog Island.

These Mississauga Nations are also signatories to various 18th and 19th century treaties that covered lands in different parts of south-central Ontario. In 1923, the Mississauga First Nations and the Chippewa First Nations consisting of Rama, Beausoleil and Georgina Island signed the Williams Treaties and together, over 90 years later in June 2018, joined to ensure that their rights to and the relationship with these lands are respected through a renewed agreement with Canada and the Province of Ontario.

The area in which we are situated is also home to Indigenous Peoples from across the region and Canada. CNL is grateful to have the opportunity to work on these traditionally and culturally significant lands and waterways.

The PHAI represents the federal government's response to the community-requested solution for the cleanup and local, long-term, safe management of historic low-level radioactive waste in the municipalities of Port Hope and Clarington. The waste is the result of the refining practices of the former Crown Corporation, Eldorado Nuclear Ltd., and its private sector predecessors. The original Eldorado refining operation and plant were established in the 1930s without consultation with Indigenous peoples of the area.

A legal agreement, finalized in March 2001, between the Government of Canada and the two municipalities, launched the PHAI by defining the framework and setting out the responsibilities for the Port Hope Project and the Port Granby Project.

Through its Historic Waste Program Management Office, Canadian Nuclear Laboratories is implementing the PHAI on behalf of Atomic Energy of Canada Limited, a federal Crown corporation.

An Indigenous History of the Port Hope Area

This Indigenous history has been generously provided by Curve Lake First Nation - publication reference: *Gitiga Migizi and Julie Kapyrka, 2015 Before, During, and After: Mississauga Presence in the Kawarthas*. In Peterborough, Archaeology, Dirk Verhulst, editor, pp. 127-136. Peterborough, Ontario: Peterborough Chapter of the Ontario Archaeological Society.

The traditional homelands of the Michi Saagiig (Mississauga Anishinaabeg) encompass a vast area of what is now known as southern Ontario. The Michi Saagiig are known as "the people of the big river mouths" and were also known as the "Salmon People" who occupied and fished the north shore of Lake Ontario where the various tributaries emptied into the lake. Their territories extended north into and beyond the Kawarthas as winter hunting grounds on which they would break off into smaller social groups for the season, hunting, and trapping on these lands, then returning to the lakeshore in spring for the summer months.

The Michi Saagiig were a highly mobile people, travelling vast distances to procure subsistence for their people. They were also known as the "Peacekeepers" among Indigenous nations. The Michi Saagiig homelands were located directly between two very powerful Confederacies: The Three Fires Confederacy to the north and the Haudenosaunee Confederacy to the south. The Michi Saagiig were the negotiators, the messengers, the diplomats, and they successfully mediated peace throughout this area of Ontario for countless generations.

Michi Saagiig oral histories speak to their people being in this area of Ontario for thousands of years. These stories recount the "Old Ones" who spoke an ancient Algonquian dialect. The histories explain that the current Ojibwa phonology is the 5th transformation of this language, demonstrating a linguistic connection that spans back into deep time. The Michi Saagiig of today are the descendants of the ancient peoples who lived in Ontario during the Archaic and Paleo-Indian periods. They are the original inhabitants of southern Ontario, and they are still here today.

The traditional territories of the Michi Saagiig span from Gananoque in the east, all along the north shore of Lake Ontario, west to the north shore of Lake Erie at Long Point. The territory spreads as far north as the tributaries that flow into these lakes, from Bancroft and north of the Haliburton highlands. This also includes all the tributaries that flow from the height of land north of Toronto like the Oak Ridges Moraine, and all of the rivers that flow into Lake Ontario (the Rideau, the Salmon, the Ganaraska, the Moira, the Trent, the Don, the Rouge, the Etobicoke, the Humber, and the Credit, as well as Wilmot and 16 Mile Creeks) through Burlington Bay and the Niagara region including the Welland and Niagara Rivers, and beyond. The western side of the Michi Saagiig Nation was located around the Grand River which was used as a portage route as the Niagara portage was too dangerous. The Michi Saagiig would portage from present-day Burlington to the Grand River and travel south to the open water on Lake Erie.

Michi Saagiig oral histories also speak to the occurrence of people coming into their territories sometime between 500-1000 A.D. seeking to establish villages and a corn growing economy – these newcomers included peoples that would later be known as the Huron-Wendat, Neutral, Petun/Tobacco Nations. The Michi Saagiig made Treaties with these newcomers and granted them permission to stay with the understanding that they were visitors in these lands. Wampum was made to record these contracts, ceremonies would have bound each nation to their respective responsibilities within the political relationship, and these contracts would have been renewed annually (see Gitiga Migizi and Kapyrka 2015). These visitors were extremely successful as their corn economy grew as well as their populations. However, it was understood by all nations involved that this area of Ontario were the homeland territories of the Michi Saagiig.

The Odawa Nation worked with the Michi Saagiig to meet with the Huron-Wendat, the Petun, and Neutral Nations to continue the amicable political and economic relationship that existed – a symbiotic relationship that was mainly policed and enforced by the Odawa people. Problems arose for the Michi Saagiig in the 1600s when the European way of life was introduced into southern Ontario. Also, around the same time, the Haudenosaunee were given firearms by the colonial governments in New York and Albany which ultimately made an expansion possible for them into Michi Saagiig territories. There began skirmishes with the various nations living in Ontario at the time. The Haudenosaunee engaged in fighting with the Huron-Wendat and between that and the onslaught of European diseases, the Iroquoian speaking peoples in Ontario were decimated. The onset of colonial settlement and missionary involvement severely disrupted the original relationships between these Indigenous nations. Disease and warfare had a devastating impact upon the Indigenous peoples of Ontario, especially the large sedentary villages, which mostly included Iroquoian speaking peoples. The Michi Saagiig were largely able to avoid the devastation caused by these processes by retreating to their wintering grounds to the north, essentially waiting for the smoke to clear.

Michi Saagiig Elder Gitiga Migizi (2017) recounts¹:

"We weren't affected as much as the larger villages because we learned to paddle away for several years until everything settled down. And we came back and tried to bury the bones of the Huron but it was overwhelming, it was all over, there were bones all over – that is our story.

There is a misnomer here, that this area of Ontario is not our traditional territory and that we came in here after the Huron-Wendat left or were defeated, but that is not true. That is a big misconception of our history that needs to be corrected. We are the traditional people, we are the ones that signed treaties with the Crown. We are recognized as the ones who signed these treaties and we are the ones to be dealt with officially in any matters concerning territory in southern Ontario.

We had peacemakers go to the Haudenosaunee and live amongst them in order to change their ways. We had also diplomatically dealt with some of the strong chiefs to the north and tried to make peace as much as possible. So we are very important in terms of keeping the balance of relationships in harmony.

Some of the old leaders recognized that it became increasingly difficult to keep the peace after the Europeans introduced guns. But we still continued to meet, and we still continued to have some wampum, which doesn't mean we negated our territory or gave up our territory – we did not do that. We still consider ourselves a sovereign nation despite legal challenges against that. We still view ourselves as a nation and the government must negotiate from that basis."

¹ This historical context was prepared by Gitiga Migizi, a respected Elder and Knowledge Keeper of the Michi Saagiig Nation.

Often times, southern Ontario is described as being "vacant" after the dispersal of the Huron-Wendat peoples in 1649 (who fled east to Quebec and south to the United States). This is misleading as these territories remained the homelands of the Michi Saagiig Nation.

The Michi Saagiig participated in eighteen treaties from 1781 to 1923 to allow the growing number of European settlers to establish in Ontario. Pressures from increased settlement forced the Michi Saagiig to slowly move into small family groups around the present day communities: Curve Lake First Nation, Hiawatha First Nation, Alderville First Nation, Scugog Island First Nation, New Credit First Nation, and Mississauga First Nation.

The Michi Saagiig have been in Ontario for thousands of years, and they remain here to this day.

Introduction

Canadian Nuclear Laboratories (CNL) is Canada's premier nuclear science and technology organization, and a world leader in developing nuclear technology for peaceful and innovative applications. Using unique expertise, CNL is restoring and protecting the environment, advancing clean energy technology, and medical breakthroughs continue to improve the health of people around the world.

Atomic Energy of Canada Limited (AECL), a federal Crown corporation, has contracted CNL to manage and operate its sites and facilities across the country. CNL is also contracted to carry out AECL's mandate to enable nuclear science and technology and to protect the environment by fulfilling the government of Canada's radioactive waste and decommissioning responsibilities. Through its Historic Waste Program Management Office, CNL is implementing the PHAI on behalf of AECL.

The PHAI represents the federal government's response to the community-requested solution for the cleanup and local, long-term, safe management of historic low-level radioactive waste in the municipalities of Port Hope and Clarington. The waste is the result of the refining practices of the former Crown Corporation, Eldorado Nuclear Ltd., and its private sector predecessors. The original Eldorado refining operation and plant were established in the 1930s without consultation with Indigenous peoples of the area.

An Agreement for the Cleanup and Long-Term Safe Management of -Low-level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope and the Municipality of Clarington the (Legal Agreement) [1], finalized in 2001 March, between the Government of Canada and the two municipalities, launched the PHAI by defining the framework and setting out the responsibilities for the Port Hope Project and the Port Granby Project.

Licence Information and Reporting Period

Name:Port Hope Area Initiative - Port Granby Long-Term Waste Management FacilityLocation:4763 Lakeshore Road
Municipality of Clarington, Regional Municipality of Durham, Ontario
L1B 1L9

This annual compliance monitoring report is produced to comply with Licence Condition 3.1 of the *Port Granby Long Term Low Level Radioactive Waste Management Project Waste Nuclear Substance Licence* (WNSL-W1-2311.02/2021) [2], hereinafter referred to as the Port Granby Project Licence (PGP Licence), in accordance with the compliance verification criteria listed in the *Port Granby Long-Term Low-Level Radioactive Waste Management Project Licence Conditions Handbook* [3], hereinafter referred to as the PGP LCH and Section 4 Annual

Compliance Report of CNSC REGDOC-3.1.3, *Reporting Requirements for Waste Nuclear Substance Licensees, Class II Nuclear Facilities and Users of Prescribed Equipment, Nuclear Substances and Radiation Devices* [4]. Information included in this report is for the period of 2022 January 01 to December 31.

This report provides site-specific information to supplement information in the *Annual Compliance Monitoring Report for Canadian Nuclear Laboratories* (ACMR for CNL) [5], which provides corporate updates to 14 Safety and Control Areas as they are applied across all CNL.

The intent of this report is to provide sufficient detail to demonstrate how PGP programs are meeting the requirements of the Nuclear Safety and Control Act (NSCA), associated regulations and requirements as specified in the PGP Licence [2] and the PGP LCH [3].

Following a one-day hearing, the Canadian Nuclear Safety Commission (CNSC) has renewed the licence for the Port Hope Area Initiative (PHAI), for a 10-year period beginning 2023 January 01 [7]. As part of the licence renewal, a single licence consolidates four previous licences for PHAI activities, authorizing CNL to continue the safe cleanup and management of low-level radioactive waste in Port Hope, Ontario. The licence will also facilitate the ongoing monitoring and maintenance of the Port Granby Long-Term Waste Management Facility (PG LTWMF).

Changes to Organizational Structure

There were no changes to key positions or the organizational structure in the reporting period.

Facilities Included in this Report

Facilities included in this report are the PG LTWMF, the Port Granby Waste Management Facility site (PG WMF), and the Port Granby Waste Water Treatment Plant (PG WWTP).

The PG WMF site is located at 4763 Lakeshore Road in the Municipality of Clarington, Ontario. The PG WMF occupies 18 hectares (ha) in Lot 3, Broken Front Concession "A" in the Municipality of Clarington, Regional Municipality of Durham, and Province of Ontario. The property is bounded by Lake Ontario to the south, by farmland owned by the Government of Canada to the east and west, and by Lakeshore Road to the north.

The PG LTWMF and PG WWTP are located at 4780 Lakeshore, Clarington, Ontario. The facility is 580 m north of Lakeshore Road, immediately northwest of the PG WMF. The site is bounded by Elliott Road to the west, Nichols Road on the east and the Canadian National Railway to the north.

Summary of Licensed Activities

The PHAI is defined by An Agreement for the Cleanup and Long-Term Safe Management of Low-Level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope and the Municipality of Clarington (the Legal Agreement) [1], which took effect on 2001 March 29, between the Government of Canada and the municipalities of Port Hope and Clarington for the

management of the LLRW as prescribed under the PGP, and the Port Hope Long-Term Low-Level Radioactive Waste Management Project.

The PHAI includes two distinct and separate projects:

- The Port Hope Long-Term Low-Level Radioactive Waste Management Project that comprises the long-term management of the LLRW removed from the former Welcome Waste Management Facility, the construction of a new Port Hope Long-Term Waste Management Facility (PH LTWMF), the remediation of LLRW and specified industrial waste at various sites within the Municipality of Port Hope and the safe transportation of the waste to the new PH LTWMF for long-term storage.
- The Port Granby Long-Term Low-Level Radioactive Waste Management Project (PGP). The PGP involves the relocation of approximately 450,000 cubic metres of historic LLRW, located at a legacy waste management facility site on the shoreline of Lake Ontario in Southeast Clarington, to a new, engineered aboveground mound at the PG LTWMF constructed approximately 700 m north of Lake Ontario.

The PGP comprises:

- Phase 1 (complete):
 - Securing regulatory approvals.
 - Management of waste at the existing PG WMF currently owned by the Government of Canada and operated by CNL, on behalf of Atomic Energy of Canada Limited, a federal Crown corporation; CNL operation of this site was assumed from Cameco Corporation in 2012 March.
- Phase 2 (2011-2022) (completed in 2022):
 - Construction of the PG LTWMF.
 - Remediation of PG WMF.
 - Transportation of LLRW from PG WMF to the PG LTWMF for consolidation in a new, engineered aboveground mound.
- Phase 3 (2022-2120):
 - Activities related to the post-closure operations of the PG LTWMF associated with long-term care and maintenance.

1. Management System

1.1 Management System Program

The PGP adheres to CNL's Management System Functional Support Area. See Section 1 of the ACMR for CNL for details [5].

The *Historic Waste Program Quality Plan* (Quality Plan) [7] is consistent with the corporate *Management System Manual* (Management System) [9] and summarizes the processes and practices applicable to the PGP licensed activities. These processes and practices comply with the quality management system defined in the CAN/CSA-ISO 9001:2015. CNL's third party registrar conducted the annual ISO 9001 audit which resulted in CNL successfully retaining its ISO 9001:2015 certificate effective 2021 April 21.

The CNSC was notified [10] of the revision to the *Quality Plan* [7], implemented in the reporting period.

1.2 Audits, Inspections and Self-Assessments

As per the requirements of the Management System, both Safety and Control Areas (SCAs) and Facilities conduct various audits, inspections, and self-assessments to ensure that the management system is functioning according to expectations; and, that any policy, programmatic, or procedural deficiencies are identified, and appropriate actions taken to resolve them.

1.2.1 Audits

See Section 1.2 of the ACMR for CNL [5] for a list of all CNL-wide Audits for the reporting period.

1.2.2 External Audits

The annual ISO 9001:2015 external audit was held by third party registrar SAI Global for the recertification of the Historic Waste Program Management Office (HWP MO) ISO 9001:2015 certification. The audit identified two opportunities for improvement (managed through the corporate ImpAct² system (DevonWay)) that have since been closed.

1.2.3 Internal Quality Audits

There were no internal audits completed by the Quality Audits and Processes branch specific to the PGP in the reporting period.

² ImpAct – Abbreviation for Improvement and Action. It is an internal process used to identify events, problems, non-conformities, opportunities for improvements, and personnel injuries. The process also identifies and tracks actions to correct or remediate problems.

1.2.4 Regulatory Inspections

CNSC Inspections

There were two CNSC compliance inspections conducted at the PGP in the reporting period. The purpose of the inspections was to very adherence with the NSCA, associated regulations, conditions of the applicable licence and associated LCH, and other related licensing basis documentation.

The CNSC inspections conducted at the PGP in the reporting period are summarized in Table 1.

Two general inspections took place from 2022 March 28 to April 8 at the PG WWTP, PG LTWMF, and PG WMF. The inspections included the Radiation Protection, Environmental Protection, and Conventional Health and Safety SCAs. CNL worked through 2022 to address CNSC staff comments related to the issued non-conformance.

Inspection No.	Area Inspected	No. of NNCs	No. of Recommendations	No. of NNC ^a Closed
CNL-PHAI-PGP-2022-01	General Inspection	0	1	N/A
CNL-PHAI-PGP-2022-02	General Inspection	1	0	1

Table 1: CNSC Inspections Summary

NNC – Notice of Non-Compliance

a Closed as of 2023 March 17

Inspections by Other Regulatory Bodies

There were no inspections by other regulatory bodies at the PGP in the reporting period.

1.2.5 Self-Assessments

The corporate ImpAct System (DevonWay) tracks the planned self-assessments from the *Environmental Remediation Management (ERM) HWP Self-Assessment 2022/2023 Plan.* These are listed in Table 2. During the reporting period, two (2) self-assessments were planned to be conducted at HWP MO sites covering various aspects of the Management System, including SCAs.

Table 2: List of Self-Assessments

Title	Facility/Safety and Control Area	
FRM LIM/R Solf Assocraments 2022/2022	HWP Quality Plan [8]	
ERM HWP Self-Assessments 2022/2023	PHAI Transportation of Dangerous Goods Plan [11]	

1.3 Management Reviews

A Quality Assurance Program/Management System Review was completed for 2022/2023 to evaluate the effectiveness of the management system. The conclusion was that CNL's management system is suitable to meet the necessary requirements, adequate and aligned with the strategic direction, and effective at supporting CNL to achieve its objectives.

1.4 Compliance Oversight

An integrated approach to oversight, where all SCAs are streamlined into one process, is used by CNL to confirm the suitability, implementation, and effectiveness of processes applied to PHAI project activities. Compliance objectives for contractual obligations, licensing requirements, Acts and Regulations, environmental management and protection plans, compliance plans, and technical specifications are outlined in the *Historic Waste Program Management Office Field Oversight Activities* (HWP MO Field Oversight Activities) procedure [12].

Activities performed by CNL and by PHAI consultants, contractors, and service providers are subject to CNL's oversight. Recommendations for improvement raised from CNL's compliance oversight activities were dispositioned and implemented.

2. Human Performance Management

2.1 Human Performance Program

The PGP adheres to CNL's Performance Assurance Functional Support Area. See Section 2 of the *ACMR for CNL* for details [5].

All CNL employees receive mandatory Human Performance Training. CNL's Human Performance and Training branch provides programs and support that help reduce human error and, as a result, the frequency and severity of unplanned events at CNL.

The effectiveness of the Human Performance program at the PGP has been enhanced through the following improvements:

- CNL created and launched a new Human Performance training course called *Leaders in Field Training*. This course complements *Human Performance Awareness* – *Fundamentals and Nuclear Safety Culture*. *Leaders in Field Training* is tailored to support employees and managers as a refresher of Human Performance fundamentals and safety culture. This course is available to all employees at CNL, and it is delivered remotely.
- A Field Checklist Observation card for the PGP was created in the DevonWay software system with updated buildings and work locations for HWP inspections. This is a robust data collection and reporting card that encompasses housekeeping, stairways and passageways, roadways and parking lots, Electrical Safety, Workplace Hazardous Materials Information System, Portable Tools and Equipment, Ladders, Emergency Equipment, Personal Protective Equipment, Fire Protection, and Emergency Preparedness.

2.2 Training program

The PGP adheres to the Human Performance and Training Functional Support Area. See Section 2 of the *ACMR for CNL* for details [5]. The Port Hope Area Initiative (*PHAI*) *Training Plan* [13] defines the training processes applied to the work performed at the PGP and promotes safe and effective workplaces through the cooperation of management, employees, contractors, and visitors. Compliance with the plan ensures that all project staff (including CNL employees and contractors) are qualified to perform their duties effectively and safely, using established processes and standards.

There were no revisions to the *PHAI Training Plan* [13] in the reporting period. A revision to the *PHAI Training Plan* [13] will be submitted to CNSC staff in 2023.

2.2.1 Required Training

The PGP maintained a sufficient number of qualified workers to carry on the licensed activities safely and in accordance with the NSCA [6] and the regulations made under the NSCA [6]. All workers assigned to the PGP are required to attend a PHAI Awareness session to gain understanding of the project. Contractors are responsible to qualify staff to PHAI requirements as well as maintain their training. Records are inspected regularly by CNL staff during compliance oversight activities and audits.

The PHAI applies the Systematic Approach to Training for positions and roles identified on the *Controlled List* [14]. The Systematic Approach to Training enlists the Training Analysis method – Job/Task Analysis to identify training requirements to be documented in Training Plans. The positions and roles at PGP that are on the *Controlled List* [14] are:

- Radiation Surveyor
- Health Physicist
- Certified Industrial Hygienist
- Shipper
- Handler
- Design Authority

Identified positions at PGP that do not meet the threshold criteria established in the *Process to Determine the Application of the Systematic Approach to Training at CNL* [15] for the *Controlled List* [14] have their training requirements defined using CNL's Learning and Development Standard [20]. These positions are:

- PG WWTP Operator
- PG WWTP Supervisor
- CNL Safety Specialist
- Environmental Technologist

Continued progress was made in developing both Systematic Approach to Training and Learning and Development based training programs for the above positions.

An established Curriculum Review Committee is scheduled to meet quarterly with required membership. In 2022, the second quarter Curriculum Review Committee meeting was not held within the scheduled quarter. In 2023, an ImpAct was raised in the corporate DevonWay system to address the non-conformance and prevent recurrence. The Curriculum Review Committee Terms of Reference mandate includes review of staff qualifications, field performance, system, equipment and staffing changes and training compliance. Updates and improvements are monitored in the ongoing action list.

All PGP personnel, both employees and contractors, are adequately trained with initial and continuing training requirements to ensure safe operations and to conduct work under the PGP Licence [2]. Section 2 of the *ACMR for CNL* [5] details the 2022 CNL Employee and Manager/Supervisor required training. Table 3 provides a list of federally/provincially legislated training courses that appear in PHAI position-specific training plans. Section 2 of the *ACMR for CNL* [5] provides the established CNL performance benchmark. CNL is focused in 2023 to reach the necessary performance benchmarks.

Course Title	Course Code	% Complete
Aerial Platform Practical	OSH-3003-D	77
Aerial Work Platform Theory	OSH-1003-Online	92
Arc Flash Safety for Canada	OSH-9070-Online	85
Electrical Safety Introduction for Canada	OSH-9071-Online	92
First Aid Standard & Defibrillation	OSH-1020	100
Ladder Safety	OSH-1033-Online	100
Lift Truck Operation - Counter Balance Practical	OSH-3002-C	100
Lift Truck Operation - Electric Pallet Truck Practical	OSH-3002-H	90
Lift Truck Operation - Non-Electric Pallet Truck Practical	OSH-3002-D	100
Lift Truck Operation - Theory	OSH-1002-Online	100
Lock Out / Tag Out	OSH-1004	100
Transportation of Dangerous Goods Class 7 Radioactive Material - Handler	TDG-1007-H	100
Utility Task Vehicle Rider	OSH-1013	100
Vehicle Spotter Training	OSH-1047-Online	100
Working at Heights Practical	OSH-3005	100
Working at Heights Theory	OSH-1005	100
Percent complete:	-	96

Table 3: Federally/Provincially Legislated Training in 2022

2.2.2 Contractor Training

Training records for all contractors are verified before work commencement. In addition, records are verified regularly through CNL Compliance Oversight activities.

Before accessing the PGP, contractors are required to complete the following CNL training:

- Contractor Safety Orientation
- Radiation Protection Group 4 (if required)
- PHAI Awareness
- Step up to Safety
- CNL COVID Awareness

2.2.3 Training Evaluations Summary

See Section 2.2.3 of the ACMR for CNL [5] for the inputs and mechanisms for on-going Training Evaluation.

3. Operating Performance

3.1 Operating Program

Although not formally part of the PGP LCH [3], the PGP adheres to CNL's Conduct of Operations Functional Support Area. See Section 3.1 and Section 11.2 of the *ACMR for CNL* for details [5].

3.1.1 Environmental Remediation Operations

The following sub-sections provide a summary of the project activities during the reporting period. Detailed written reports on the PGP activities, as well as a three month look ahead were provided to CNSC staff on a quarterly basis [16] [17] [18] [19], as required by Licence Condition 3.1 of the PGP LCH [3].

3.1.1.1 Port Granby Long-Term Waste Management Facility

The Phase 2 activities described in this section were conducted during the reporting period as part of the transition of the facility to Phase 3. Activities, including upgrades to existing infrastructure, are required to facilitate operation of the PG LTWMF. These activities and upgrades included the following:

- Ongoing inspections of the municipal roads showed modest deterioration, but no repairs required. Final roads condition assessment, initially scheduled every two years, was deferred until after the importation of granulars is complete.
- It was determined that the remaining two lake tanks were not needed to support water management activities and thus underwent the appropriate radiation protection required screening prior to removal from site.
- Construction and commissioning activities continued for the East Gorge Groundwater Collection system which included the installation of flexamat geogrid above the East Gorge which assisted with erosion and sediment control for the PG WMF site.
- Commissioning was completed for the PG LTWMF leachate Pump Stations 05 and 06.
- Decontamination of equipment for offsite release was completed.
- Construction of the PG LTWMF surrounding ditches to final grade, placing clean fill, topsoil and hydro seeding was completed.
- Consolidation and disposition of waste generated onsite through decommissioning of the PG WWTP outdoor activities was completed.
- Remediation activities for the PG WMF, including backfill, topsoil, and erosion and sediment control construction was completed.
- Placement/ compaction of backfill and topsoil, spraying of hydro seed straw was completed for the PG WMF.

• Placement/ compaction of backfill and topsoil, spraying of hydro seed straw was completed for the PG LTWMF.

Supporting Activities

Information Use

- Representatives for the Municipality of Clarington and CNL met at monthly coordination meetings throughout 2022.
- To ensure compliance with CNL mandated COVID-19 Pandemic related restrictions for the number of personnel onsite, site activities and mobilizations continued to be monitored into 2022.
- The Phase 3 Long Term Maintenance and Monitoring Plan and Port Granby Site and Facility Maintenance and Monitoring Plan were revised to address CNSC staff review and comments.
- Port Granby Site Turnover Plans were finalised and integrated into the contractor's processes to initiate the transition from Phase 2 to Phase 3.

3.1.1.2 Port Granby Waste Water Treatment Plant

During the reporting period, the PG WWTP daily operations and regular maintenance activities transitioned from Phase 2 to Phase 3 activities. PG WWTP daily operations and regular maintenance activities are ongoing for Phase 3.

Water Collection and Treatment System

Waste water from within the PG LTWMF (leachate) and East Gorge drainage recovery system (I.e., pump station 03) is pumped to an equalization pond. The water then enters the plant, where it is treated using a two-stage process – membrane bioreactor pre-treatment (Stage 1), followed by reverse osmosis (Stage 2).

In Stage 1, membrane bioreactors are used to pre-filter the influent to remove fine solids and some biological material to supply high quality feed to the reverse osmosis membranes.

In Stage 2, the biologically treated water enters the reverse osmosis system where contaminants such as radium, uranium and arsenic are removed. The water is forced under high pressure through a membrane. The contaminants are rejected by the membrane, and the treated water flows through to the pH adjustment tank.

A composite automatic water sampling unit conducts samples at regular intervals before the water is discharged to Lake Ontario. See Section 9.2 for details. A summary of these analyses is provided in Appendix B, Table 16, and Table 17. Histogram charts (Figure 1, Figure 2, Figure 3, and Figure 4) show year over year results of final effluent results from 2018 to 2022. The treated water is then discharged through a pipe extending 120 metres into Lake Ontario.

The rejected contaminants (reverse osmosis brine) are collected, then safely transported to the Port Hope WWTP for further treatment.

Water Treatment and Monitoring

The PG WWTP was the sole source of effluent discharge from the PG WMF in 2022. Table 4 shows the production quantities of effluent for 2018-2022. Overall, there was a 32.3% decrease in production volume in 2022 as compared to 2021. This decrease in effluent volume was driven by several factors including reverse osmosis brine being transported to the Port Hope WWTP; the completion of remediation on the PG WMF; and the completed closure of the constructed PG LTWMF waste cell.

Effluent quality for this time period is reported under Section 9.2, Environmental Protection.

As of 2018 April 4, approved release limits were implemented at the PG WWTP and updated in the PGP Quarterly Effluent Reports. There were no changes to these limits in the reporting period.

A review of action levels following CSA Group Standard N288.8-17 [21] was initiated in 2022 and is planned for submission to CNSC staff in 2023.

Month	2018 Effluent (m ³)	2019 Effluent (m ³)	2020 Effluent (m ³)	2021 Effluent (m ³)	2022 Effluent (m³)
January	16,920	15,778	20,153	2,055	3,682
February	12,908	13,053	18,680	0 ^a	3,492
March	15,362	21,436	22,264	3,195	7,046
April	14,666	27,396	11,737	4,432	4,291
May	20,719	30,037	11,721	1,895	2,727
June	19,505	29,700	6,550	0ª	1,990
July	20,190	25,720	1,317	5,285	4,058
August	12,627	20,057	6,006	3,626	3,110
September	9,036	12,084	12,044	8,499	2,451
October	18,381	21,120	2,470	14,573	1,863
November	16,715	6,081	5,247	8,467	1,562
December	18,084	16,982	4,842	3,299	1,185
TOTAL	195,114	239,444	123,031	55,326	37,457
^a No effluent was produced during the months of February and June 2021.					

Table 4: PG WWTP Production Quantities of Effluent

Waste Processing

The PG WWTP did not produce any filter press solids in 2022. In 2022, 3,497 m³ of brine was safely transported to the Port Hope WWTP main collection pond for treatment at the Port Hope WWTP. The overall summary of solids production is provided in Table 5. For waste transfers to off-site locations, refer to Section 11.2.2.

Year	Filter Press Solids (kg)	Slurry Solids (kg)	Cement Solids (kg)	Brine Residuals (m ³)
2018	262,500	79,500	0	0
2019	349,500	1,282,500	756,000	261
2020	277,000	0	0	2,402
2021	47,300	0	0	5,418
2022	0	0	0	3,497

Table 5: PG WWTP Waste Processing, Solids Production

3.2 Reporting Requirements

The PGP maintains a program for reporting information to the CNSC in accordance with the PGP LCH [3]. This includes compliance monitoring, operational performance, event reporting, and various types of notifications. In the reporting period, CNL prepared and submitted the written reports required by the PGP LCH [3].

3.2.1 Reportable Events to CNSC

During the reporting period, there were three events that occurred at the PGP that were deemed reportable to the CNSC. Reportable events are listed in Table 6. The reported events did not have any adverse effect on the health, safety and security of persons or the environment.

Event No.	Title	SCA	
HSSE-22-0145	HWP – PG LTWMF – Process residual waste totes were shipped without proper classification	Packaging and Transport	
ERM-22-2811	HWP - PG LTWMF – Security Breach	Security	
ERM-22-3094	HWP - PG LTWMF – Water Collection Line Struck and Severed During Excavation	Emergency Response	

Table 6: Reportable Events to CNSC

3.2.2 Reportable Events to Other Regulators

During the reporting period, there were no events that occurred at the PGP that were deemed reportable to other regulatory agencies, including Employment and Social Development Canada, Environment and Climate Change Canada, or the Ministry of the Environment, Conservation and Parks - Spills Action Centre.

3.2.3 Corrective Action Program

3.2.3.1 Trending of Events Related to Operational Activities

As events at the PGP occur, they are recorded in the corporate ImpAct system (DevonWay). This information is regularly reviewed to identify any trends.

One ImpAct with cognitive trending analysis was opened in 2022 where the trending searches were inclusive of both Port Hope and PGP sites. The 2022 ImpAct related to both Port Granby and Port Hope was:

• HWP -PH/PG MO - Adverse TREND "Dump Box Leaks" and Related Events / Issues

The ImpAct had a total of ten corrective actions assigned to address the event type and any contributing factors. One corrective action is currently open and ongoing. The remaining nine are closed as of 2023 January.

ImpActs raised at the PGP over the past five years by Significance Level³ are summarized in Table 7.

Year	Level 0 ^a	Level 1	Level 2	Level 3	Level 4	Total
2018	7	0	1	23	55	86
2019	0	0	1	14	34	49
2020	4	0	0	6	38	48
2021	0	0	0	13	25	38 ^b
2022	1	0	2	8	25	36 ^c

Table 7: Number of ImpActs Raised at PGP

^a Level 0 will be assigned if the ImpAct is deemed to be a "non- problem" and a recommendation to close the Impact will be given.

b Total does not include one committee-based ImpAct.

c Total does not include committee-based ImpActs.

³ Significance Level: Levels assigned to an event (SL1 being most significant, SL4 being least significant) based on the actual or potential result in safety, environmental, or business consequences.

4. Safety Analysis

4.1 Safety Analysis Program

As per the PGP LCH [3], the Safety Analysis SCA is not applicable to the PGP.

5. Physical Design

5.1 Design Program

The PGP adheres to CNL's Design Authority and Design Engineering Functional Support Area. See Section 5.1 of the *ACMR for CNL* for details [5].

5.1.1 Changes to Design or Equipment

The PGP utilizes CNL's Engineering Change Control process, supplemented by *HWP MO Application of Engineering Change Control and Oversight* [22], to implement modifications and upgrades to existing equipment. The initial release of the application document was in 2022 January [23]. At the request of the CNSC, the document was revised and revision 1 was released in 2022 September. Revision 1 included additional references to the PG licensing basis documents for the Physical Design SCA [24].

During the reporting period, there were no major changes to design or equipment identified that required the change request to follow the full Engineering Change Control process (i.e., full assessment).

Notable activities at the PG LTWMF included:

- Completion and capping of the PG LTWMF
- Reinstating Lakeshore Road

Notable activities at the PG WWTP included:

- In 2022 spring, CNL implemented an operational change to transfer liquid waste from the PG WWTP to the Port Hope WWTP. In 2022 August, CNL submitted the assessment for permitting the transfer of the liquid waste to CNSC [25]. In 2022 October, CNL submitted the licensing basis assessment for the transfer of liquid waste to CNSC [26]. To address CNSC comments, CNL continues to update relevant documentation, which will be submitted to CNSC in 2023.
- Removal of the short-term supplementary evaporator and supporting infrastructure
- Execution of the chemical room modifications and upgrades
- Execution of the design of underground influent piping upgrades
- Emptying and removal of the methanol tanks associated with the permanently out-ofservice bioreactors

In 2022 November, CNSC staff raised concerns with CNL's management oversight of changes and its adherence to the change control process. CNL acknowledged that the implementation of the change management process is an area needing improvement and initiated a Root Cause

Analysis to identify and correct the programmatic issues. Program improvement continues through 2023.

6. Fitness for Service

6.1 Fitness for Service Program

As per the PGP LCH [3], the Fitness for Service SCA is not applicable to the PGP.

7. Radiation Protection

7.1 Radiation Protection Program

The PGP adheres to CNL's Radiation Protection (RP) Functional Support Area. See Section 7 of the *ACMR for CNL* for details [5].

The *Port Hope Area Initiative Radiation Protection Plan* (PHAI RP Plan) [27] defines the radiation protection measures applicable to PHAI projects at the PGP site and is consistent with CNL's Radiation Protection Program Requirements [28]. The purpose of these radiation protection measures is to ensure that the execution of PHAI projects complies with the level of radiation safety required by the relevant regulations pursuant to the NSCA [6].

The CNL PGP Contractor responsible for operating the PG LTWMF utilizes a CNSC licensed Dosimetry Service Provider, specifically Health Canada, for monitoring dosimetry on site. Alternatively, CNL site and facility staff (i.e., CNL employees, contingent workers, and subcontractors) utilize the Chalk River Laboratories licensed Dosimetry Service Provider. Dose to CNL site and facility staff is not measured independently – only the total dose per person is recorded, irrespective of the site at which the person works (e.g., licensed activities at both Port Hope and Port Granby). CNL site and facility staff and the PGP Contractor who work in, or frequently enter Controlled Areas are assigned Thermoluminescent Dosimeters (TLDs) or Optically Stimulated Luminescent Dosimeters respectively to monitor for external radiation exposures.

There were no revisions to the PHAI RP Plan [27] in the reporting period.

7.1.1 ALARA Initiatives and Activities

As Low As Reasonably Achievable (ALARA) initiatives and activities continue to be at the forefront of the PGP RP Program. Recent CNL improvements and changes include Radiation Protection barriers, and Radiation Protection instrumentation. In 2022 the PGP RP program sought out to standardize RP barriers, specifically colouring with yellow and magenta, along with having the stands, posts and stanchions used in the barriers to be of a more robust nature. Radiation Protection instruments and equipment used for radiation measurements are selected, tested, and calibrated for the task and hazard for which they will be utilized. Instrumentation is calibrated to isotope(s) that closely represent the energy and type of radiation (α , β , γ) encountered in the LLRW found on the project.

ALARA initiatives and activities are practiced in every facet of the PGP activities and is specifically addressed through the implementation of the PGP environmental monitoring program's monthly and quarterly deployment of PGP Environmental Radon Monitors and TLDs. Results from the 2022 monitoring program confirm a public dose estimate to be 3.3% of the annual limit for non-NEWs based on the maximum readings from Radon and TLD dose measured along the fence line, with an occupancy period of 60 hours per year. The integrity of

the ALARA program is managed through routine monitoring and reviews of dose records to confirm that no adverse trends or exceedance have occurred.

7.1.2 Contamination Control

Routine monitoring across the project confirms that current activities have been executed while minimizing the spread of contamination. There were no contamination events at the PGP in the reporting period. Table 8 summarizes contamination events that occurred at PGP over the past 5-years.

	Sk	in and Clothir	Workplace Contamination			
	Skinª	Personal Clothing ^b	Radiological Work Clothing ^c	Total	Surface ^d	Vehicle / Materials ^e
2018	0	0	0	0	0	0
2019	0	1	0	1	0	0
2020	0	2	0	2	0	0
2021	0	0	0	0	0	0
2022	0	0	0	0	0	0

Table 8: Contamination Events

a Contamination found is greater than 4 Bq/cm² beta-gamma or 0.1 Bq/cm² alpha

b Contamination detected above background on personal clothing

c Contamination detected is greater than 10,000 cpm beta/gamma or greater than 230 cpm alpha

d Fixed/loose contamination in excess of limits specified for the applicable radiological zone

e Removable surface contamination detected above background.

7.2 Dosimetry

7.2.1 Interpretation of Reported Dose Quantities

The PGP uses the Chalk River Laboratories licensed Dosimetry Service Provider for external and internal dosimetry for CNL staff, contingent workers, and some sub-contractors. CNL staff, contingent worker, and sub-contractors whose external and internal dosimetry are monitored using the dosimeters are not measured independent of the site location worked (i.e., individuals may work at more than one licensed PHAI project site); only the total dose per person is recorded, irrespective of the site at which the person works. The PGP Contractor uses an alternate CNL approved, and CNSC licensed dosimetry service provider, where dose is monitored for the assigned PHAI PGP site where work is performed. All people who have a reasonable probability of receiving an occupational effective dose in connection with a nuclear

substance or nuclear facility in excess of 1 mSv per calendar year will be designated a Nuclear Energy Worker (NEW) [27].

CNL staff, contingent workers and sub-contractors who work within or frequently enter the Controlled Area, are assigned a TLD to monitor for external radiation exposures. Alternatively, the PGP Contractors use Optically Stimulated Luminescence Dosimetry equivalents that are provided by a CNSC licensed Dosimetry Service Provider. CNL dosimetry operates on a quarterly monitoring period. All external dosimetry is read on a routine basis. Visitors and non-NEWs are typically given Electronic Personal Dosimeters to track dose and to ensure trigger limits and dose control points identified within the *PHAI RP Plan* [27] are not exceeded.

The Internal Bioassay program is primarily provided to the CNL Operations and RP staff who work in close proximity with radiological hazards within the PG WWTP. The bioassay is tested for the presence of uranium through in-vivo submissions. All results for uranium bioassay reported were well below CNL's Bioassay Recommendation Level of Minor, which would typically indicate a potential for an intake of activity.

CNL's personnel radon exposure program for PG WWTP operations monitors employees, contingent workers, sub-contractors, and PGP contractors due to the increased work required to support Phase 2 construction. Phase 2 construction workers were assigned track-etch type Personal Radon detectors and doses are calculated and recorded if the monthly/ quarterly average exceeds the trigger level of 150 Bq/m³. No exceedances were identified.

PGP continues to ensure that doses to staff and contractors are kept ALARA by strict compliance to its Dosimetry program as stipulated in the PHAI RP Plan [27].

7.2.2 Radiation Doses to Personnel

The dose data in Table 9, Table 10 and Table 11 represent doses delivered at PGP for all monitored persons, which includes employees (including those in temporary employment such as students), sub-contractors, visitors, and the PGP Contractor.

Doses have not been broken down by individual facilities because CNL employees, contractors, and visitors routinely move between facilities without changing TLDs, making it difficult to accurately determine how much dose can be attributed to a CNL employee, contractor, or visitor at a single facility.

The maximum individual effective dose during the current five-year dosimetry period (from 2021 January 01 to 2025 December 31) is 0.76 mSv, received by a CNL sub-contractor tradesperson.

In 2022, there were no non-NEWs that had their effective dose assessed.

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 41 of 172

Information Use

Table 9: Effective Dose for 2022

				Do	se Rang	ge (mSv)								
	onitored	0	0.01- 0.50	0.51- 1.00	1.01- 5.00	5.01- 10.00	10.01- 20.00	>20.00	Total # of Persons	Individual Dose (mSv)			Collective Dose	
1 01	Person Type Number of Persons								Max	Ø Avg ^a	Avg All ^b	(person∙mSv)		
	Employee	112	98	0	0	0	0	0	210	0.34	0.08	0.04	7.42	
NEW	Contractor	291	103	0	0	0	0	0	394	0.42	0.09	0.02	9.43	
	Visitor ^c	53	0	0	0	0	0	0	53	0	-	0	0	
Non-	Contractor	1	0	0	0	0	0	0	1	0	-	0	0	
NEW	Visitor	4	0	0	0	0	0	0	4	0	-	0	0	
	Totals	461	201	0	0	0	0	0	662	0.42	0.08	0.02	16.85	

a Average of all measured doses that exclude the zero dose value, rounded to two decimal places.

b Average of all measured doses that include the zero dose value, rounded to two decimal places.

c Visitor NEWs are persons who were historically employee and/or contractor NEWs, but have returned to the site as visitor while retaining their historical NEW status, or frequented often enough to warrant NEW status as per *PHAI RP Plan* [27].

Annual Compliance Monitoring Report

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 42 of 172

Information Use

		Dose Range (mSv)												
Monitored Person Type		Total # of	0	0.01- 0.50	0.51- 1.00	1.01- 5.00	5.01- 10.00	10.01- 20.00	>20.00	Individual Dose (mSv)			Collective Dose	
	, ypc	Number of Persons							Max	Max Ø Avg ^a		(person∙mSv)		
	Employee	210	111	99	0	0	0	0	0	0.34	0.08	0.04	7.62	
NEW	Contractor	394	290	104	0	0	0	0	0	0.49	0.1	0.03	10.15	
	Visitor ^c	-	-	-	-	-	-	-	-	_	-	-	-	
Non-	Contractor	1	1	0	0	0	0	0	0	0	-	0	0	
NEW	Visitor ^c	1	1	0	0	0	0	0	0	0	-	0	0	
	Totals	606	403	203	0	0	0	0	0	0.49	0.09	0.03	17.77	

Table 10: Distribution of Equivalent Dose to the Skin for 2022

a Average of all measured doses that exclude the zero dose value, rounded to two decimal places.

b Average of all measured doses that include the zero dose value, rounded to two decimal places.

c Visitors on contractor sites are not monitored for their equivalent dose to the skin. Visitors issued a TLD by CNL are monitored for their equivalent dose to the skin.

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1

Page 43 of 172

Information Use

Monitored Person Type		External Penetrating Dose					External Surface Dose				Extremity Dose					
		Total # Persons	Collective (p·mSv)	Max	ax Ø Avg ^b	Avg All ^c	Total # Persons	Collective (p·mSv)	Max	Ø Avg ^b	Avg All ^c	Total # Persons	Collective (p·mSv)	Max	Ø Avg⁵	Avg All ^c
	Employee	210	7.42	0.34	0.08	0.04	210	7.62	0.34	0.08	0.04	-	-	-	-	-
NEWs	Contractor	394	9.43	0.42	0.09	0.02	394	10.15	0.49	0.1	0.03	-	-	-	-	-
	Visitor ^{de}	53	0	0	-	0	_c	-	-	-	-	-	-	-	-	-
Non-	Contractor	1	0	0	-	0	1	0	0	-	0	-	-	-	-	-
NEWs	Visitor ^e	4	0	0	-	0	1	0	0	-	0	-	-	-	-	-
	Total	662	16.85	0.42	0.08	0.02	606	17.77	0.49	0.09	0.03	-	_	-	-	-

Table 11: Summary of Dose Components Received as a Result of Licensed Activities for 2022^a

a All quantities are measured in mSv unless otherwise noted.

b Average of all measured doses that exclude the zero dose value, rounded to two decimal places.

c Average of all measured doses that include the zero dose value, rounded to two decimal places.

d Visitor NEWs are persons who were historically employee and/or contractor NEWs but have returned to the site as visitor while retaining their historical NEW status, or frequented often enough to warrant NEW status as per *PHAI RP Plan* [27].

e Visitors on contractor sites are not monitored for their equivalent dose to the skin. Visitors issued a TLD by CNL are monitored for their equivalent dose to the skin.

7.2.2.1 Discussion of Dose Data

No anomalies were noted in the data above. All doses were measured to be less than the assigned dose control point (1 mSv) for all individuals on the project and well below all action levels for the PGP.

7.2.2.2 Radiation Dose Changes or Trends

As the project advances past Phase 2 Construction, the 2022 average dose to all workers (employees and contractors) was determined to be approximately 0.02 mSv. This low average dose to workers is to be expected with PGP as capping and site closure activities are completed.

7.2.3 Program Exceedances

There were no exceedances of regulatory limits and action levels in the dose monitoring program for the 2022 calendar year.

8. Conventional Health and Safety

8.1 Conventional Health and Safety Program

The PGP adheres to CNL's Occupational Safety and Health Functional Support Area. See Section 8 of the ACMR for CNL for details [5]. The Port Hope Area Initiative Occupational Safety and Health Plan (PHAI OSH Plan) [29] has been developed to define the OSH program applicable to PHAI projects and is consistent with CNL's corporate OSH program.

Contractors conducting work for the PGP submit site specific health and safety plans for CNL's review and approval to ensure compliance with the *PHAI OSH Plan* [29].

CNL's OSH program priorities for 2022 included:

- Initiation of a comprehensive review to verify accuracy and completeness of the WWTP lock-out tag-out program and instructions in relation to requirements of the new CNL Hazardous Energy Standard
- Significant enhancements to the HWP MO formal contractor health and safety oversight process to implement formal programmatic auditing practices following ISO 45001 practices
- Re-establishment of the face-to-face Contractor Safety Forums
- Development and implementation of a HWP wide minimum standard on working near overhead hazards across all project sites
- Completion of updates to the HWP Contractor Health and Safety Plan Submission Criteria
- Completion of chemical process maps for WWTP's and updated spill control procedures based on results and facilitated advanced spill response training for applicable personnel
- Enhanced workplace health and safety recognition through awarding the Port Hope safety recognition award to various nominees
- Completion of hearing and Self-Contained Breathing Apparatus medical assessments
- Introduced wellness safety podcasts with a focus on psychological safety and resilience

The CNSC was notified [30] of revisions to the PHAI OSH Plan [29].

8.1.1 Site Safety and Health Committee

The Site Safety and Health Committee (SSHC) had nine regular scheduled meetings and one special meeting in the reporting period. The SSHC continued to meet regularly by virtual meetings.

A significant number of employees continued to work remotely and were permanently given that status. As a result of the pandemic and many other factors, a focus on mental health, reducing workplace stress, ergonomic and other safe working practices continued through the SSHC's Employee Awareness Campaigns. All inspections of HWP workplaces were carried out and completed.

No investigations were carried out in 2022 and there were no unresolved issues at the end of the year. The SSHC supported CNL's Safety Excellence initiative which spawned several new initiatives at the HWP including Safety Suggestion Boxes which have produced multiple proactive safety suggestions and ideas shared with the committee to date.

8.1.2 Inspections

During the reporting period:

- All inspections of PHAI workplaces were carried out and completed.
- The SSHC conducted three inspections.
- There were 28 site health and safety inspections completed by the Field Safety Specialists.

8.1.3 Hazardous Occurrence Investigation Reports and Lost-Time Injuries

There were no hazardous occurrences at the PGP that were reported to Employment and Social Development Canada in 2022.

A summary of injury rate data for the last five years is provided in Table 12.

Table 12. Summary of mjury Nate Data										
	2018	2019	2020	2021	2022					
PGP Employees	· · · · ·				·					
Person Hours Worked	-	41622	30000	19,614	10,513					
Lost-Time Injuries	0	1	0	0	00					
Working Days Lost	0	1	0	0	0					
Frequency ^a	0	4.8	0	0	0					
Severity ^b	0	4.8	0	0	0					
PGP Contractors ^c					-					
Lost Time Injuries	0	1	0	0	0					
Working Days Lost	0	365	0	0	0					

 a
 Frequency rate equals # of Lost-Time Injuries x 200 000 hrs of exposure divided by person hours worked

(based on 100 Full Time workers).
Environmentation of a second state of Working Days Lest v 200 000 hrs of exposure divided by person hours worked.

b Severity rate equals # of Working Days Lost x 200 000 hrs of exposure divided by person hours worked (based on 100 Full Time workers).

c The Number of Person Hours worked are not divulged by Contractors. As such, Frequency and Severity rates cannot be calculated.

Table 12: Summary of Injury Rate Data

9. Environmental Protection

9.1 Environmental Protection Program

The PGP adheres to CNL's Environmental Protection Functional Support Area. See Section 9 of the *ACMR for CNL* for details [5].

The *Environmental and Biophysical Monitoring Plan, Port Granby Project* [31] defines the methodologies and protocols followed in performing the environmental monitoring.

The CNSC was notified [32] of a revision to the *Environmental and Biophysical Monitoring Plan, Port Granby Project* [31].

9.2 Effluent Monitoring

9.2.1 Liquid Effluent Monitoring

9.2.1.1 Monitoring Points, Schedules and Parameters

A composite sample is collected weekly at the PG WWTP to provide data on the final effluent discharge. The sampling point is located at the final effluent tank. The sample is collected via an auto-sampler which collects a sample aliquot at a minimum frequency of every 15 minutes.

The samples are submitted to a third-party commercial laboratory on a weekly basis to determine concentrations of the following parameters:

- Radium-226
- Metal parameters including Arsenic, Cadmium, Cobalt, Copper, Molybdenum, Selenium, Thallium, Uranium, Vanadium, and Phosphorus
- General chemistry parameters including pH and Total Suspended Solids (TSS)
- Nitrogen species including Total Ammonia, Nitrate, and Nitrite
- Monthly samples are submitted for toxicity analysis

9.2.1.2 Monitoring and Testing Methods

All compliance samples were submitted to a third-party commercial laboratory for analysis. The laboratory is certified by the Canadian Association for Laboratory Accreditation Inc.

Toxicity samples were sent to two commercial laboratories for toxicity analysis via approved reference methods, namely:

• Reference Method for Determining Acute Lethality of Effluents to *Daphnia magna*, Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016 amendments

- Information Use
 - Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout, Environment Canada EPS 1/RM/13 (Second Edition, December 2000, with May 2007 and February 2016 amendments

9.2.1.3 Monitoring Results

The effluent discharge limits for the PG WWTP for the 2022 reporting period, as listed in Section 7 of the PGP LCH [3], specifies the monthly arithmetic mean concentration (total) of the contaminants of concern in the effluent discharge water shall not exceed the stated release limits. Additionally, effluent should not be acutely toxic as determined by monthly testing of the effluent. During the reporting period, the effluent was found not to be toxic.

A summary of the PG WWTP effluent discharge monthly average concentrations is provided in Appendix B, Table 15. Monthly effluent toxicity is provided in Appendix B, Table 16. Monthly influent average concentrations is provided in Table 17 for information. Histogram charts are presented in Figure 1, Figure 2, Figure 3, and Figure 4 for the purposes of comparing year over year final effluent results from 2018 to 2022. Note that radium-226, total suspended solids, and total phosphorus, cadmium, selenium, and thallium results were not graphed, since reported analytical results above the parameter detection limits are rarely reported.

A review of the data from Figures 1 to 4 yield the following observations:

- During the period of 2018 to 2022, Port Granby WWTP reported final effluent discharge analytical results were generally stable.
- Arsenic results tend to fluctuate over time, depending on total dissolved solids content of the influent water. Reported arsenic concentrations in the final effluent discharge increased slightly during 2022.
- Total ammonia, nitrate, and nitrite concentrations have decreased to near zero during 2022.
- Beginning 2020 January, CNL changed the third-party commercial laboratory providing the analytical results. The current commercial laboratory generally has lower detection limits for licensed parameters than the previous commercial laboratory. This can be readily observed on the curves for cobalt, copper, and vanadium, where more recent reported results are much lower than older results, owing to the lower detection limit.

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 50 of 172

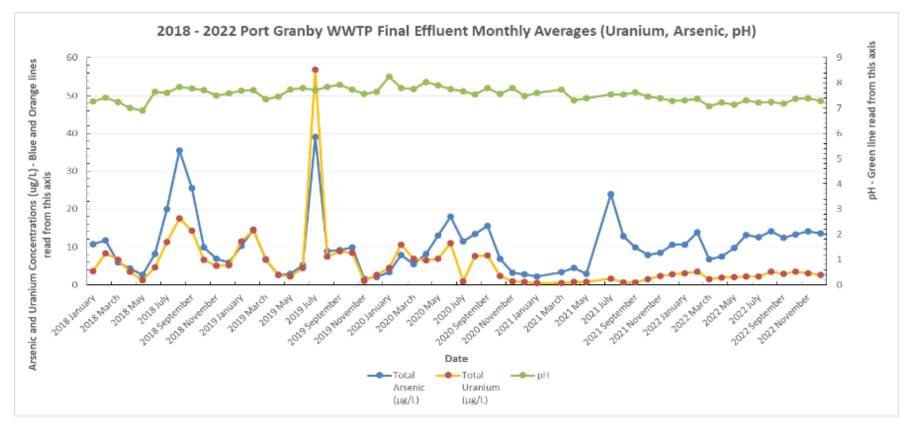


Figure 1: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (pH, Total Arsenic and Total Uranium)

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 51 of 172

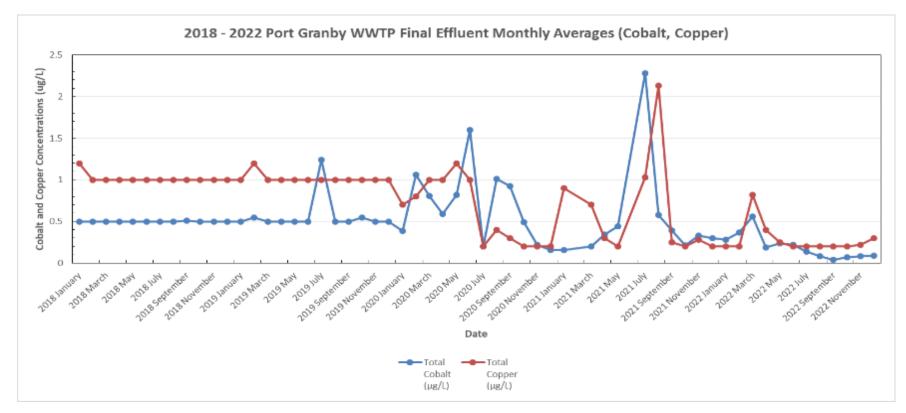


Figure 2: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Cobalt and Total Copper)

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 52 of 172

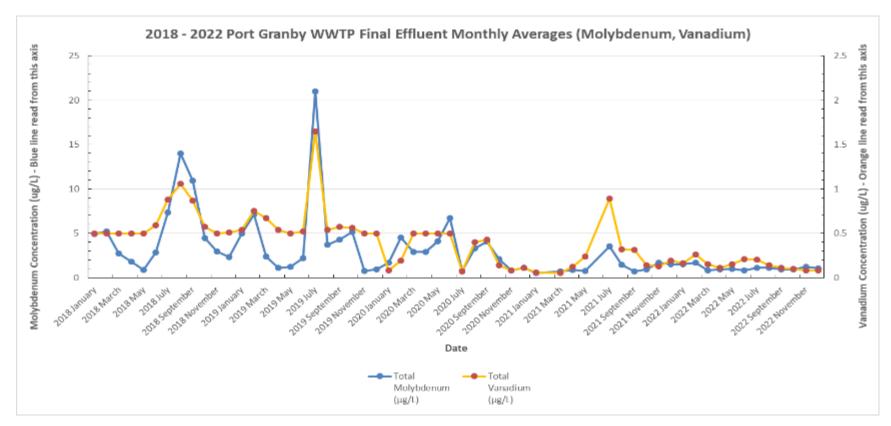


Figure 3: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Molybdenum and Total Vanadium)

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 53 of 172

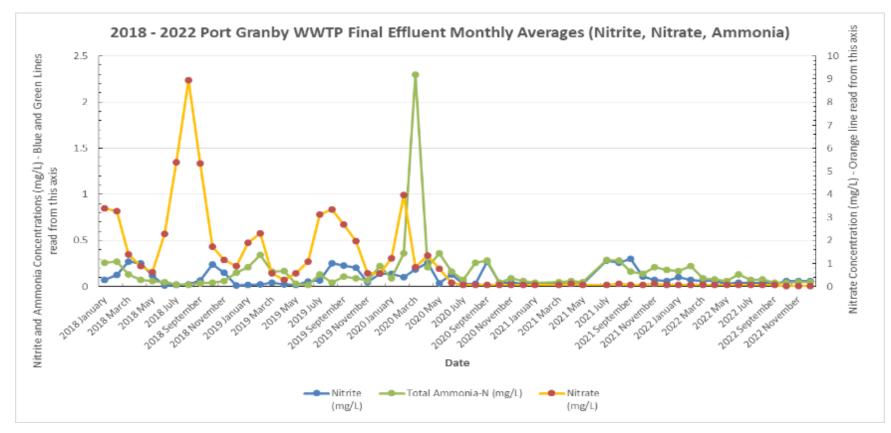


Figure 4: 2018 to 2022 PG WWTP Final Effluent Monthly Averages (Total Ammonia, Nitrate, and Nitrite)

9.2.2 Quality Assurance and Quality Control

To confirm the accuracy and precision of laboratory analyses, a quality control regime is followed. For the purposes of the environmental compliance of the PG WWTP, both duplicate and blank sampling is conducted:

- Duplicate samples are collected at a minimum frequency of once per month;
- Duplicate final effluent toxicity samples are collected each month. To prevent laboratory bias, the duplicate toxicity sample is sent to a different certified laboratory; and,
- Blank samples are collected at a minimum frequency of once per month.

Sample nomenclature on QA/QC samples is "blind" in nature, ensuring that the analytical laboratory cannot determine the source of the sample.

Blank samples are created using laboratory grade deionized water or commercially available distilled water.

9.2.3 Regulatory Limit Exceedances and Contamination Incidents

All reportable events are summarized in Section 3.2. During the reporting period, there were no exceedances as compared to the site release limits as described under Licence Condition 7.1 of the PGP LCH [3].

9.3 Operational Environmental Monitoring

The monitoring activities reported in this section were led by CNL, including the collection of the field data.

Laboratory analytical services were provided by an accredited laboratory under contract to CNL. The laboratory is accredited to ISO 17025:2017.

The methodologies and protocols followed in performing the environmental monitoring are described in the *PGP Environmental and Biophysical Monitoring Plan* [31].

9.3.1 Operational Groundwater Monitoring

Operational wells are monitored on the PG WMF to detect any migration of contaminants from the PG WMF via the groundwater pathway and to further monitor the nature, extent, direction, or rate of change of such migration. Operational groundwater well sampling was not conducted in 2022. The operational groundwater wells were decommissioned in 2016 as they were located within or adjacent to the PG WMF excavation areas. Additional monitoring wells will be installed in Phase 3 as required by the *PGP Environmental and Biophysical Monitoring Plan* [31]. Further discussion is in Section 9.4.3.1.

9.3.2 Bluff Seepage Monitoring

'Seep' samples from the south bluffs at the PG WMF are collected quarterly from three locations along the Lake Ontario bluffs. The two locations (PG-S-1, and PG-S-2) are between the East Gorge and West Gorge, as depicted in Appendix A, Figure 14.

Note that:

- The sample for PG-S-1 was not collected in 2022 March and June due to high Lake Ontario water level and bluff erosion and 2022 September and November as the seep was dry at the time of sampling.
- PG-S-2 was not sampled in 2022 March as the seep was dry.

The results of the bluff seepage sampling are presented in Appendix B, Table 30 and Table 31. In 2022, elevated levels of fluoride, arsenic, and uranium were observed in the seepage water, that are above Ontario's Provincial Water Quality Objectives (PWQO) [32] and/or the Canadian Council of the Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Aquatic Life (CWQG) [34]. Concentrations of some contaminants are slightly increased at PG-S-2 when comparing to 2021 concentrations, but overall, have been decreasing since 2015. According to the baseline predictions from the *Environmental Assessment Summary Report for the Port Granby Project* [35] bluff seepage to Lake Ontario is occurring at the rate of 51,100 m³ per year of uranium (baseline concentration of 0.79 mg/L (790 μ g/L)), arsenic (baseline concentration of 0.64 mg/L (640 μ g/L)) and radium-226 (baseline concentration of 0.55 Bq/L). The 2022 bluff seepage results for uranium and Ra-226 are at or below the baseline concentrations. Arsenic was noted to be above the baseline concentrations in 2022 September, however the overall average in 2022 was below baseline concentrations.

The Port Granby Project Aquatic Environment Environmental Effects Assessment Report [36] states that the baseline concentrations for arsenic and uranium exceeded the interim PWQO [32] but did not exceed the lowest chronic values for either compound in Lake Ontario. These concentrations are expected to decrease after remediation is complete.

The Aquatic Environment Baseline Characterization Study for the Port Granby Project [37] states that the projected plume of arsenic and uranium associated with bluff seepage will cover a very small area (< 750 m²), with the majority of the plume predicted to have contaminant concentrations equivalent to approximately 1% of the original concentration observed in the bluff seepage samples. The total contaminant plume to Lake Ontario remains very small. The seepage water quality is expected to improve as the remediation of the PG WMF is complete and natural attenuation takes place.

9.3.3 Sediment Monitoring

Sediment was sampled along the Lake Ontario shoreline near the areas of bluff seepage in 2022 and analyzed for metals and radionuclides. Sediment sampling locations are depicted in Appendix A, Figure 11.

The results of the sampling are presented in Appendix B, Table 32, and Table 33. PG-BS-6 was not sampled in 2022 June and November as it was not able to be safely accessed. From the results in Appendix B, Table 32, and Table 33, arsenic exceeded Ontario's Provincial Sediment Quality Guidelines (PSQG) [38] and the CCME Canadian Sediment Quality Guidelines for the Protection of Aquatic Life [39] at PG-BS-7. Arsenic exceeded the PSQG Lowest Effect Level [38] and CCME Interim Sediment Quality Guidelines (ISGQ) [39] in the 2022 June sample and the PSQG Lowest Effect Level and CCME Probable Effect Level (PEL) [39] in the 2022 November sample. The 2022 results are consistent with previous years.

The Aquatic Environment Baseline Characterization Study for the PGP [37] states that sediment in the near shore zones along the bluffs are susceptible to change after every storm event. The natural stratigraphy of the Port Granby bluffs makes them vulnerable to erosion from external factors (e.g., wave action) and internal factors (e.g., high pore water pressure). This natural vulnerability may lead to the brief deposition of near shore sediments with elevated levels of metals and radionuclides in Lake Ontario. The transient nature of near shore sediments in Lake Ontario may contribute to alternating exceedances and non-exceedances of metals compared to the PSQG [38] based on weather and lake movement before sampling.

Sediment quality is expected to improve once remediation of the PGP site is complete.

9.3.4 Stormwater Management Pond Monitoring

Two stormwater management ponds (SMP(s)) at the PG LTWMF were sampled monthly commencing in 2016 June. Location PG-SP1 refers to the North SMP and Location PG-SP2 refers to the South SMP, as depicted in Appendix A, Figure 13.

The results of the sampling are provided in Appendix B, Table 40, and Table 41. The monthly samples were not collected in 2022 January, February, or December at PG-SP1 and PG-SP2 as the SMPs were frozen. The results of the sampling campaigns were compared against the PWQO [32] and the CWQG [34]. In 2022, the concentrations of fluoride and phosphorus were observed to exceed the PWQO [32] and the CWQG [34] in both the North and South SWPs. Iron was also observed to exceed the PWQO [32] and the CWQG [34] in the North SWP. These exceedances were observed before the start of active waste transfer in 2016 November, suggesting that these concentrations are indicative of surface water run-off in the area, unrelated to the PG LTWMF. The *Screening Report for Port Granby Long-Term Low-Level Radioactive Waste Management Project* (PGP Screening Report) [40] states that water quality guidelines for fluoride, iron, and phosphorus were exceeded in baseline data, which is typical for agriculture/urban watersheds in the region.

In the spring of 2022 elevated concentrations of arsenic and uranium were identified in the South SWP. Investigations of the source continued through 2022, and release was prevented to Port Granby Creek during this time. Water quality improved in 2022 October and discharge was resumed to Port Granby Creek once contaminant levels were verified to be within acceptable range before release.

In the North and South SWP, the pH level was outside of the recommended range as defined in the PWQO [32] and the CWQG [34] in 2022 May.

The elevated uranium, arsenic, and other Contaminants of Potential Concern (COPC) results were not measurable in the Port Granby Creek Watershed, as discussed in Section 9.4.4.1

9.4 Environmental Assessment Follow-Up Environmental Monitoring

For the 2022 reporting period, Licence Condition 7.1, Environmental Protection Program, of the PGP LCH [3] applies to the natural environment and associated monitoring.

The purpose of an EA Follow-up Program and the associated environmental monitoring program is to confirm that the environmental effects of a project are consistent with the predictions of the EA; and, if they are not, to identify mitigation measures.

The primary objectives of the Environmental Monitoring Program are:

- Confirm EA predicted effects by means of monitoring, sampling, measurements, and analysis.
- Demonstrate compliance with licence requirements and EA Follow-up Program requirements as stipulated in the *PGP Environmental and Biophysical Monitoring Plan* [31].
- Demonstrate effectiveness of containment and effluent control and, to provide public assurance of effectiveness of containment and effluent control.
- Provide data to refine EA predictions and identify any deviations, positive or negative, in environmental parameters, and COPC.

The secondary objectives of the program are:

- Provide data to support operations and plan future phases of the PHAI.
- Provide resources and data that will be of value during unplanned events.
- Demonstrate due diligence.
- Meet stakeholder commitments.

The EA monitoring program is structured using a framework of six sub-programs of follow-up actions. These programs collectively incorporate all the individual activities required for tracking the follow-up actions prescribed in the *PGP Screening Report* [40]. The programs include the monitoring of the atmospheric environment (air quality, noise levels), geology and

groundwater (groundwater flow and quality), and aquatic environment (surface water, drainage water quality). The details of the program can be found in the *PGP Environmental and Biophysical Monitoring Plan* [31].

This report contains information collected during the 2022 monitoring programs. The status of the EA commitments for the biophysical effects follow-up monitoring are summarized in Appendix D.

9.4.1 Methodology

The monitoring activities reported in this section were led by CNL, including the collection of the field data. Laboratory analytical services were provided by a laboratory accredited to ISO 17025:2017, under contract to CNL.

The methodologies used and protocols followed in performing the environmental monitoring are described in the *PGP Environmental Biophysical Monitoring Plan* [31].

9.4.2 Atmospheric Environmental Monitoring

The prescribed EA follow-up monitoring activities in the atmospheric environment include elements associated with air quality (suspended particulates, radiological and non-radiological parameters), along with noise monitoring.

9.4.2.1 Air Quality

Air quality monitoring is intended to identify concentrations of suspended particulate that may have been caused by project activities. Two types of suspended particulate were measured:

- Total suspended particles (TSP) comprising particle sizes < 44 μm in diameter; and,
- Particulate matter (PM_{2.5}) comprising particulate matter with particle sizes < 2.5 μm in diameter.

In 2022, high volume (Hi-Vol) air samplers were operated at two locations in Port Granby (PG South and PG East), as depicted in Appendix A, Figure 7, to measure both TSP and PM_{2.5}. The Hi-Vol samplers were set to operate for an approximate 24-hour period with the sampling media (filters) changed on a daily schedule. Mini-Vol portable air samplers (both TSP and PM_{2.5}) were deployed at the PG Northwest location as an alternative to Hi-Vol air samplers due to the lack of a power source at that location. The Mini-Vol air samplers were also run for an approximate 24-hour period.

Results of the air monitoring program are provided in Appendix B, Table 18, Table 19, and Table 20.

Total Suspended Particulate

Exceedances of the overriding limit of 120 micrograms per cubic metre (μ g/m³) as defined in the *PHAI Dust Management and Requirements Plan* [41] at the PG East and PG Northwest

location were noted in 2022. Three exceedances were observed for the PG East location in 2022 January, May, and June were attributed to off-site activities. Three exceedances were observed at the PG Northwest location in 2022 May, June, and July. These exceedances are believed to be from off-site sources based on the wind direction and the absence of real-time dust exceedances from contractor and independent real-time dust monitoring. A confirmed source could not be identified. The exceedance represents approximately 1.5% of total samples collected at PG East and PG Northwest locations. There were no exceedances observed at the PG South location.

Particulate matter (PM_{2.5})

In 2012, CCME adopted the Air Quality Management System as a comprehensive approach to managing air issues. The Canadian Ambient Air Quality Standards for Fine Particulate Matter are included, which replaced the Canada-wide standards developed in 2000. A 2020 value of 27µg/m³ is proposed for PM_{2.5}, which was exceeded in 2022 May and July at the Mini-Vol PG Northwest location. The 2022 May exceedance was attributed to construction work on the railways just north of the PG Northwest Mini-Vol station and the predominant wind direction. The 2022 July exceedance was attributed to off-site activities. This exceedance is believed to be from an off-site source based on the wind direction and the absence of real-time dust exceedances from contractor and independent real-time dust monitoring. A confirmed source could not be identified. The *PGP Screening Report* [40] predicted that there will be occasional and slight exceedances for PM_{2.5} along the edge of the existing WMF site. The PM_{2.5} results (98th percentile averaged over three years) were compared to Canadian Ambient Air Quality Standard as a proactive approach to current industry guidelines.

Additional Analysis

The sample containing the highest net weight of TSP collected each week at each of the Hi-Vol monitoring stations was sent for additional analysis to an accredited laboratory to determine the concentration of contaminants of potential concern in suspended dust. This included all TSP filters that exceeded the overriding limit as described above. The measured concentrations are presented in Appendix B, Table 21, and Table 22. There was an increase in the averages for uranium and silver in 2020, 2021 and 2022 due to the change in the contract laboratory. There were no exceedances of the Ambient Air Quality Criteria [43] at PG East and PG South in 2022.

The *PGP Screening Report* [40] predicted that the maximum annual concentrations for radionuclides would be below the Health Canada reference values. These reference values are defined in the *Port Granby Environmental Assessment Study Report* (PG EA Study Report) [35] and are based on Health Canada guidelines for the Management of Naturally Occurring Radioactive Material [44]. The wastes for the project are not considered Naturally Occurring Radioactive Material, however, the guideline levels have been provided for context. The predictions in the EA for the radionuclide concentrations were modelled for PM₁₀. TSP results were compared to the Health Canada reference values as a conservative approach (i.e., if TSP results for radionuclides are below the Health Canada reference values, PM₁₀ will be as well). There were no exceedances of the Health Canada reference values for radionuclides in 2022.

9.4.2.2 Independent Dust Monitoring

In accordance with the *Dust Management and Requirements Plan* [41], an Independent Dust Monitoring Program is executed by a third party in addition to that conducted by the Prime Contractor and CNL, to ensure that perceived organizational conflicts regarding dust monitoring results and work activities are avoided. Continuous monitoring occurs during the work hours and results are reported on a 15-minute interval.

The Independent Dust Monitoring Contractor uses real-time monitors to measure TSP at the work site perimeter. The *Dust Management Requirements and Plan* [41] identifies the dust action level for a TSP monitor reading at the work site perimeter to be > 120 μ g/m³ averaged over 15 minutes. An exceedance of a dust action level triggers an immediate response by CNL and the Prime Contractor to initiate corrective action to reduce dust levels.

In 2022, there were no instances when the 15-minute average exceeded the action level of 120 μ g/m³ that were attributed to site activities at the PG LTWMF.

Real-time dust monitoring results from the Independent Dust Monitoring Program for the PG LTWMF construction are available at <u>PHALCa</u>. The weekly reports include daily real time dust measurements and a site map illustrating the locations of the independent real time dust monitors.

9.4.2.3 Noise Monitoring

EA follow-up monitoring with respect to noise is conducted to confirm the accuracy of predictions made during the EA and the effectiveness of any mitigation measures. Additional noise monitoring is also required at the remediation sites to confirm compliance with appropriate by-laws and regulations (World Health Organization's Guideline for Community Noise) [45].

During the 2022 monitoring period, continuous sound level data was collected quarterly at nine locations in Port Granby. The sampling locations are depicted in Appendix A, Figure 8.

The results of the campaigns, averaged logarithmically over three workdays, are provided in Appendix B, Table 23. The 2022 monitoring results during daytime hours were compared to

average 2015 daytime results. As outdoor construction was not occurring in 2015, results for that period are more representative of baseline conditions than the results from 2004. A general increase in noise levels unrelated to the project can be observed since the initial 2004 environmental assessment due to an increase in road and train traffic. The 2015 data provides a revised baseline.

The *PG EA Study Report* [35] states the noise levels (hourly) at the nearest receptor for the intersection of North Elliott Road and Concession Road 1 (PG-N-0008) were predicted to be approximately 3 to 9 decibels (dBA) higher than the measured baseline noise levels (differential). For the intersection of Newtonville Road and Concession Road 1 (PG-N-0009), the noise levels at the nearest receptor were predicted to be approximately 4 to 15 dBA higher than the measured baseline noise levels. These two locations are representative of the project transportation route. The monitoring results reflect daytime hours from 2022. When compared to the adjusted 2015 baseline noise levels, 2022 data reveal a slight increase in the average, 1 to 2 dBA; or similar noise levels along the transportation route.

The *PG EA Study Report* [35] predicted an increase of 6 dBA at both the PG LTWMF and the existing facility in predicted zones of maximum influence. Overall, noise monitoring data is consistent with the EA predictions.

9.4.3 Geology and Groundwater Monitoring

The prescribed EA follow-up monitoring activities in the geology and groundwater environment include elements associated with groundwater flow and quality and soil quality. Groundwater monitoring well locations are depicted in Appendix A, Figure 9. Results of the monitoring are summarized in the following sub-sections.

9.4.3.1 Groundwater (Flow and Quality) Monitoring

During the reporting period, the groundwater wells were sampled on a quarterly basis in conjunction with the measurement of groundwater static levels. Groundwater monitoring is conducted in accordance with the *PGP Environmental and Biophysical Monitoring Plan* [31].

Note that of the 39 groundwater wells to be monitored:

- Four have not been located on the PG WMF since 2013 (PG-BH204, PG-BH214, PG BH404 and PG-OW41-76). Re-installation of these wells took place in 2022 fall.
- Three groundwater wells were decommissioned in 2016 April related to the construction of the PG LTWMF (PG MW5A-02, PG MW5B-02 and PG MW5C-02). As these wells were not sampled in 2022, the historic data has been excluded from this report. Re-installation of these wells took place in 2022 fall.
- Twelve wells located on the PG WMF (PG-MW03-01A, PG-MW03-01B, PG-MW03-01C, PG-MW03-02A, PG-MW03-02B, PG MW03-02C, PG-MW03-03A, PG-MW03-03B, PG-MW03-03C, PG-BH210, and PG-OW4-87) were not sampled once the remediation on

the site commenced in 2016, due to ongoing construction and inaccessibility. Limited access was granted in 2020 to sample the wells located at the PG WMF site. In 2021, full access was granted to sample the wells. Wells PG-MW03-02A, PG-MW03-02B, PG-MW03-02C, PG-MW03-03A and PG-MW03-03B are damaged and repairs were completed in 2022 fall, and sampling was reinitiated. Two wells, PG-BH210 and PG-OW4-87, were not sampled in 2022, as they could not be located. Replacement of damaged or missing wells took place in 2022 fall. The 2016 data was included for historical trending purposes, including a note for when these wells were not sampled due to the PG WMF construction activities.

In 2022, the remaining 20 wells located around the PG LTWMF were sampled on a quarterly basis. The data is presented in Appendix C.

Note that:

- Laboratory results for PG-MW2A-02, PG-BH1003E, PG-BH1003F, and PG-MW03-01A, and PG-MW1A-02 and PG MW2C-02 have not been provided as the wells were dry (or had insufficient water to sample). This is consistent with monitoring data from previous years.
- Well PG-BH1003A, and PG-MW3B-02 were unable to be sampled in 2022 as they are in need of further repair.
- The following samples were not collected in 2022 due to insufficient volume for sampling: PG-BH1002A (partial results in spring and fall), PG-BH1003B (partial results in fall), PG-BH1003C (partial results in fall), PG-MW1D-02 (fall), PG-MW03-01A (winter, spring, summer, and fall), PG-MW03-01B (summer and fall), PG-MW03-03A (fall), PG-MW03-03B (fall), PG-MW3D-02 (summer and fall),
- The following samples were not collected in 2022 due to no access for sampling: PG-MW4A-02 (winter) and PG-MW4B-02 (winter), PG-MW4C-02 (winter).

The results were compared against the Water Quality Criteria for Potable Groundwater Conditions tabulated in the *PGP Screening Report* [40]. Onsite water is not potable therefore a conservative approach is taken to ensure consistency with reporting from previous years. In addition, results were compared to Ontario's groundwater standards, specifically Table 3 - Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition (Ontario's Table 3 Standard) [46].

In 2022, barium was found to exceed the criteria identified in the *PGP Screening Report* [40] at PG-MW3A-02, which is the site's most northerly well. The elevated barium is consistent with monitoring data collected in previous years. As groundwater in the region generally flows south towards Lake Ontario, these elevated concentrations are likely originating from an alternative source; exceedances were not observed at any of CNL's other monitoring wells or surface water monitoring in Port Granby Creek Watershed (Section 9.4.4.1) and Lake Ontario (Section

9.4.4.2). There were no exceedances of the Ontario's Table 3 Standards [46] in 2022. Overall, 2022 sampling results for key COPC are similar to the previous year's sampling results.

On the site of the current PG WMF, the groundwater quality is expected to be improved significantly once waste removal is completed. It may take years to see the positive effects of the project due to natural attenuation following waste removal. On the site of the PG LTWMF, changes to groundwater quality are expected to be minimal due to the presence of an engineered containment system made from a multi-layered base liner and cover system and a leachate water collection system. Perimeter groundwater monitoring will be undertaken at the site perimeter locations to confirm effectiveness of the containment system.

Groundwater levels were measured quarterly in 2022 and are presented in Appendix B, Table 24. Average groundwater levels are generally similar to previous years.

Soil monitoring is conducted to determine if there has been an incremental increase in contaminant concentrations in these areas as a result of wind-blown dust deposition. Soil quality monitoring activities involved the collection and analyses of surface soil samples at offsite perimeter locations at the PG LTWMF site. The soil sampling locations are depicted in Appendix A, Figure 10.

Soil located around the PG LTWMF site were sampled and analyzed for metals and radionuclides in 2022. The sample analysis results provided in Appendix B, Table 25, Table 26, Table 27, Table 28, and Table 29 are comparable to previous years. The *PGP Screening Report* [40] predicted no likely residual adverse effects to soil quality, with the exception of Thorium-230, with an expected 38% increase in concentration over baseline, during the construction and development phase of the PG LTWMF. Thorium-230 soil concentrations in 2022 have remained consistent with baseline data and monitoring data from previous years.

9.4.4 Aquatic Environmental Monitoring

The aquatic environment monitoring program includes surface water sampling at Port Granby Creek, surface water sampling at the Lake Ontario diffuser, and drainage water sampling.

9.4.4.1 Surface Water – Port Granby Creek Watershed

During the reporting period, the water flowing in Port Granby Creek was sampled on a quarterly basis at two locations (upstream and downstream). The surface water locations are depicted in Appendix A, Figure 12.

Results were compared to the PWQO [32] and the CWQG [34] where available. Results are provided in Appendix B, Table 34, and Table 35. Water quality in both locations of the stream has generally remained stable over the last few years, notably with respect to metals and radionuclides, with the exception of cobalt. Cobalt exceeded the PWQO [32] in 2022 October at the upstream location (PGC-U). The overall 2022 average for cobalt at PGC-U was below the PWQO [32]. Iron exceeded the PWQO [32] and the CWQG [34] at the upstream location in 2022 April. The overall average for iron at PGC-U was below PWQO [32] and the CWQG [34]. At PGC-

D, pH exceeded the PWQO [32] and the CWQG [34] in 2022 July. Phosphorus exceeded the PWQO [32] in the 2022 October sample. As iron and cobalt were elevated at the upstream location, the value was not attributed to site activities. The *PGP Screening Report* [40] predicted no measurable change to Port Granby Creek surface water quality as a result of the project.

Port Granby Creek was also monitored hourly during one storm event in 2022 June. The contaminant concentrations were observed to peak as Total Suspended Solids (TSS) increased. Results from the storm event monitoring are presented in Appendix B, Table 36. TSS concentrations at the peak of the storm event were 312 mg/L, compared to 37 mg/L as the storm event sampling commenced. As TSS levels increased, concentrations of iron and phosphorus were observed to exceed the PWQO [32] and mercury exceeded the CWQG [34]. Cobalt and vanadium were observed to exceed the PWQO [19]. Exceedances of cobalt were noted in the 2022 October upstream location (PGC-U). Off-site construction activities were taking place throughout the 2022 summer, which may have attributed to the cobalt and vanadium exceedances of the PWQO [19]. The downstream PGC-D was also elevated for cobalt and vanadium but was not attributed to site activities.

The rural nature of the site and the associated farming activities would likely contribute to the higher-than-normal iron and phosphorus levels observed during the storm event monitoring. Iron and phosphorus are not key COPC associated with the PHAI PGP. They are discussed here for transparency.

9.4.4.2 Surface Water – Lake Ontario and Diffuser

The surface water of Lake Ontario is sampled to verify that the water quality in the vicinity of the diffuser discharge and the associated mixing zone is not affected by operations of the PG LTWMF. The *PGP Screening Report* [40] predicted that there will be a long-term improvement and reduced contaminant loading to Lake Ontario as a result of the project. Sampling is conducted at the diffuser (location PG-LO-D) and approximately 20 m east and west of the diffuser (location PG LO-E and PG-LO-W respectively), as depicted in Appendix A, Figure 12. Results are provided in Appendix B, Table 37, Table 38, and Table 39. Samples were not collected for the winter season due to unsafe conditions on Lake Ontario.

There was one exceedance of the CWQG [34] for mercury in June 2022. Mercury was observed to exceed the CWQG [34] in the Port Granby Creek watershed during the storm event monitoring (Section 9.4.4.1) but not in the groundwater monitoring network (Section 9.4.3.1). The mercury exceedance is not attributed to site activities. Fluoride and phosphorus were observed to exceed the PWQO [32] and CWQG [34] in 2022. Fluoride exceeded the CWQG [34] at PG-LO-E in 2022 June. Phosphorus exceedances of the PWQO [32] were observed at PG-LO-D, PG-LO-E, and PG-LO-W in 2022 June, September, and November.

Results are generally consistent with monitoring data for the past few years, suggesting that current operations do not have an adverse effect on water quality. The 2022 results from

location PG LO-D, relative to the mixing zone samples (PG-LO-E and PG-LO-W) are also comparable, suggesting that water quality at the diffuser is not affected by current operations.

9.4.4.3 Drainage Water

Drainage water locations are depicted in Appendix A, Figure 13 (PG-SW1/DP1-02 and PG-SW2/CP2-02). Note that location PG SW2/DP2-02 was not sampled since 2022 as the existing pond was removed as part of the site preparation work for the PG LTWMF. The monitoring location was relocated to the outflow of the new North SMP. SMP sampling is discussed further in Section 9.3.4.

PG-SW1/DP1-02 was sampled twice in 2022 (May and November). The results of the sampling campaigns are presented in Appendix B, Table 42, and were compared against the PWQOs [32] and the CWQGs [34]. In 2022 May and November, fluoride exceeded the CWQG [34] at PG-SW1/DP1-02. Exceedances have been observed in previous years for fluoride in drainage water (before emplacement of the waste at the PG LTWMF), and as such are not likely related to the operation of the facility. The *PGP Screening Report* [40] predicted no measurable changes in quality or quantity of drainage water during PG LTWMF construction.

10. Emergency Management and Fire Protection

10.1 Emergency Preparedness Program

The PGP adheres to CNL's Emergency Preparedness Functional Support Area. See Section 10.1 of the *ACMR for CNL* for details [5].

The Port Hope Area Initiative Emergency Plan (*PHAI Emergency Plan*) [47] has been developed to describe the planning and operational requirements for the response to an emergency directly or indirectly affecting the PHAI. The *PHAI Emergency Plan* is consistent with CNL's Corporate Emergency Preparedness Program which ensures that all components of emergency preparedness and response are effectively maintained. Contractors conducting work as part of the PHAI submit emergency preparedness plans to CNL for review and approval to ensure contractor site plans meet the requirements of the *PHAI Emergency Plan* [47]. Contractor compliance with project-specific emergency preparedness plans is examined as part of CNL's Oversight Program.

Enhanced emergency preparedness training was provided to personnel including fire extinguisher training and building emergency evacuation training and drills. The building emergency plan for the PG WWTP was revised.

There were no revisions to the PHAI Emergency Plan [47] in the reporting period.

10.1.1 Drills and Exercises

In the reporting period, a comprehensive five-year drill plan was created, outlining all drills that are required to be conducted, and an approximate timeline for those drills. In addition to the five-year drill plan, all drills were completed internally as per regulatory and programmatic requirements.

10.1.2 Training

In the reporting period, Emergency Steward and Officer in Charge training was offered to staff at all PHAI facilities.

10.1.3 External Collaborations

In the reporting period, there was repeated engagement with Clarington and Durham Region first responders. Continuous communications regarding site activities during the Phase 3 transition was conducted with Clarington Fire Department. Durham Regional Police and Durham Paramedic Service were engaged on separate topics.

10.1.4 Unplanned Emergency Events

In the reporting period, there was one unplanned emergency event. On 2022 October 11, a water collection line was damaged during excavation activities and was appropriately responded to and repaired with no adverse effect on the health, safety and security of persons or the environment. The event was reported to CNSC (See Section 3.2.1 for details).

10.2 Fire Protection Program

The PGP adheres to CNL's Fire Protection Functional Support Area. See Section 10.2 of the *ACMR for CNL* for details [5]. The *Port Hope Area Initiative Fire Protection Program* [48] includes a combination of site level fire plans, fire notification and protection systems, inspections and training on hazard identification, control, emergency response and fire extinguisher training.

The PHAI Fire Protection Plan [48] was approved for use in the reporting period.

10.2.1 Fire Response Drills

During the reporting period, all required annual fire response drills were completed at the PG site. Drill responses identified requirements for updated notification processes along with improved training and awareness on response procedures for all Emergency Stewards. Updated Officer in Charge and Emergency Steward Training was conducted for all CNL sites to correct the deficiencies noted.

10.2.2 External Collaborations

During the reporting period, site tours were conducted with Clarington Emergency and Fire Services.

10.2.3 Third Party Audits and Inspections

During the reporting period, all required routine CNL fire protection program inspections were completed at the PGP. Inspections were completed using standard inspection forms and processes. No significant deficiencies were noted with respect to fire hazards and necessary protective measures. Third-party fire system experts conducted inspections and follow-up maintenance on the PG WWTP updated fire system sensors.

10.2.4 Fire Protection Screening Assessments

During the reporting period, several fire screening assessments were completed for various maintenance and capital improvement projects in accordance with CNL's Engineering Change Control program. Fire protection screening assessments were also completed for work outside the Engineering Change Control process that affected fire protection, either from the modification itself, or from the implementation of the modification. Fire screenings were completed in accordance with the *CNL Fire Protection Screening Process* [49].

11. Waste Management

11.1 Waste Management Program

As per the PGP LCH [3], the Waste Management SCA is not applicable to the PGP. It is included in this report for information. The PGP adheres to CNL's Waste Management Functional Support Area. See Section 11.1 of the *ACMR for CNL* for details [5].

Additionally, the PGP follows Waste Management Plans to ensure continued support to all waste generators in meeting the strategic priorities and CNL business needs:

• Port Granby Waste Management Plan [50]

11.2 Waste Management Operations

Four major types of process wastes were historically placed at the PG WMF: limed raffinate, calcium fluoride, ammonium nitrate and magnesium fluoride. Of note, all the PG WMF waste types, and affected onsite soils have been transferred to the PG LTWMF for long-term management as part of the PGP.

11.2.1 Waste Inventory

The PG LTWMF mound contains an inventory of 1,315,059 metric tonnes, and an estimated total activity of 1.60E+14 Bq. The activity stems from the uranium and uranium progeny found in the waste. This is information is summarized in Table 13. There was no new waste placed in the PG LTWMF during the 2022 calendar year.

As part of the routine water treatment process, residuals that are removed from the water effluent are packaged and sent to an off-site facility for disposal or long-term management. Waste material sent off-site is summarized below and in Table 14.

In 2022, there were 1,779 tonnes of process residual waste sent to the PH LTWMF for long term management, and 3,497 tonnes of reverse osmosis concentrate sent for treatment at the Port Hope WWTP.

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 69 of 172

Information Use

Table 13: Stored Waste Inventory in PG LTWMF

Waste Type	Source	Total Estimated Quantity (Metric tonnes)	Total Estimated Radioactivity (Bq) [Calculated]	Primary Radionuclides
Radioactive	Historic Waste from PG WMF, Marginally Contaminated Soils (MCS) and Mix of LLRW and MCS	1,314,446	1.60E+14	Uranium and Uranium Progeny
Radioactive	Process residuals from WWTP (LLRW)	613	1.13E+10	Uranium and Uranium Progeny
Radioactive	Total Waste Placed at the PG LTWMF	1,315,059	1.60E+14	Uranium and Uranium Progeny

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 70 of 172

Information Use

11.2.2 Waste Transfers

Table 14: Waste Transfers from Port Granby

Waste Type	Waste Description	Transfer Date	Weight	Total Estimated Radioactivity (Bq) [Calculated]	Primary Radionuclides	Destination
LLRW	Reverse Osmosis Concentrate	2022 January to 2022 December	3,497 tonnes	9.47E+08	Uranium and Uranium Progeny	Port Hope WWTP
LLRW	Process Residuals – Solids from the PG WWTP and PG site demobilisation waste.	2022 January – 2022 December	1,779 tonnes	1.16E+10	Uranium and Uranium Progeny	PH LTMWF
Hazardous	Waste crankcase oils and lubricants	2022 November	Approximately 160 kg	N/A	N/A	GFL Environmental Inc.
Hazardous	Non- halogenated pesticide	2022 November	Approximately 205 kg	N/A	N/A	GFL Environmental Inc.

UNRESTRICTED

12. Security

12.1 Security Program

The PGP adheres to CNL's Security Functional Support Area. See Section 12 of the ACMR for CNL for details [5]. The Port Hope Area Initiative Security Plan (PHAI Security Plan) [50] has been implemented for the PGP. The PHAI Security Plan [50] establishes the security arrangements that are required for the PHAI project sites. It addresses the responsibilities, linkages with local law enforcement, functions, and elements of the security plan such as training, drills, exercises, and various physical security components. The purpose of the PHAI Security Plan [50] is to ensure the physical protection of the PGP assets and safeguarding of the public and personnel. The PHAI Security Plan [50] is based on applicable legislation, regulations and operating licences and is consistent with CNL's corporate security policies and programs.

Contractors conducting work as part of the PHAI submit security plans to CNL for review and approval. As confirmed through CNL's mandated review and acceptance process, contractor plans are consistent with the requirements of the *PHAI Security Plan* [50]. Contractor's compliance with project specific security plans is examined as part of CNL's oversight program.

In the reporting period, the PHAI implemented a graded personnel security assessment program. In addition, an updated threat risk assessment was conducted for PHAI facilities, including the PGP.

The CNSC was notified [52] of revisions to the *PHAI Security Plan* [50]. Major updates included the newly implemented graded security assessment process and additional cascaded changes to the visitor process.

12.1.1 Security Events

In the reporting period, there was one security event that affected the PGP. On 2022 September 16th, an individual was found to have gained access to the Port Granby site overnight and took shelter in the contractor lunch trailer. The individual left site without incident. There was no adverse effect on the health, safety and security of persons or the environment. The event was reported to CNSC (See Section 3.2.1 for details).

13. Safeguards and Non-Proliferation

13.1 Safeguards Program

As per the PGP LCH [3], the Safeguards and Non-Proliferation SCA is not applicable to the PGP.

14. Packaging and Transport Program

The PGP adheres to CNL's Transportation of Dangerous (TDG) Goods Functional Support Area, which includes the requirements of the Packaging and Transport SCA. See Section 14 of the *ACMR for CNL* for details [5]. The *Port Hope Area Initiative Transportation of Dangerous Goods Plan* (PHAI TDG Plan) [11] applies to any activities involving the transportation of dangerous goods to, or from CNL sites. The TDG program provides an operational framework for the safe off-site transport of dangerous goods by conforming to all applicable laws and regulations, as well as CNL policies and procedures.

In addition, firms or contractors performing work on behalf of CNL for the PHAI project under the PGP Licence [2] adhere to project specific work plans, which are compliant with the *PHAI TDG Plan* [11].

There were no revisions to the PHAI TDG Plan [11] in the reporting period.

14.1 Shipments

During the reporting period, there were a number of shipments of dangerous goods from the PGP site to offsite facilities, and many shipments of dangerous goods were received at the site from offsite vendors (e.g., consumable chemicals, diesel fuel, and propane).

14.2 Packaging and Transport Events

During the reporting period, there was one packaging and transport event that affected the PGP. There were no adverse effects on the health, safety and security of persons or the environment. The event was reported to CNSC (See Section 3.2.1 for details).

15. Engagement with Indigenous Communities and Organizations

In alignment with the Truth and Reconciliation Commission Call to Action #92 *Business and Reconciliation* [54], CNL is committed to advancing truth and reconciliation through meaningful actions, continued inclusion of and participation by Indigenous peoples in the planning and execution of CNL's missions including seeking input into project-related engagement plans such as this document.

CNL prioritizes the recognition of Indigenous rights and interests as we continue to build relationships with local Indigenous communities through ongoing learning about their values and interests. CNL continues to enhance its corporate Indigenous relations program, in collaboration with Indigenous communities, with the development of a formal reconciliation action plan, and the establishment of an Indigenous procurement policy, both underway.

All communications, plans and reporting are reviewed to ensure balanced language and acknowledgement of Constitutional Indigenous rights and worldviews and Indigenous knowledge systems will be integrated into CNL project planning and activities.

Historically, the PHAI Phase 2 Public Information Program (PIP) [55] had included Indigenous communities and organizations as a target audience. In support of CNL's objective to advance reconciliation through meaningful actions and movement toward increased inclusion and participation, the PHAI Phase 2 and 3 Program for Engagement with Indigenous Communities and Organizations, currently in development in collaboration with Indigenous representatives, will be implemented in tandem with the PIP. The Program for Engagement with Indigenous Communities and Organizations will be reviewed on an annual basis and updated as necessary to ensure it continues to provide appropriate direction.

As part of the commitment to undertake meaningful actions toward Truth and Reconciliation, corporately CNL is enhancing its overall Indigenous Relations program and in 2022, CNL expanded its resources for the PHAI with the addition of a Senior Advisor, Indigenous Relations.

In 2022, CNL staff worked closely with representatives of Indigenous communities and organizations to increase project awareness and enhance relationship building through a variety of approaches, as depicted in Figure 5.

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 75 of 172

Information Use

Figure 5: 2022 Engagement with Indigenous Communities and Organizations

15.1 **Indigenous Communities and Organizations**

CNL is committed to timely engagement with Indigenous communities and organizations about projects and operations.

From the start of the planning process, the Mississauga communities of the Williams Treaties First Nations have been involved in the PHAI and participated in the EA through more than 40 engagements. When the EA was approved and the PHAI moved into the implementation phase (Phase 2) in 2012, the Mississauga communities asked to receive regular updates about the projects.

These communities continued to receive routine updates about the PHAI projects through regular meetings and dialogue with CNL staff. Since 2021, engagements have become more frequent, and the Williams Treaties First Nations have become increasingly more involved.

UNRESTRICTED

CNL also shares PHAI project updates with representatives from the Anishinabek Nation, Mohawks of the Bay of Quinte, and Métis Nation of Ontario as Indigenous communities/organizations with interests in the area.

Communities with Rights

- Alderville First Nation
- Curve Lake First Nation
- Hiawatha First Nation
- Mississaugas of Scugog Island First Nation
- Beausoleil First Nation
- Chippewas of Georgina Island First Nation
- Chippewas of Rama First Nation

Communities with Interests

- Mohawks of the Bay of Quinte
- Métis Nation of Ontario, Regions 6, 8 and local constituent Councils

Indigenous Organizations

- Anishinabek Nation
- Métis Nation of Ontario

15.1.1 Monitoring Concerns and Incorporating Feedback

CNL maintains open dialogue with Indigenous communities and organizations to strengthen understanding of Indigenous worldviews and relationship to the land and monitor concerns about PHAI activities.

Throughout all engagement activities any questions, concerns, and input about the PHAI and project-related impacts are recorded in writing and implemented where applicable.

15.1.2 Indigenous Input and Involvement

CNL seeks Indigenous input on the development of its engagement programs and provides opportunity for Indigenous communities and organizations (particularly those with Treaty rights in a project area) to review and comment on draft reports and plans and communications products, for technical and procedural aspects of the projects.

CNL responds to all comments and questions and provides information as to how input was incorporated and if not, why.

When comments are received on draft plans, reports, etc. a record of disposition of the feedback is circulated to all reviewers with the updated document outlining how each comment was dispositioned and applied.

In 2022, CNL circulated two draft documents for formal review and comment. In support of the CNL application for a 10-year licence renewal, CNL circulated the *PHAI Indigenous Communications and Engagement Supplementary Report (April – July 2022)* [57] for review and comment. Feedback received on the supplementary report was integrated into the final version, where applicable, before it was submitted to the CNSC in August 2022.

CNL also circulated a first draft of the PHAI Phase 2 and 3 Program for Engagement with Indigenous Communities and Organizations for review and comment. Feedback received was

incorporated into a second draft circulated to the communities and organizations for additional comment.

In conjunction with the CNL application for a 10-year renewal of the PHAI Waste Nuclear Substance Licence CNL reviewed formal interventions submitted to the CNSC by Curve Lake First Nation and Mississaugas of Scugog Island First Nation and documented all questions and comments. In 2023, a response was prepared for each community responding to each comment and with details on how each comment was applied.

In addition to topic-specific questions and requests, feedback often includes requests and suggestions on use of language and inclusion of specific content in CNL plans, reports, and communications. Where applicable, this input is applied not only to the specific document under review but more broadly to other relevant CNL communications and materials as appropriate.

15.1.3 Contribution/Relationship Agreements

CNL supports the development of contribution/relationship agreements to provide funding to ensure Indigenous communities remain actively involved in CNL communications, engagement, and project planning.

Contribution/relationship agreements may include financial support for staff time related to administration, community liaison activities and meetings; technical documentation review; and environmental and habitat assessments as well as community capacity building through skills training and job shadowing.

Currently, PHAI has a contribution agreement with Curve Lake First Nation that will be renewed in 2023 and is in discussions with the Mississaugas of Scugog Island First Nation and Hiawatha First Nations to develop a contribution agreement during 2023.

15.1.4 Indigenous Knowledge Systems

Guided by the CNSC's *Indigenous Knowledge Policy Framework* [58], CNL is in the process of applying guidance and direction from Indigenous knowledge systems into its projects.

As noted in the CNSC framework,

'IK is a body of knowledge gathered by generations of Indigenous peoples living in close contact with their traditional territories and resources. IK is cumulative and dynamic. It is built on the historic experiences of a people and adapts to social, economic, environmental, spiritual and political change.'

CNL will continue to provide any relevant updates on the ongoing monitoring and maintenance of the facility and work to incorporate Indigenous ontological worldviews into any future planning.

15.1.5 Archaeology Program

CNL's *Protocol for Archaeological and Forensic Discovery* [59] outlines the required procedure should items of potential archaeological, Indigenous, or cultural heritage significance be uncovered during PHAI work. The protocol requires that the archaeologist overseeing the site engage with cultural heritage liaisons from Indigenous communities. CNL will ensure that Indigenous communities remain engaged and involved in all stages of the archaeological work.

With the PGP now complete, it is anticipated that no further archaeology investigation would be undertaken at the site.

15.1.6 Engagement with Indigenous Communities and Organizations

Through discussion with Indigenous communities and organizations over the course of the PHAI, CNL has noted preferences for communications and engagement and remains open to continual refinement of approaches based on the interest and needs of the communities.

The broad range of methods, products and activities is reviewed, revised and/or supplemented as required to reflect lessons learned during the implementation of this plan.

Williams Treaties First Nations Monthly Meetings

At the request of Curve Lake First Nation, CNL's Indigenous Relations team established monthly meetings in 2021 with representatives from the Mississauga First Nations as well as the Chippewa communities (Beausoleil, Georgina Island and Rama First Nations). Meetings are organized with input from the community representatives and each meeting is focused on CNL environmental remediation projects and/or the interests identified by these Nations.

In 2022, nine meetings were held with the June meeting taking place in-person at the CNL office. Discussions focused on the PHAI and included a tour of PHAI project sites.

Meetings and Site Tours

Meetings with Indigenous communities and organizations provide the opportunity for CNL to strengthen relationships through mutual sharing of updates and information. CNL provides presentations and updates on project plans and activities and particular areas of interest to ensure all interested parties have the opportunity to receive and provide comment on information on the PHAI. Guided tours of project remediation sites and construction areas, led by expert CNL staff, provide a first-hand look at PHAI work, promoting an in-depth understanding and appreciation for the complexity and importance of the projects. Tours illustrate the project scope, planning, implementation, and progress, including environmental protection, compliance with occupational health and safety requirements, and conformance with Environmental Assessment monitoring obligations and adaptive management practices.

In May 2022, members of the Anishinabek Nation Grand Council visited the CNL office in Port Hope for a project update and site tour.

CNL held a planning meeting with Métis Nation of Ontario representatives, staff, and Region 5 and 6 Councillors in June 2022 followed by a PHAI update in July. In October, members of MNO visited the CNL office in Port Hope for a tour of the project sites.

Special Events

Where possible, CNL engages formally and informally to deepen the relationship with Indigenous communities in the project area.

CNL Indigenous Relations and Environmental Monitoring staff were invited to visit the Savannah Lands at Alderville First Nation in September 2022 to learn more about these protected lands.

At the invitation of Curve Lake First Nation, CNL staff travelled to the community in October 2022 for a visit that included traditional teaching from an Elder.

CNL staff visited Alderville First Nation again in November, at the invitation of Chief Dave Mowat, to attend the Treaty 27 200th Commemoration Symposium to better understand this treaty and its relevance.

Indigenous Business and Trade Liaison

To facilitate access to CNL supply chain opportunities, the PHAI website includes links to a Contractor Portal, Supply Chain Registration and Vendor Portal to connect potential or current suppliers with information on procurement opportunities for goods, services, equipment, decommissioning and construction. A dedicated procurement policy for working with Indigenous communities is in development to further facilitate economic involvement in CNL projects.

Information on business and career events, including CNL's industry days and career fairs, is circulated to Indigenous communities and organizations. As the PGP was completed in 2022, CNL did not hold any business-related events.

Information Updates

CNL routinely distributes PHAI newsletters, media releases, public disclosures, and invitations to special events to Indigenous communities and organizations and in 2022, in addition to these general information products, an invitation to CNL's webinar on the licence renewal application was circulated.

15.2 Public Information Program

CNL is committed to providing effective access to timely information about the PHAI. The PHAI Phase 2 Public Information Program [55] is aimed at strengthening understanding of and confidence in the projects, information is provided to ensure the public, Indigenous communities and organizations and key stakeholders are knowledgeable about upcoming work and project activities. Reports are also available on programs, schedules, environmental protection and mitigation measures, long-term benefits, and economic opportunities.

CNL responds to the diverse needs of a wide range of audiences to increase project awareness and enhance relationship building through a variety of approaches, as depicted in Figure 6.

Figure 6: 2022 PHAI and Port Granby Public Engagement

15.2.1 General Communications Tactics

Project Information Office

CNL's Project Information Office is open Monday to Friday, 8:30 a.m. to 4:30 p.m. Printed material provides information on the planning, design, implementation, environmental assessment, monitoring, and mitigation of the projects, and on the Complaints Resolution and the Property Value Protection programs. Three-dimensional models of the Port Hope and Port Granby long-term waste management facilities are also on display.

Due to COVID-19 pandemic restrictions, the office was closed to the public until it reopened in April 2022. Staff members remained available to provide information and answer questions through email, telephone, and social media. After-hours calls are received by an external agency and routed to a single-point of contact for follow-up. In 2022, 13 visits to the Project Information Office took place.

Website

The PHAI website – <u>PHAI.ca</u> – provides information on the Port Hope Project and PGP, including descriptions of current and upcoming work, environmental monitoring reports, public disclosures, the Complaints Resolution Program, and the Property Value Protection Program. The website also provides telephone and email points of contact for enquiries.

In April 2022, CNL launched a redesigned website with streamlined access to details on the cleanup of historic low-level radioactive waste in the community, how work is performed on private properties, interactive maps of active and remediated sites around town and one-click access to request Radiological Status Letters.

In 2022, the PHAI.ca website received a total of 33,817 visits (number of individual visits to the website itself) and 75,055 individual pages viewed.

Social Media

The PHAI Facebook, Twitter, LinkedIn and Instagram social media accounts are used to engage the community and drive users to the PHAI website for more detailed information about current construction progress or events. CNL responds to questions or comments posted by members of the public on PHAI social media accounts as expeditiously as possible, to reflect the rapid response of internet communications. Dialogue of relevance to the PHAI on other social media accounts is monitored and consideration given to posting timely corrections to inaccurate information about the PHAI.

In 2022, 111 inquiries were received via Facebook. CNL circulated 362 Facebook/Twitter posts and 104 Instagram posts covering subjects from project updates to interesting facts about project work.

Media Releases

CNL issued two media releases in 2022, via Canada Newswire, one in May to announce the Completion of the PGP and the second in December to announce the CNSC renewal of the PHAI Waste Nuclear Substance Licence for 10 years.

Port Granby Project Newsletters

PGP newsletters update the community on the status of the projects, upcoming work, and changes to planned work or programs. Newsletters are distributed to every household in Southeast Clarington and to an extensive list of federal, provincial, regional, and municipal stakeholders; newsletters are also available online at <u>PHALca</u>.

The 2022 spring newsletter was distributed by mail to approximately 7,000 homes, businesses, and farms and to approximately 400 contacts via email. The newsletter covered a range of topics including the completion of the PGP, CNL engagement with Indigenous communities and organizations, the new PHAI.ca website, an overview of PGP milestones and an update on the Port Granby Nature Reserve proposal.

15.2.2 Presentations

Presentations are provided on current and planned project activities, and the Property Value Protection Program, to varied audiences including Indigenous groups and organizations, elected officials, and staff at all levels of government, community groups, service clubs, and local/national/international education, scientific, technical, and business communities.

During the reporting period, seven presentations were provided to the public on the PHAI and PGP.

Education and Science and Technology Communities

Presentations, site tours and program-specific information and demonstrations are provided on request to students at the elementary, high school, college, and university level, and CNL participates on program advisory committees to provide industry perspective on the development of new programs and courses.

CNL participates in the annual Take Our Kids to Work Day event and other education initiatives including the Junior Achievement World of Opportunity program and judging local science fairs. National and international education institutions, industry and professional groups also participate in PHAI presentations and site tours and CNL continues to develop outreach activities related to Science, Technology, Engineering, and Math education.

In 2022, CNL provided an overview of the PHAI for four groups: Carlton University Architecture Workshop, Ontario Tech University Nuclear Engineering and two Fleming College Monitoring in Waste Management classes.

During the reporting period, three presentations were provided to science and technology audiences on the PHAI and PGP.

15.2.3 Public Site Tours

In alignment with COVID-19 restrictions in 2022, CNL's communications were adapted, and virtual tours were provided through detailed photographs, diagrams, and video until in-person began to resume in April 2022.

Four public sites tours related to the PGP were provided in 2022.

15.2.4 Public Information Sessions

Information sessions are held as required to inform the community about PHAI work, provide updates on planned or changed project activity and programs, and receive feedback from the public.

A webinar was held in June 2022 to provide an overview of the CNL application to CNSC for a 10-year licence renewal.

15.2.5 Special Events

CNL hosts special events on occasion to highlight project milestones and, as project ambassadors, CNL staff participates in external events to provide information about PHAI activities to a broader audience and increase awareness and understanding of the projects.

In 2022, CNL hosted a community celebration to mark the completion of the PGP. Speakers included the Mayor and council representative of the Municipality of Clarington and local residents. In November, CNL staff attended an event hosted by the Ontario Society of Professional Engineers and accepted an award recognizing the PGP as Project of the Year.

15.2.6 Community Notifications

Residents and business owners in close proximity to PHAI-related activity are notified in advance of planned work and of notable changes to the schedule or nature of the work. Notification can occur through website postings, phone calls, emails, or door-to-door visits / information drop-offs, depending on the timeframe and the capacity of to receive the notification.

During the reporting period, CNL staff delivered three notifications to residents in the vicinity of the PGP site.

15.2.7 Dedicated Engagement Campaigns

CNL may implement dedicated campaigns to support specific initiatives with targeted engagement to inform, educate and discuss specific topics with the public, property owners and stakeholders.

In 2022, CNL continued public and stakeholder engagement in support of its application to the CNSC for the renewal of the Port Hope Project waste nuclear substance licence and the consolidation of the four existing licences associated with the Port Hope Area Initiative portfolio. A variety of tactics were used to provide information, encourage, and facilitate feedback including distribution of information in Port Granby newsletters, advertising, and an information webinar.

In November 2022, CNL submitted its *PHAI Licence Renewal Public Engagement Report 2021 September to 2022 September* [60] to the CNSC, summarizing public communications and engagement in support of the application, undertaken from September 1, 2021 to September 30, 2022 which outlined more than 35 communications and engagement initiatives including a dedicated webpage, feature feed stories and links to additional resources, extensive advertising in print, radio and online, newsletter stories, fact sheets and overviews in all presentations provided during the engagement period. Information updates were provided at quarterly Agreement Monitoring Group meetings and in June 2022 a webinar was held to provide information and respond to questions about the hearing process and the process for public participation.

15.2.8 Key Stakeholder Relations

Strategic relationships are developed and maintained through information exchange and feedback, to increase support and cooperation as the PGP advances.

Municipal Liaison

CNL regularly liaises with elected officials and staff of the host municipalities. As part of an agreed-upon framework for dialogue to keep municipalities abreast of PHAI plans and progress, CNL provides regular project and communications updates to municipal councils, committees, and staff through a variety of media, as well as topical presentations upon request.

In 2022, CNL participated in 11 monthly municipal coordination meetings to share information on project and communications activities. CNL provided an annual update on PGP progress and next steps to both the Municipality of Clarington and the Durham Nuclear Health Committee.

Agreement Monitoring Group

Quarterly meetings of the Agreement Monitoring Group bring together representatives of both municipalities, as signatories to the Legal Agreement, and representatives of AECL and CNL to provide updates on project activities, budget, and schedule and to ensure project commitments outlined in the agreement are reviewed and actioned. Four meetings were held in 2022.

Business Community Liaison

To provide access to CNL supply chain opportunities, the PHAI website includes links to a Contractor Portal, Supply Chain Registration and Vendor Portal to connect potential or current

suppliers with information on procurement opportunities for goods, services, equipment, decommissioning and construction.

As the PGP was completed in 2022, CNL did not hold any business-related events.

15.2.9 PHAI-Related Citizen Groups

Port Granby Citizen Liaison Group

In 2013, the Port Hope and Port Granby citizen liaison groups were established to encourage two-way engagement and input from a broad cross-section of each community. Municipal and CNSC staff observers were invited to attend all Citizen Liaison Group meetings.

With the PGP moving into Phase 3, maintenance and monitoring, the Port Granby Citizen Liaison Group was discontinued in the spring of 2022. Information updates and opportunities for feedback will continue through Phase 3 and CNL staff remain available to speak to residents directly and address any concerns.

Port Granby Discussion Group

The Port Granby Discussion Group provides a forum for CNL to update residents and other interested parties on PGP plans and activities and discuss community concerns. CNL consults the South East Clarington Ratepayers Association, which represents the interests of residents in the hamlet of Port Granby, on meeting frequency, schedule, and agenda topics. The Discussion Group members did not request a meeting in 2022.

15.2.10 Internal Communications

As representatives of the PHAI, CNL employees must be aware of PHAI project activities on an ongoing basis. A wide variety of opportunities are provided to update employees on a weekly, monthly, and quarterly basis.

In 2022, 45 internal communications initiatives were undertaken including weekly project updates, all-staff emails, virtual coffee chats with the General Manager, quarterly all-staff meetings, and regular project update emails.

15.3 Monitoring Public Opinion and Media Coverage

CNL monitors and analyzes public opinion, including social media and media coverage to record public understanding, perceptions, concerns and opinions about the PHAI and project-related impacts; gauge stakeholder awareness of and support for the PHAI; and be aware of trends in public opinion, social media and/or media coverage and how they may affect public perception of the PHAI to promptly and effectively respond.

15.3.1 Public Attitude Surveys

Through public attitude surveys, CNL monitors and records public understanding and perceptions of the projects and public opinion about community impacts. Feedback from surveys helps CNL gauge stakeholder understanding and awareness of the projects and identify stakeholders' knowledge gaps, types of information that are of public interest and how best to focus future communication efforts.

CNL conducted Public Attitude Surveys in the Port Granby Area in 2011, 2014, 2016 and 2018. In 2022, with the PGP completed, CNL conducted a final survey of the residents living near the Port Granby Long-Term Waste Management Facility. The survey was completed in December 2022 and results will be published and shared with the community in spring 2023.

15.3.2 Issues Management

For the purposes of the *PHAI PIP* [55], an issue is defined as something that could positively or negatively impact on CNL operations, credibility, or reputation. Where questions and issues arise, CNL attempts to identify the issue, determine its basis or cause, assess its implications, and, if possible, identify means to inform on the issue to the satisfaction of the concerned parties and the public.

CNL maintains a formal Complaints Resolution Process to help resolve public complaints arising from tangible, physical issues caused directly by the Port Hope and PGPs.

15.4 Documentation and Reporting

To measure the effectiveness of this engagement plan, all written, telephone and electronic communications, as well as follow-up actions or requests for information, are tracked and recorded in writing. Comments and questions at meetings are recorded in writing for follow-up where required and responses are made available to all interested parties.

PHAI staff provide regular updates and reports on communications and engagement activities to a number of audiences.

15.4.1 Atomic Energy of Canada Limited

CNL's client, AECL, is kept apprised of CNL communications activities through ongoing engagement and weekly and monthly updates, and informed of relevant communications issues and public disclosures as they arise.

In 2022, four notifications were provided to AECL staff on matters related to the PGP and CNL provided a tour of project sites for AECL staff.

15.4.2 Canadian Nuclear Safety Commission

CNL keeps the CNSC apprised of activities through quarterly and annual reporting and ongoing engagement on relevant regulatory issues. CNSC and CNL interactions are supplemented by regular meetings with regulatory, licensing, project, and program staff.

In 2022, CNL provided quarterly reports on PGP communications activities.

In November 2022, CNL submitted a *PHAI Licence Renewal Public Engagement Report (2021 September – 2022 September)* [60] summarizing the activities undertaken to support the CNL application for a 10-year renewal of the Waste Nuclear Substance Licence.

15.4.3 Performance Reports

Information is posted on PHAI.ca regarding environmental impact including environmental monitoring program results and PHAI Annual Compliance Monitoring Reports to the CNSC.

15.4.4 Public Disclosures

CNL is committed to providing open and transparent public disclosure.

In 2022, CNL issued two public disclosures related to the PGP regarding: residual waste shipped from the PG LTWMF not being classified before shipping and an excavator at the PGP LTWMF coming into contact with a two-inch pipeline designed to contain impacted water on the site.

Public Disclosures are posted on the PHAI.ca website. In 2022, there were 2,593 visits to the Public Disclosures website page.

16.	Acronyms
ACMR	Annual Compliance Monitoring Report
AECL	Atomic Energy of Canada Limited
ALARA	As Low As Reasonably Achievable
CCME	Canadian Council of Ministers of the Environment
CNL	Canadian Nuclear Laboratories
CNSC	Canadian Nuclear Safety Commission
COVID-19	Novel Coronavirus Disease 2019
СОРС	Contaminants of Potential Concern
CWQG	Canadian Water Quality Guidelines
dBA	Decibels
EA	Environmental Assessment
EQ	Equalization
ERM	Environmental Remediation Management
HWP	Historic Waste Program
HWP MO	Historic Waste Program Management Office
ISQG	Interim Sediment Quality Guidelines
ImpAct	Improvement Action
impAct	improvement Action
LCH	Licence Conditions Handbook
LLRW	Low Level Radioactive Waste
MCS	Marginally Contaminated Soils
NEW	Nuclear Energy Worker

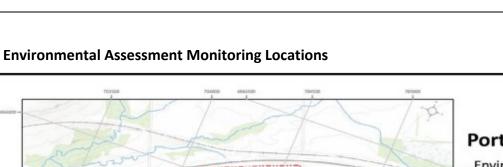
Notice of Non-Compliance
Nuclear Safety and Control Act
Occupational Safety and Health
Probable Effect Level
Particulate Matter
Port Granby Long-term Waste Management Facility
Port Granby Project
Port Granby Waste Management Facility
Port Granby Waste Water Treatment Plant
Port Hope Area Initiative
Port Hope Long-Term Waste Management Facility
Provincial Sediment Quality Guidelines
Provincial Water Quality Objectives
Radiation Protection
Safety and Control Area
Stormwater Management Pond
Site Safety and Health Committee

TDG	Transportation of Dangerous Goods
TLD	Thermoluminescent Dosimeter
TSP	Total Suspended Particles
TSS	Total Suspended Solids

17. References

- [1] An Agreement for the Cleanup and Long-Term Safe Management of Low-Level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope, and the Municipality of Clarington, LLRWMO-513700-110-11000-008, 2001 March 29.
- [2] CNSC, Port Granby Long-Term Low-Level Radioactive Waste Management Project, Waste Nuclear Substance Licence WNSL-W1-2311.00/2022, Expiry Date: 2022 December 31.
- [3] CNSC, Port Granby Project Licence Conditions Handbook, WNSL-W1-LCH-2311.00/2022, Revision 0, Effective: 2021 December 20.
- [4] CNSC, Reporting Requirements for Waste Nuclear Substance Licensees, Class II Nuclear Facilities and Users of Prescribed Equipment, Nuclear Substances and Radiation Devices, REGDOC-3.1.3, Version 1.0, 2020 February.
- [5] CNL, Annual Compliance Monitoring Report for Canadian Nuclear Laboratories, 145-00583-ACMR-2022, Revision 0, 2023 April.
- [6] Canada, Nuclear Safety and Control Act, S.C. 1997, c. 9, 2013 July.
- [7] E-mail, L. Levert (CNSC Registry) to S. Morris, M. Jones, S. Brewer, S. Faught, C. Gallagher, M. Hughey (CNL), Summary Record of Decision on Nov. 22 Public Hearing for CNL Port Hope Project, 4501-NOCN-22-0008-E, 2022 December 20.
- [8] CNL, *Quality Plan, Historic Waste Program*, 236-514200-QAP-001. Revision 2, 2022 January 11.
- [9] CNL, Management System Manual, 900-514100-MAN-001, Revision 3, 2022 August 8.
- [10] Letter, S. Morris (CNL) to R. Buhr (CNSC), Response to CNSC Staff Review of CNL's Corrective Actions Resulting from the Port Hope Project (CNL-PHAI-PHP-2020-03) and Port Granby Project (CNL-PHAI-PGP-2020-05) Management Systems Inspections, 4500-CNNO-22-0004-L, 2022 February 11.
- [11] CNL, Port Hope Area Initiative (PHAI), *Transportation of Dangerous Goods Plan*, 4500--50-8520-PLA-001, Revision 04, 2018 June 21.
- [12] CNL, *Historic Waste Program Management Office (HWP MO) Field Oversight Activities*, 236-514200-PRO-001, Revision 3, 2022 November.
- [13] CNL, *Port Hope Area Initiative Training Plan*, 4500-510200-PLA-001, Revision 3, 2016 August.
- [14] CNL, Application of Systematic Approach to Training (SAT) at CNL, 900-510200-LST-001, Revision 02, 2022 May 30.
- [15] CNL, Process to Determine the Application of the Systematic Approach to Training (SAT) at CNL, 180-510200-178-000, Revision 0, 2020 March 31.
- [16] Letter, S. Morris (CNL) to R. Buhr (CNSC), Submission of the Quarterly Report on Port Granby Project Activities for the Period 2022 January to March, 4502-CNNO-22-0009-L, 2022 June 06.

- [17] Letter, S. Morris (CNL) to R. Buhr (CNSC), Submission of the Quarterly Report on Port Granby Project Activities for the Period 2022 April to June, 4502-CNNO-22-0014-L, 2022 September 12.
- [18] Letter, S. Morris (CNL) to R. Buhr (CNSC), Submission of the Quarterly Report on Port Granby Project Activities for the Period 2022 July to September, 4502-CNNO-22-0020-L, 2022 September 12.
- [19] Letter, S. Morris (CNL) to R. Buhr (CNSC), Submission of the Port Granby Quarterly Project Activities Report for the Period 2022 October to December, 4502-CNNO-23-0005-L, 2023 March 06.
- [20] CNL, CNL Learning and Development, 900-510200-STD-005, Revision 0, 2022 April 28.
- [21] CSA Group, Establishing and implementing action levels for releases to the environment from nuclear facilities, N288.8:17, 2022.
- [22] CNL, Historic Waste Program Management Office Application of Engineering Change Control and Oversight, 236-508130-COP-001, Revision 01, 2022 October 01.
- [23] Letter, S. Morris (CNL) to R. Buhr (CNSC), Response to CNSC Staff Review of CNL's Corrective Actions Resulting from the Port Hope Project (CNL-PHAI-PHP-2020-03) and Port Granby Project (CNL-PHAI-PGP-2020-05) Management Systems Inspections, 4500-CNNO-22-0004-L, 2022 February 11.
- [24] Letter, S. Morris (CNL) to R. Buhr (CNSC), CNL Response to CNSC Staff Review of Enforcement Actions Related to Inspection Report CNL-PHAI-PGP-2020-05, CNL-PHAI-PHP-2020-03, 4500-CNNO-22-0012-L, 2022 October 04.
- [25] Letter, S. Morris (CNL) to R. Buhr (CNSC), Submission of Assessment for Permitting Transfer of Port Granby Liquid Waste to Port Hope Waste Water Treatment Plant, 4501-CNNO-22-0047-L, 2022 August 23.
- [26] Letter, S. Morris (CNL) to R. Buhr (CNSC), CNL Submission of the Licensing Basis Assessment for the Transfer of Port Granby Liquid Waste to the Port Hope Waste Water Treatment Plant, 4500-CNNO-22-0013-L, 2022 October 31.
- [27] CNL, Port Hope Area Initiative Radiation Protection (RP) Plan, 4500-508740-PLA-001, Revision 6, 2021 September 01.
- [28] CNL, Program Requirements Document, *Radiation Protection*, 900-508740-PRD-001, Revision 4, 2021 March 15.
- [29] CNL, Occupational Safety and Health Plan, Port Hope Area Initiative, 4500-510400-PLA-001, Revision 4, 2022 May 06.
- [30] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Occupational Safety and Health Plan*, 4500-CNNO-22-0003-L, 2022 February 11.
- [31] CNL, Environmental and Biophysical Monitoring Plan, Port Granby Project, 4502-509247-PLA-001, Revision 2, 2022 September 30.
- [32] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Submission of Revised Port Granby Project Phase 3 Planning and Procedure Documents*, 4502-CNNO-22-0013-L, 2022 August 30.


- [33] Ontario Ministry of Environment, *Provincial Water Quality Objectives* Accessed 2023 January.
- [34] Canadian Council of Ministers of the Environment, *Canadian Water Quality Guidelines* for Protection of Aquatic Life, Accessed 2023 January.
- [35] Golder Associates Ltd., Environmental Assessment Study Report for the Port Granby Project, LLRWMO-03710-ENA-13004, Revision 1, 2007 July.
- [36] EcoMetrix Incorporated, Port Granby Project Aquatic Environment Environmental Effects Assessment Report, LLRWMO-03270-ENA-13002, Revision 0, 2006 June.
- [37] EcoMetrix Incorporated, Aquatic Environment Baseline Characterization Study for the Port Granby Project, LLRWMO-03270-ENA-13001, Revision 0, 2005 April.
- [38] Ontario Ministry of the Environment, Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach - Provincial Sediment Quality Guidelines, Revision 0, 2008 May.
- [39] Canadian Council of Ministers of the Environment, *Canadian Sediment Quality Guidelines for the Protection of Aquatic Life*, 1999.
- [40] Government of Canada, Screening Report The Port Granby Long-Term Low-Level Radioactive Waste Management Project, 2009 August.
- [41] CNL, Dust Management Requirements and Plan, Port Hope Area Initiative, 4500-509200-PLA-001, Revision 04, 2022 June.
- [42] Canadian Council of Ministers of the Environment, Guidance Document on Achievement Determination Canadian Ambient Air-Quality Standards for Fine Particulate Matter and Ozone. Available at: <u>https://ccme.ca/en/res/pn1483_gdad_eng-secured.pdf</u>, Accessed: 2023 March.
- [43] Ontario Ministry of the Environment and Climate Change, Ambient Air Quality Criteria, 2012 April.
- [44] Health Canada, Canadian Guidelines for the Management of Naturally Occurring Radioactive Material (NORM), Revised 2011.
- [45] World Health Organization, *Guidelines for Community Noise*, Edited by B. Berglund, T., 1999.
- [46] Ontario Ministry of Environment, *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act,* 2011 April.
- [47] CNL, Port Hope Area Initiative Emergency Plan, 4500-508730-PLA-001, Revision 3, 2021 July 15
- [48] CNL, Port Hope Area Initiative Fire Protection Plan, 4500-508720-PLA-001, Revision 0, 2022 April 08.
- [49] CNL, Fire Screening Process, 900-508720-MCP-003, Revision 0, 2017 July 31.
- [50] CNL, Port Granby Waste Management Plan, 4502-508600-WMP-003, Revision 0, 2021 September 08.
- [51] CNL, Port Hope Area Initiative Security Plan, 4500-508710-PLA-001, Revision 4, 2022 April 29.

- [52] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Security Plan*, 4500-CNNO-22-0006-L, 2022 April 29.
- [53] Atomic Energy of Canada Limited, Design Basis Document Water Treatment Definition Port Granby Project, 4502-121256-DBD-001, Revision 0, 2011 January 31.
- [54] Canada, Truth and Reconciliation Commission of Canada: Calls to Action, 2015
- [55] CNL, Port Hope Area Initiative (PHAI), *Phase 2 Public Information Program*, 4500513000PLA-003, Revision 4, 2020 March.
- [56] CNSC, Public Information and Disclosure, REGDOC-3.2.1, 2018 May.
- [57] CNL, PHAI Indigenous Communications and Engagement Supplementary Report (April -July 2022), 236-513400-041-000, Revision 0, 2022 August 24.
- [58] Canada, Indigenous Knowledge Policy Framework, 2021.
- [59] CNL, Protocol for Archaeological and Forensic Discovery, 4500-509246-RDD-001, Revision 0, 2022 April 15.
- [60] CNL, PHAI Licence Renewal Public Engagement Report 2021 September 2022 September, 236-513400-REPT-003, Revision 0, 2022 November 08.
- [61] Ontario Water Resources Act R.R.O. 1990 Regulation 903 Wells.
- [62] Stantec, Fen Community Protection and Rehabilitation Protection Plan, Port Granby Proposed Long-Term Waste Management Facility, 4500-03710-REPT-004, Revision 0, 2014 August 6.

Information Use

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 94 of 172

Appendix A

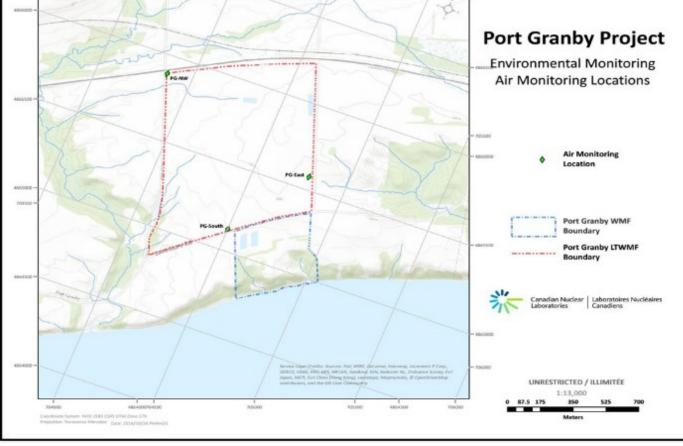
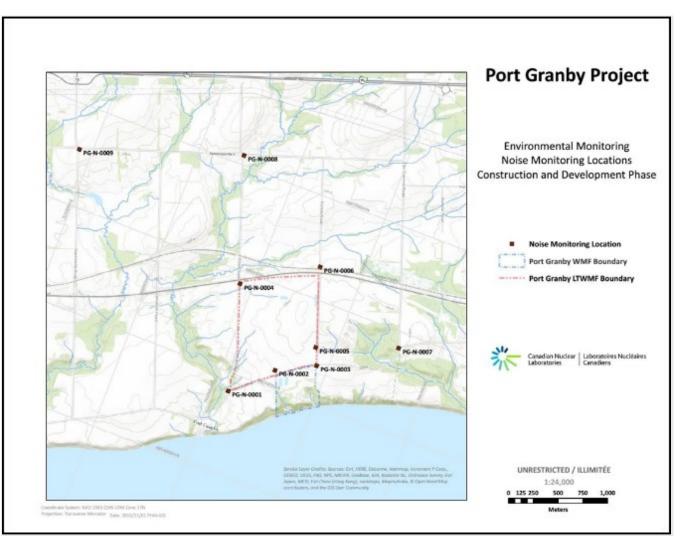


Figure 7: PGP EA Air Monitoring Locations

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022)


Page 95 of 172

Annual Compliance Monitoring Report for 2022

4502 -508760-ACMR-001223 Rev.0.1

UNRESTRICTED / ILLIMITÉE

Information Use

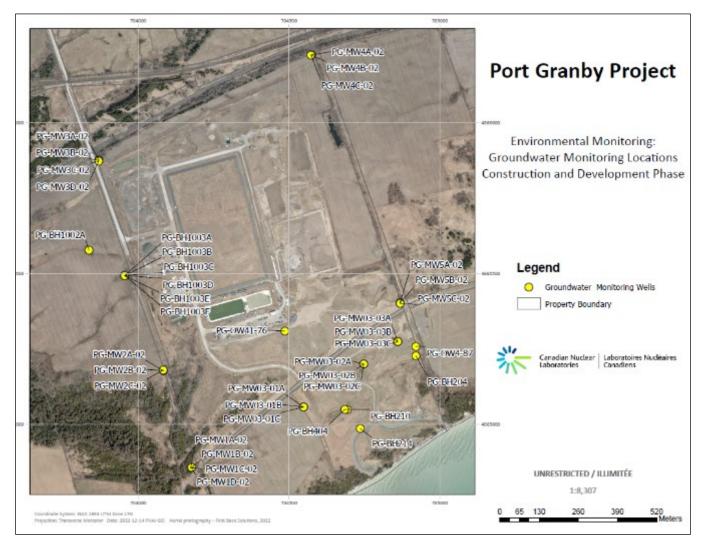


Figure 8: PGP EA Noise Monitoring Locations

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 96 of 172

Information Use

Figure 9: PGP EA Groundwater Monitoring Locations

UNRESTRICTED

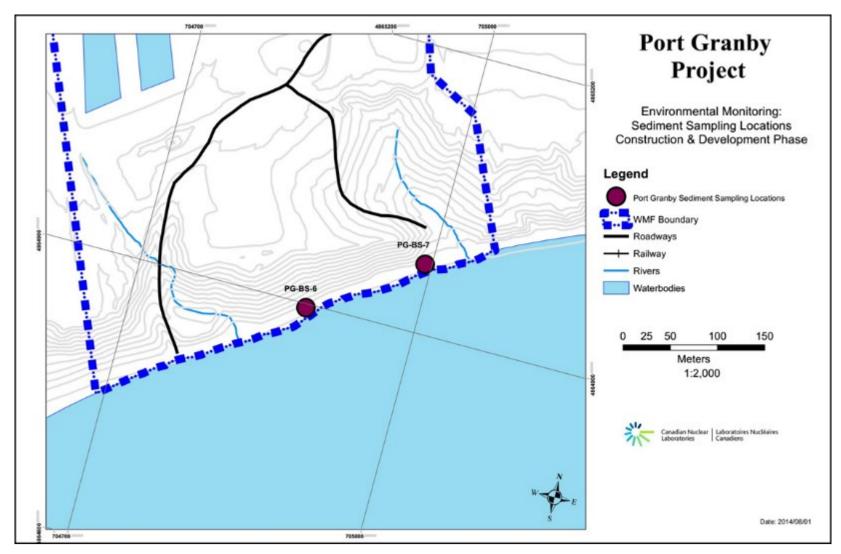
UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Information Use

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 97 of 172




Figure 10: PGP EA Soil Sampling Locations

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Information Use

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 98 of 172

Figure 11: PGP EA Sediment Sampling Locations

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Information Use

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 99 of 172

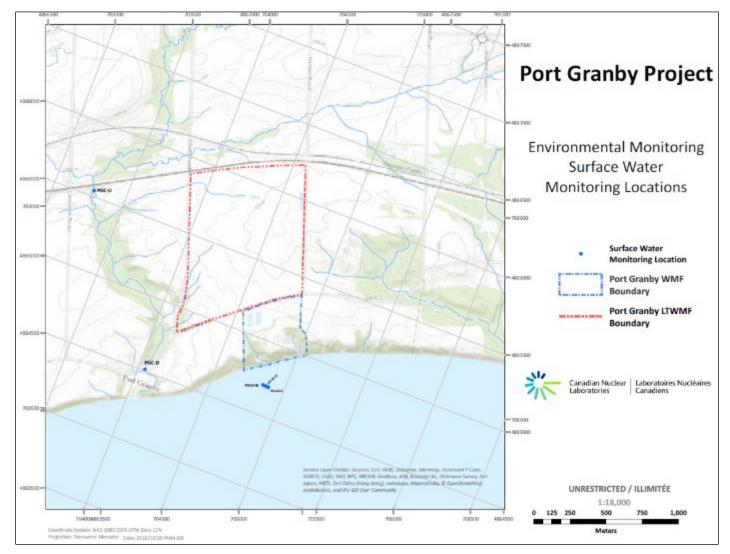


Figure 12: PGP EA Surface Water Sampling Locations

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 100 of 172

Information Use

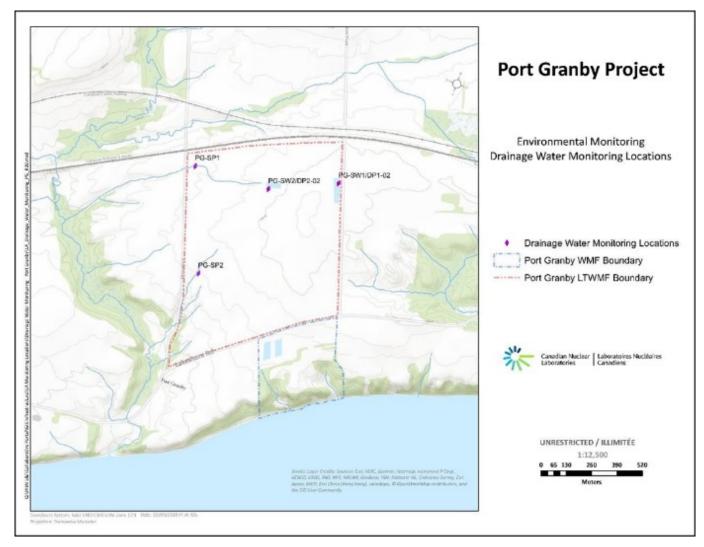


Figure 13: PGP EA Drainage Water Monitoring Locations

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 101 of 172

Information Use

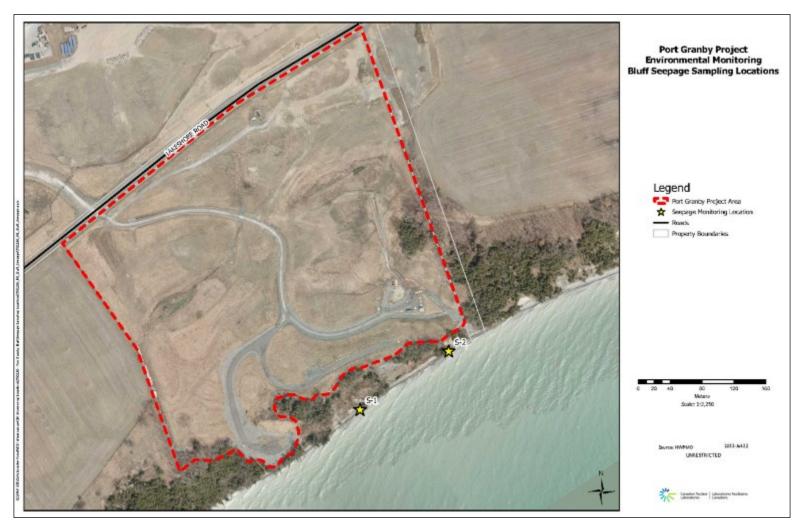


Figure 14: PG WMF Bluff Seepage Sampling Locations

UNRESTRICTED / ILLIMITÉE

Information Use

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 102 of 172

Appendix B Port Granby Environmental Monitoring Results

Table 15: 2020 - 2022 Port Granby Waste Water Treatment Plant – Results of Water Sampling Analysis (Effluent – Monthly Average)

Final Effluent	Radium-		Nitrite	Nitrate	Total Suspended	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Totalized Effluent
Sample Monthly Average	226 (Bq/L)	рН	(mg/L)	(mg/L)	Solids (mg/L)	Ammonia- N (mg/L)	Phosphorus (mg/L)	Arsenic (µg/L)	Cadmium (µg/L) ⁽²⁾	Cobalt (µg/L)	Copper (µg/L)	Molybdenum (µg/L)	Selenium (µg/L)	Thallium (µg/L)	Uranium (µg/L)	Vanadium (µg/L)	Volume (m ³)
Design Objective	0.37	6- 9.5	1.5	75	15	5.75	0.35	100	1	5	5	-	30	8	100	40	
Action Level ⁽¹⁾	0.050	6.5- 8.5	1.5	75	15	5.75	0.35	50	1	5	5	50	20	0.5	100	5	
2020 January	0.007	8.26	0.14	1.22	1	0.09	0.0	3.3	0	0.4	0.7	1.7	<0.04	0.01	4.43	0.1	20,153
2020 February	0.01	7.80	0.10	3.98	<1	0.36	0.0	7.9	0	1.1	0.8	4.5	0.06	0.01	10.50	0.2	18,680
2020 March	<0.0050	7.76	0.19	0.85	<1	2.30	0.0	5.5	<0.10	0.8	<1.0	2.9	<2.0	<0.050	6.80	<0.50	22,264
2020 April	<0.0050	8.03	0.26	1.34	<1	0.21	<0.020	8.2	<0.10	0.6	<1.0	2.9	<2.0	<0.050	6.50	<0.50	11,737
2020 May	<0.0050	7.90	0.04	0.76	<1	0.36	<0.020	13.0	<0.10	0.8	1.2	4.1	<2.0	<0.050	6.90	<0.50	11,721
2020 June	<0.0050	7.76	0.13	0.18	1	0.16	0.0	18.0	<0.10	1.6	<1.0	6.7	<2.0	<0.050	11.00	<0.50	6,550
2020 July	0.006	7.68	<0.03	<0.06	<1	0.07	0.0	11.4	<0.003	0.2	0.2	0.8	<0.04	<0.005	0.93	0.1	1,317
2020 August	<0.005	7.54	<0.03	<0.06	<1	0.26	0.0	13.4	<0.003	1.0	0.4	3.3	0.04	<0.005	7.54	0.4	6,006
2020 September	0.01	7.81	0.27	0.08	2	0.28	0.0	15.6	0	0.9	0.3	4.0	0.06	<0.005	7.72	0.4	12,044
2020 October	0.009	7.57	0.04	<0.06	<1	<0.04	0.0	6.8	0	0.5	<0.2	2.1	<0.04	<0.005	2.37	0.1	2,470

UNRESTRICTED

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Annual Compliance Monitoring Report

Information Use

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 103 of 172

Final Effluent Sample	Radium- 226	рН	Nitrite	Nitrate	Total Suspended Solids	Total Ammonia-	Total Phosphorus	Total Arsenic	Total Cadmium	Total Cobalt	Total Copper	Total Molybdenum	Total Selenium	Total Thallium	Total Uranium	Total Vanadium	Totalized Effluent Volume
Monthly Average	(Bq/L)		(mg/L)	(mg/L)	(mg/L)	N (mg/L)	(mg/L)	(µg/L)	(µg/L) ⁽²⁾	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(m³)
2020 November	<0.005	7.81	0.04	0.07	<1	0.09	<0.003	3.2	<0.003	0.2	<0.2	0.8	0.06	<0.005	0.94	0.1	5,247
2020 December	<0.005	7.48	0.03	<0.06	2	0.06	0.0	2.7	<0.003	0.2	<0.2	1.1	<0.04	<0.005	0.71	0.1	4,842
2021 January	<0.005	7.61	<0.03	0.08	1	0.04	0.0	2.2	<0.003	0.2	0.9	0.5	<0.04	<0.005	0.52	0.1	2,055
2021 February	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF
2021 March	<0.005	7.74	<0.03	<0.06	<1	0.05	0.0	3.3	<0.003	0.2	0.7	0.7	<0.04	<0.005	0.43	0.1	3,195
2021 April	<0.005	7.31	<0.03	<0.11	<1	<0.06	0.0	4.4	<0.004	0.3	0.3	0.9	<0.04	<0.005	0.67	0.1	4,432
2021 May	<0.005	7.39	<0.03	<0.07	<1	<0.05	<0.017	2.9	<0.064	0.4	<0.2	0.7	<0.04	<0.005	0.72	0.2	1,895
2021 June	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF
2021 July	<0.005	7.54	0.28	0.07	<1	0.29	0.046	24.0	0	2.3	1.0	3.50	<0.04	<0.005	1.58	0.9	5,285
2021 August	<0.005	7.54	0.26	0.12	<1	0.28	0.007	12.9	<0.003	0.6	2.1	1.45	<0.04	<0.005	0.55	0.3	3,626
2021 September	0.0052	7.64	<0.3	0.07	1	0.16	0.021	9.9	0	0.4	0.3	0.710	<0.04	<0.005	0.55	0.3	8,499
2021 October	0.005	7.46	0.11	0.07	1	0.14	0.01	7.9	0	0.2	0.2	0.95	0.04	0.01	1.50	0.1	14,573
2021 November	0.005	7.40	0.07	0.13	1.3	0.21	0.02	8.4	0	0.3	0.3	1.70	0.04	0.01	2.30	0.1	8,467

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Annual Compliance Monitoring Report

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 104 of 172

Information Use

Final Effluent Sample Monthly Average	Radium- 226 (Bq/L)	рН	Nitrite (mg/L)	Nitrate (mg/L)	Total Suspended Solids (mg/L)	Total Ammonia- N (mg/L)	Total Phosphorus (mg/L)	Total Arsenic (μg/L)	Total Cadmium (μg/L) ⁽²⁾	Total Cobalt (μg/L)	Total Copper (μg/L)	Total Molybdenum (μg/L)	Total Selenium (µg/L)	Total Thallium (µg/L)	Total Uranium (µg/L)	Total Vanadium (μg/L)	Totalized Effluent Volume (m ³)
2021 December	0.005	7.30	0.06	0.06	1.2	0.18	0.02	10.6	0.0	0.3	0.2	1.50	0.04	0.01	2.70	0.2	3,299
2022 January	0.005	7.31	0.10	0.06	1.3	0.17	0.0	10.5	0	0.3	0.2	1.5	0.04	0.01	3.00	0.2	3,682
2022 February	0.005	7.37	0.07	0.06	1	0.22	0.0	13.8	0	0.4	0.2	1.7	0.04	0.01	3.40	0.3	3,492
2022 March	0.005	7.08	0.06	0.06	1.4	0.09	0.0	6.7	0	0.6	0.8	0.8	0.04	0.01	1.50	0.2	7,046
2022 April	0.005	7.22	0.06	0.06	1.3	0.08	0.0	7.5	0	0.2	0.4	0.9	0.04	0.01	1.90	0.1	4,291
2022 May	0.005	7.15	0.03	0.06	1	0.06	0.0	9.7	0	0.2	0.3	1.0	0.04	0.01	2.00	0.2	2,727
2022 June	0.005	7.32	0.04	0.08	1	0.13	0.02	13.1	0	0.2	0.2	0.8	0.04	0.01	2.10	0.2	1,990
2022 July	<0.005	7.22	<0.04	<0.06	<1.0	0.07	0.02	<12.6	<0.003	0.1	<0.2	1.1	<0.04	<0.005	2.20	0.2	4,058
2022 August	<0.005	7.24	<0.04	<0.08	<1.0	0.08	0.01	14.1	0	0.1	<0.2	1.1	<0.04	<0.005	3.50	0.1	3,110
2022 September	<0.005	7.19	<0.03	<0.06	<1.0	<0.04	0.0	12.4	<0.003	0.0	<0.20	0.9	<0.04	<0.005	2.90	0.1	2,451
2022 October	<0.005	7.38	<0.06	<0.03	<1.0	<0.04	0.01	13.3	<0.020	0.1	<0.20	0.9	<0.10	<0.01	3.40	0.1	1,863
2022 November	<0.005	7.40	<0.06	<0.03	<1.0	<0.05	0.02	14.1	<0.006	0.1	<0.22	1.2	<0.07	<0.005	3.00	0.1	1,562
2022 December	<0.005	7.28	<0.06	<0.03	<1.0	<0.05	0.0	13.6	<0.005	0.1	<0.30	1.0	<0.05	<0.005	2.60	0.1	1,185

Table 16: 2020 - 2022 Port Granby Interceptor Discharge – Toxicity Testing Summary

Sample Date	48 Hour Result	96 Hour Result
2020 January 14	Pass (0.0% mortality)	Pass (0.0% mortality)
2020 February 11	Pass (0.0% mortality)	Pass (0.0% mortality)
2020 March 10	Pass (16.7% mortality)	Pass (10.0%) mortality)
2020 April 14	Pass (0.0% mortality)	Pass (0.0% mortality)
2020 May 12	Pass (0.0% mortality)	Pass (10.0% mortality)
2020 June 16	Pass (0.0% mortality)	Pass (20.0% mortality)
2020 July 13	Pass (6.7% mortality)	Pass (40.0% mortality)
2020 August 25	Pass (0.0% mortality)	Pass (0.0% mortality)
2020 September 08	Pass (20.0% mortality)	Pass (0.0% mortality)
2020 October 20	Pass (0.0% mortality)	Pass (0.0% mortality)
2020 November 17 2020 November 23	Pass (0.0% mortality) Pass (0.0% mortality)	Fail (80.0% mortality) Pass (10.0% mortality)
2020 December 07	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 January 12	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 February 01	No Effluent	No Effluent
2021 March 25	Pass (0.0% mortality)	Pass (10% mortality)
2021 April 02	Pass (0.0% mortality)	*Fail (70% mortality)
2021 May 04	Pass (0.0% mortality)	Pass (10% mortality)
2021 June 01	No Effluent	No Effluent
2021 July 14	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 August 11	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 September 08	Pass (0.0% mortality)	Pass (0.0% mortality)

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 106 of 172

Information Use

Sample Date	48 Hour Result	96 Hour Result
2021 October 06	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 November 10	Pass (0.0% mortality)	Pass (0.0% mortality)
2021 December 08	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 January 12	Pass (0.0% mortality)	Pass (10% mortality)
2022 February 09	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 March 09	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 April 06	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 May 11	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 June 08	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 July 13	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 August 10	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 September 07	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 October 12	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 November 09	Pass (0.0% mortality)	Pass (0.0% mortality)
2022 December 07	Pass (0.0% mortality)	Pass (0.0% mortality)

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 107 of 172

Information Use

Table 17: 2020 – 2022 Port Granby Waste Water Treatment Plant – Results of Water Sampling Analysis (Influent – Monthly Average)

Influent Sample	Radium-		Nituite	Nituratio	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Monthly Average	226 (Bq/L)	рН	Nitrite (mg/L)	Nitrate (mg/L)	Suspended Solids (mg/L)	Ammonia- N (mg/L)	Phosphorus (mg/L)	Arsenic (μg/L)	Cadmium (µg/L) ⁽²⁾	Cobalt (µg/L)	Copper (µg/L)	Molybdenum (µg/L)	Selenium (µg/L)	Thallium (μg/L)	Uranium (μg/L)	Vanadium (µg/L)
2020 January	2.43	8.29	0.9	9.8	161	3.7	3	2000	1.5	379	297	1309	10	0	3843	82
2020 February	2.53	8.00	0.9	12.3	112	4.0	3	2468	1.6	427	284	1683	12	0	4785	92
2020 March	1.02	8.37	0.5	5.1	80	3.7	1	1190	<1.0	188	136	850	6	0	2880	42
2020 April	3.55	8.25	0.7	9.0	165	1.4	5	3375	<5.0	540	333	2600	15	0	7100	123
2020 May	3.03	8.32	0.3	2.5	148	2.7	4	3875	<1.0	610	233	2850	14	0	6675	112
2020 June	1.57	9.00	0.1	0.3	150	0.9	4	3575	<3.0	600	100	2275	12	0	5275	107
2020 July	0.37	8.85	<0.3	1.0	59	0.1	1	1166	0.3	162	16	603	3	0	1265	33
2020 August	1.70	8.22	<0.3	<0.6	62	7.4	4	4690	1.0	592	22	1660	6	0	5105	186
2020 September	1.20	8.65	1.9	0.6	78	5.2	3	2908	0.4	329	14	945	5	0	2730	139
2020 October	0.53	7.84	<0.3	1.3	111	1.1	13	2270	0.5	338	25	1080	3	0	1952	91
2020 November	0.39	7.56	<0.3	1.4	87	3.4	7	1724	0.4	249	16	723	3	<0.005	1435	74
2020 December	0.38	7.58	<0.3	1.6	81	2.0	14	2215	0.9	291	12	951	2	<0.005	1600	78
2021 January	0.15	7.62	<0.3	2.9	8	3.9	36	1590	0.6	224	9	666	2	0	1130	57
2021 February	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2021 March	0.17	7.29	<0.3	2.0	55	0.2	26	2510	0.5	346	13	929	2	0	1070	95
2021 April	0.22	7.41	<0.3	<0.6	73	3.7	23	2240	0.4	319	12	810	2	<0.005	1110	94
2021 May	0.10	7.51	<0.3	1.4	125	2.4	18	2460	0.4	331	27	677	2	0	906	112
2021 June	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2021 July	0.15	8.29	6.0	1.5	356	5.8	8	2533	0.4	324	8	447	1	0	267	116
2021 August	0.21	8.58	1.1	<0.6	110	4.4	5	2100	0.2	246	4	323	1	0	255	90

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 108 of 172

Information Use

Influent Sample	Radium-		Nitrite	Nitrate	Total Suspended	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Monthly Average	226 (Bq/L)	рН	(mg/L)	(mg/L)	Solids (mg/L)	Ammonia- N (mg/L)	Phosphorus (mg/L)	Arsenic (μg/L)	Cadmium (µg/L) ⁽²⁾	Cobalt (µg/L)	Copper (µg/L)	Molybdenum (µg/L)	Selenium (µg/L)	Thallium (μg/L)	Uranium (μg/L)	Vanadium (µg/L)
2021 September	0.15	8.39	3.6	1.9	190	4.0	6	2211	0.2	259	5	340	1	0	273	100
2021 October	0.32	7.73	1.0	0.4	92	6.3	7	2835	0.3	160	9	612	1	0	2713	87
2021 November	0.71	7.55	0.9	1.3	47	14.8	12	3333	0.2	203	17	843	2	0	3065	96
2021 December	0.66	7.46	0.8	2.3	74	17.5	14	3372	0.2	209	23	828	2	0	3430	105
2022 January	0.58	7.50	1.6	2.3	41	18.4	16	3673	0.3	222	35	867	2	0	3755	115
2022 February	0.65	7.41	1.4	0.7	52	21.3	17	3842	0.5	224	47	778	2	0	3725	126
2022 March	0.35	7.50	1.3	2.2	43	11.9	11	1966	0.1	111	34	419	1	0	1928	66
2022 April	0.29	7.63	0.8	1.4	120	3.3	14	2247	0.2	117	48	442	2	0	1730	74
2022 May	0.31	7.55	0.3	0.1	188	2.1	13	2485	0.1	124	45	410	2	0	1948	75
2022 June	0.23	8.07	0.3	0.1	114	6.6	8	2288	0.1	80	15	263	1	0	1307	61
2022 July	0.27	8.00	0.4	0.1	70	3.6	5	2293	0.1	53	6	260	1	0	1450	50
2022 August	0.27	8.23	0.2	0.1	40	2.8	3	1868	0.1	20	2	202	1	0	1267	27
2022 September	0.25	8.30	0.3	0.1	26	1.3	3	2293	0.1	16	4	230	1	0	1449	26
2022 October	0.33	8.35	0.3	0.2	95	0.1	3	2306	0.2	19	7	236	2	0	1670	24
2022 November	0.40	7.97	0.3	0.3	83	0.4	4	2396	0.1	25	11	219	1	0	1496	24
2022 December	0.27	7.58	0.3	0.5	72	1.2	5	2340	0.1	30	12	243	1	0	1540	26

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 109 of 172

Information Use

					PG East	t						
	20	17	20	18	20	19	20	20	20	21	20	22
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP
	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)	(µg/m ³)
Observations	221	228	224	234	229	225	212	209	205	191	225	200
Geometric Mean	7	16	10	20	5	15	6	16	8	14	8	19
Arithmetic Mean	8	21	11	25	6	18	8	20	10	18	11	25
Median	7	16	11	21	5	16	8	18	9	16	9	20
98 th Percentile	27	-	24	-	23	-	22	-	22	-	27 ¹	-
Maximum	38	179	45	157	23	71	22	56	51	135	33	211
Exceedances	0%	1%	0%	1%	0%	0%	0%	0%	0%	0.5%	0%	1.5%

Table 18: Air Quality Monitoring – PG East

Note:

¹98th Percentile for PM_{2.5} a veraged over 3 years (2020, 2021 and 2022).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM2.5 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 110 of 172

Information Use

					PG Sout	h						
	20	17	20	18	20	19	20	20	20	21	20	22
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)	(µg/m ³)
Observations	225	225	232	234	204	230	212	211	198	213	173	224
Geometric Mean	6	16	9	22	5	17	6	18	7	17	8	17
Arithmetic Mean	6	20	10	27	6	20	9	23	9	21	11	22
Median	5	17	9	23	5	17	8	19	9	18	9	20
98 th Percentile	23	-	19	-	18	-	20	-	21	-	24 ¹	-
Maximum	23	170	94	223	18	161	134	184	48	110	29	69
Exceedances	0%	1%	0%	1%	0%	0%	0%	1%	0%	0%	0%	0%

Table 19: Air Quality Monitoring – PG South

Note:

¹98th Percentile for PM_{2.5} averaged over 3 years (2020, 2021 and 2022).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM2.5 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 111 of 172

Information Use

					PG Nort	hwest						
	20)17	20	18	20	19	20	20	20	21	20	22
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM2.5	TSP	PM2.5	TSP	PM2.5	TSP
	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)					
Observations	211	213	223	220	218	204	198	204	190	201	186	195
Geometric Mean	6	16	6	17	5	17	9	14	10	14	16	15
Arithmetic Mean	7	20	7	21	6	20	14	22	15	22	26	29
Median	6	17	6	17	5	17	5	12	5	14	14	14
98 th Percentile	64	-	57	-	18	-	37	-	47	-	78 ¹	-
Maximum	35	91	32	120	25	106	175	271	65	104	108	711
Exceedances	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	1%

Table 20: Air Quality Monitoring – PG Northwest

Note:

¹98th Percentile for PM_{2.5} averaged over 3 years (2020, 2021 and 2022).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM2.5 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 112 of 172

Information Use

Table 21: Metals and Radionuclides Concentrations in Total Suspended Particulate – PG East

							PG East			
				2017	2018	2019	2020	2021	20)22
	Numbe	er of San	nples Analyzed	50	51	51	46	45	2	18
Analysis	Unit	AAQC	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m ³	-		0.01	0.01	0.10	0.76	0.98	1.13	1.22
Silver (Ag)	ng/m ³	1000		3	3	4	21	22	19	24
Arsenic (As)	ng/m ³	300		3	3	6	3	3	2	7
Barium (Ba)	ng/m ³	10000		7	6	6	4	4	6	15
Beryllium (Be)	ng/m³	10		0.56	0.56	0.52	0.03	0.10	0.02	0.05
Boron (B)	ng/m ³	120000		3	3	4	11	20	11	12
Cadmium (Cd)	ng/m ³	25		1.1	1.1	1.1	0.3	0.3	0	1
Cobalt (Co)	ng/m ³	100		1.1	1.1	1.7	0.3	0.3	0	1
Copper (Cu)	ng/m ³	50000		12	13	13	14	11	14	50
Molybdenum (Mo)	ng/m ³	120000		1.7	1.7	1.8	3.5	12.1	2	3
Nickel (Ni)	ng/m ³	200		2	2	2	1	3	1	3
Lead (Pb)	ng/m ³	500		3	3	3	3	2	4	17
Antimony (Sb)	ng/m ³	25000		6	6	6	10	10	8	46
Selenium (Se)	ng/m ³	10000		6	6	5	3	3	3	15
Uranium (U)	ng/m ³	300	4070	0.5	0.6	3	3	3	3	13
Vanadium (V)	ng/m ³	2000		2.9	2.9	8.2	0.4	0.3	0.6	3.6
Zinc (Zn)	ng/m ³	12000		22	22	17	22	17	18	45
Lead-210	Bq/m ³	-		0.0005	0.0009	0.0008	0.0006	0.0007	0.0006	0.0032
Radium-226	Bq/m ³	-	0.05	0.00006	0.00006	0.00009	0.00003	0.00003	0.00003	0.00004
Thorium-230	Bq/m ³	-	0.01	0.00028	0.00028	0.00045	0.00006	0.00006	0.00006	0.00012
Thorium-232	Bq/m ³	-	0.006	0.00028	0.00028	0.00027	0.00006	0.00006	0.00006	0.00006

Note:

AAQC = Ambient Air Quality Criteria

*Health Canada reference levels as defined in the Port Granby Environmental Assessment Study Report

Bold values indicate an exceedance against the AAQC

UNRESTRICTED / ILLIMITÉE

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 113 of 172

Information Use

Table 22: Metals and Radionuclides Concentrations in Total Suspended Particulate – PG South

							PG South			
				2017	2018	2019	2020	2021	20	022
	Num be	er of Sar	nples Analyzed	51	51	52	47	48	4	48
			Health Canada		•	•				
			Reference			Average			A ve rage	Maxim um
Analysis	Unit	AAQC	Levels*							
Total Mercury (Hg)	ng/m ³	-		0.01	0.01	0.10	0.74	0.96	1.12	1.20
Silver (Ag)	ng/m ³	1000		3	3	4	21	22	19	24
Arsenic (As)	ng/m ³	300		3	3	3	3	3	2	5
Barium (Ba)	ng/m ³	10000		5	6	5	4	5	5	15
Beryllium (Be)	ng/m ³	10		0.56	0.57	0.53	0.03	0.09	0.02	0.03
Boron (B)	ng/m ³	120000		3	3	4	11	24	11	12
Cadmium (Cd)	ng/m ³	25		1.1	1.1	1.1	0.3	0.3	0.3	0.7
Cobalt (Co)	ng/m ³	100		1.1	1.2	1.1	0.3	0.3	0.3	0.8
Copper (Cu)	ng/m ³	50000		10	10	14	13	10	11	60
Molybdenum (Mo)	ng/m ³	120000		1.7	1.7	1.8	2.6	6.6	2.4	3.0
Nickel (Ni)	ng/m³	200		2	2	2	8	3	1	3
Lead (Pb)	ng/m ³	500		3	3	2	3	3	4	23
Antimony (Sb)	ng/m ³	25000		6	6	6	8	12	6	27
Selenium (Se)	ng/m³	10000		6	6	5	3	3	3	12
Uranium (U)	ng/m ³	300	4070	1	0.6	0.5	3.0	3.0	3.6	18
Vanadium (V)	ng/m³	2000		2.9	3.0	2.7	0.4	0.4	0.4	2.5
Zinc (Zn)	ng/m³	12000		18	18	19	23	17	17	53
Lead-210	Bq/m ³	-		0.0005	0.0008	0.0008	0.0006	0.0007	0.0006	0.0024
Radium-226	Bq/m ³	-	0.05	0.00006	0.00006	0.00005	0.00003	0.00003	0.00003	0.00003
Thorium-230	Bq/m³	-	0.01	0.00029	0.00029	0.00027	0.00006	0.00009	0.00006	0.00006
Thorium-232	Bq/m ³	-	0.006	0.00028	0.00028	0.00027	0.00006	0.00006	0.00006	0.00006

AAQC = Ambient Air Quality Criteria

*Health Canada reference levels as defined in the Port Granby Environmental Assessment Study Report

Bold values indicate an exceedance against the AAQC

UNRESTRICTED / ILLIMITÉE

Information Use

UNRESTRICTED Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 114 of 172

Table 23: Noise Monitoring Results – PG LTWMF

		201	7 Average L _{eq} (c	IBA)	201	8 Average L _{eq} (dBA)	201	9 Average L _{eq} (IBA)	2020	Average L _{eq} (BA)	202:	1 Average L _{eq} (d	BA)	202	2 Average L _{eq} (dBA)
	Monitoring Location	Day	Evening	Night	Day (07:00 18:00)	Evening	Night	Day (07:00-18:00)	Evening	Night	Day (07:00.18:00)	Evening	Night	Day	Evening	Night	Day (07:00.18:00)	Evening	Night (23:00-07:00)
Monitoring Location	•	-																(18.00-25.00)	
PG-N-0001	Elliott Road and Lakeshore Road	54	50	50	52	49	48	52	48	47	49	46	44	51	49	45	49	46	46
PG-N-0002	South of PG LTWMF	54	51	47	56	51	49	55	50	49	53	51	50	56	52	50	55	50	50
PG-N-0003	NE PG LTWMF @ Lakeshore Road	56	51	51	55	51	50	58	51	50	56	50	50	56	53	49	56	50	51
PG-N-0004	NW PG LTWMF @ Elliott Road	75	75	69	75	74	71	74	74	71	68	68	65	71	69	68	72	71	69
PG-N-0005	PG East Hi Vol Area (Nichols Road)	55	52	49	51	54	50	54	54	51	50	48	49	53	53	51	53	51	50
PG-N-0006	Nichols Road North	59	60	58	58	58	59	55	54	57	56	55	56	59	59	59	62	59	63
PG-N-0007	Lakeshore Rd and East Townline	57	56	53	56	55	51	56	54	51	54	52	51	56	54	52	55	53	52
PG-N-0008	North Elliott Road and Concession #1	60	55	52	59	56	53	59	57	54	60	56	55	60	57	54	60	56	55
PG-N-0009	Concession #1 and Newtonville Rd	60	55	53	59	56	54	60	56	54	60	55	56	59	56	54	59	55	55
1.6 dBA difference	results are compared to: from Baseline monitoring results lour period as per the World Health Or,	ganization's (Guideline for Co	ommunity Nois	e , 1999			-											

	2017	2018	2019	2020	2021		2022	
Well ID			verage (mA			Min	Max	Average
PG-BH1002A	109.89	109.19	109.38	108.98	109.37	108.41	109.18	108.78
PG-BH1003A	92.59				Vell Damaged	[
PG-BH1003B	112.21	111.54	112.16	111.69	111.92	110.23	113.26	111.66
PG-BH1003C	108.89	108.51	109.05	108.63	108.62	107.92	108.82	108.50
PG-BH1003D	106.65	106.29	106.86	106.54	106.55	105.34	106.43	106.01
PG-BH1003E					Dry			
PG-BH1003F	94.42	94.74	94.69	94.69	94.50	94.31	94.65	94.45
PG-BH204				Well No	t Located			
PG-BH210	-	-	-	-	-	-	-	-
PG-BH214					t Located			
PG-BH404					t Located			
PG-MW03-01A		ruction Occu	_	80.88	77.21	77.10	81.18	78.24
PG-MW03-01B		ruction Occu		99.93	98.50	90.42	100.43	97.07
PG-MW03-01C		ruction Occu	ů.	108.23	107.62	107.26	108.81	107.86
PG-MW03-02A		ruction Occu	<u> </u>	82.17	79.18	79.18	83.18	80.18
PG-MW03-02B		ruction Occu	-	98.60	91.42	91.42	91.42	91.42
PG-MW03-02C	Const	ruction Occu	urring	110.44	104.40	104.40	109.90	105.78
PG-MW03-03A	Const	ruction Occu	urring	83.01	82.50	81.96	82.94	82.21
PG-MW03-03B	Const	ruction Occu	urring	102.99	99.51	102.58	102.58	102.58
PG-MW03-03C	Const	ruction Occu	urring	112.31	110.44	108.71	115.39	112.24
PG-MW1A-02	83.12	81.83	84.87	85.54	79.42	82.11	83.73	82.91
PG-MW1B-02	92.33	92.49	92.56	92.04	91.24	91.15	91.80	91.62
PG-MW1C-02	87.47	87.43	87.55	87.01	86.97	85.42	87.18	86.27
PG-MW1D-02	88.07	88.03	88.32	87.45	86.61	86.03	88.43	87.16
PG-MW2A-02	59.48	59.59	59.93	60.63	60.65	57.95	61.99	60.81
PG-MW2B-02	90.14	91.97	91.47	91.17	91.26	88.88	91.13	90.44
PG-MW2C-02	94.40	94.37	94.55	94.08	93.76	93.31	94.42	93.82
PG-MW3A-02	94.26	92.87	98.38	Well D	amaged	92.52	92.52	92.52
PG-MW3B-02	97.97	98.19	98.34	98.12	97.85	97.23	97.88	97.65
PG-MW3C-02	103.37	104.77	104.00	103.52	101.80	102.93	103.64	103.17
PG-MW3D-02	105.46	104.93	105.40	104.78	104.60	103.51	105.79	104.61
PG-MW4A-02	90.91	90.71	91.42	90.57	90.11	90.14	90.66	90.42
PG-MW4B-02	89.38	89.42	89.11	89.29	88.90	88.92	89.13	89.01
PG-MW4C-02	118.02	117.74	118.18	117.31	117.49	115.96	117.72	116.74
PG-MW5A-02				Well Decor	nmissioned		-	-
PG-MW5B-02				Well Decor	nmissioned			
PG-MW5C-02				Well Decor	nmissioned			
PG-OW4-87				Well Decor	nmissioned			
PG-OW41-76				Well No	t Located			
Note:								
mASL - metres a	bove sea le	vel						
- No data availa	ble.							

Table 24: PG LTWMF Groundwater Levels

Table 25: Soil Monitoring – PG LTWMF – Location 1 (PG-LTWMF-SS-01)

						F	PG-LTWI	MF-S	S-01				
Metals	Units		2017		2018		2019		2020		2021		2022
Water Soluble Boron	µg/g		0.35		0.32		0.44	<	0.50	<	0.50	<	0.50
Mercury	µg/g	۷	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g	<	0.20	<	0.20	<	0.20		0.06	<	0.05	<	0.05
Arsenic	µg/g		1.2		1.1		1.1		1.4		1.7		1.6
Barium	µg/g		21		21		19		24		26		25
Beryllium	μg/g		0.25		0.23		0.21		0.23		0.23		0.24
Boron	µg/g	۷	5	<	5	<	5		2		2		2
Cadmium	µg/g		0.15		0.16		0.11		0.23		0.19		0.22
Cobalt	μg/g		2.1		2.0		1.8		2.3		2.1		2.3
Copper	µg/g		3.7		3.6		3.2		4.6		4.4		4.5
Molybdenum	μg/g	<	0.50	<	0.50	<	0.50		0.20		0.20		0.20
Nickel	µg/g		4.3		3.9		3.8		4.9		4.3		4.7
Lead	µg/g		6.4		6.4		5.8		7.4		7.0		7.6
Selenium	μg/g	<	0.5	<	0.5	<	0.5	<	0.7	<	0.7	<	0.7
Antimony	µg/g	۷	0.2	<	0.2	<	0.2	<	0.8	<	0.8	<	0.8
Uranium	μg/g		0.60		0.58		0.60		0.70		0.78		0.66
Vanadium	µg/g		20		19		20		18		16		19
Lead-210	Bq/g	۷	0.05	<	0.05	<	0.05	<	0.20		0.07		0.08
Radium-226	Bq/g	۷	0.10	<	0.05	<	0.05		0.05	<	0.05	<	0.04
Thorium-230	Bq/g	۷	0.50	<	0.40	<	0.40		0.05	<	0.30	<	0.30
Thorium-232	Bq/g	۷	0.30	<	0.04	<	0.30		0.01		0.01		0.01

Table 26: Soil Monitoring – PG LTWMF – Location 2 (PG-LTWMF-SS-02)

						F	G-LTWI	MF-S	SS-02				
Metals	Units		2017		2018		2019		2020		2021		2022
Water Soluble Boron	µg/g		0.45		0.52		0.67	<	0.50	<	0.50	<	0.50
Mercury	µg/g	<	0.05	۷	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g	۷	0.20	<	0.20	<	0.20	<	0.05	<	0.05	<	0.05
Arsenic	µg/g		2.1		2.1		1.7		2.3		2.9		2.9
Barium	µg/g		45		41		37		54		55		62
Beryllium	µg/g		0.28		0.30		0.25		0.32		0.31		0.34
Boron	µg/g	۷	5		6.5	<	5		5		6		6
Cadmium	µg/g		0.11		0.20		0.13		0.24		0.22		0.23
Cobalt	µg/g		3.6		3.5		3.0		4.3		3.8		4.6
Copper	µg/g		6.5		6.5		5.0		9.2		8.3		9.1
Molybdenum	µg/g	۷	0.50	<	0.50	<	0.50		0.20		0.20		0.20
Nickel	µg/g		7.1		6.5		5.7		8.6		7.3		8.9
Lead	µg/g		8.3		11		8.0		11		12		13
Selenium	µg/g	۷	0.5	۷	0.5	<	0.5	<	0.7	<	0.7	<	0.7
Antimony	µg/g	۷	0.2	<	0.2	<	0.2	<	0.8	<	0.8	<	0.8
Uranium	µg/g		0.39		0.49		0.50		0.44		0.53		0.48
Vanadium	µg/g		20		22		20		20		19		22
Lead-210	Bq/g	۷	0.05		0.06	<	0.05	<	0.20		0.08		0.07
Radium-226	Bq/g	۷	0.10	<	0.05	<	0.05		0.06		0.06	<	0.05
Thorium-230	Bq/g	۷	0.50	<	0.40	<	0.40		0.08		0.20	<	0.10
Thorium-232	Bq/g	۷	0.30	<	0.04	<	0.30		0.01		0.01		0.013

Table 27: Soil Monitoring – PG LTWMF – Location 3 (PG-LTWMF-SS-03)

						F	G-LTWI	MF-	SS-03				
Metals	Units		2017		2018		2019		2020		2021		2022
Water Soluble Boron	µg/g		0.56		0.57		0.87	<	0.50	<	0.50	<	0.50
Mercury	µg/g	<	0.05		0.07	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g	<	0.20	<	0.20		0.48	<	0.05	<	0.05	<	0.05
Arsenic	µg/g		1.7		1.7		2.0		1.7		2.1		2.3
Barium	µg/g		39		39		42		42		44		53
Beryllium	µg/g		0.28		0.27		0.29		0.26		0.25		0.32
Boron	µg/g	<	5	<	5	<	5		3		3		3
Cadmium	µg/g		0.23		0.24		0.25		0.28		0.25		0.30
Cobalt	µg/g		3.0		3.0		3.1		3.2		2.8		3.8
Copper	µg/g		7.2		7.7		8.5		9.2		8.6		11.0
Molybdenum	µg/g	<	0.50	<	0.50	<	0.50		0.30		0.30		0.40
Nic kel	µg/g		5.7		5.8		5.7		6.1		5.3		7.3
Lead	µg/g		16		19		27		17		20		23
Selenium	µg/g	۷	0.5	<	0.5	<	0.5	<	0.7	<	0.7	<	0.7
Antimony	µg/g	<	0.2	<	0.2	<	0.2	<	0.8	<	0.8	<	0.8
Uranium	µg/g		0.58		0.60		0.66		0.60		0.59		0.67
Vanadium	µg/g		19		20		21		17		16		20
Lead-210	Bq/g	<	0.05		0.07		0.05	<	0.20		0.06		0.05
Radium-226	Bq/g	<	0.10	<	0.05	<	0.05		0.05	<	0.03		0.07
Thorium-230	Bq/g	<	0.50	<	0.40	<	0.40		0.06	<	0.20	<	0.30
Thorium-232	Bq/g	<	0.30	<	0.04	<	0.30		0.01		0.01		0.011

Table 28: Soil Monitoring – PG LTWMF – Location 4 (PG-LTWMF-SS-04)

						P	G-LTWI	MF-	SS-04				
Metals	Units		2017		2018		2019		2020		2021		2022
Water Soluble Boron	µg/g		0.54		0.49		0.57	<	0.50	<	0.50	<	0.50
Mercury	µg/g	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g	۷	0.20	<	0.20	<	0.20	<	0.05	<	0.05	<	0.05
Arsenic	µg/g		1.7		2.1		2.2		1.7		2.1		2.1
Barium	µg/g		29		29		28		28		32		34
Beryllium	µg/g		0.23		0.25		0.23		0.21		0.23		0.26
Boron	µg/g	۷	5	<	5	<	5		2		3		3
Cadmium	µg/g		0.25		0.19		0.17		0.19		0.19		0.20
Cobalt	µg/g		2.4		2.6		2.6		2.5		2.4		3.0
Copper	µg/g		4.7		4.8		4.4		5.1		5.5		5.8
Molybdenum	µg/g	<	0.50	<	0.50	<	0.50		0.20		0.20		0.30
Nic kel	µg/g		5.3		4.7		4.9		4.6		4.3		5.2
Lead	µg/g		11		14		13		10		11		12
Selenium	µg/g	۷	0.5	<	0.5	<	0.5	<	0.7	<	0.7	<	0.7
Antimony	µg/g	۷	0.2	<	0.2	<	0.2	<	0.8	<	0.8	<	0.8
Uranium	µg/g		0.61		0.68		3.0		0.61		0.66		0.62
Vanadium	µg/g		19		24		21		14		13		17
Lead-210	Bq/g	۷	0.05		0.08		0.07	<	0.20		0.06		0.04
Radium-226	Bq/g	۷	0.10	<	0.05	<	0.05		0.06		0.06	<	0.06
Thorium-230	Bq/g	<	0.50	<	0.40	<	0.40		0.08	<	0.10	<	0.40
Thorium-232	Bq/g	<	0.30	<	0.04	<	0.30		0.01		0.01		0.011

Table 29: Soil Monitoring – PG LTWMF – Location 5 (PG-LTWMF-SS-05)

						F	G-LTWI	MF-	SS-05				
Metals	Units		2017		2018		2019		2020		2021		2022
Water Soluble Boron	µg/g		0.42		0.37		0.54	<	0.50	<	0.50	<	0.50
Mercury	µg/g	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g	۷	0.20	<	0.20	<	0.20		0.08		0.06		0.07
Arsenic	µg/g		5		5.1		3.8		4.7		4.9		5.1
Barium	µg/g		21		23		18		27		23		28
Beryllium	µg/g	۷	0.20		0.22	<	0.20		0.20		0.18		0.21
Boron	µg/g	۷	5	<	5	<	5		3		3		3
Cadmium	µg/g		0.11		0.15		0.11		0.17		0.15		0.18
Cobalt	µg/g		3.2		3.2		2.5		3.7		3.0		3.6
Copper	µg/g		4.4		4.5		3.4		5.8		4.7		5.6
Molybdenum	µg/g	۷	0.50	<	0.50	<	0.50		0.20		0.10		0.20
Nickel	µg/g		4.7		5.3		4.2		5.7		4.7		5.7
Lead	µg/g		11		12		8.8		12		10		12
Selenium	µg/g	۷	0.5	<	0.5	<	0.5	<	0.7	<	0.7	<	0.7
Antimony	µg/g	۷	0.2	<	0.2	<	0.2	<	0.8	<	0.8	<	0.8
Uranium	µg/g		0.87		0.89		0.66		0.80		0.80		0.79
Vanadium	µg/g		16		19		15		14		13		16
Lead-210	Bq/g		0.08		0.07		0.12		0.30		0.10		0.10
Radium-226	Bq/g		0.11		0.08		0.09		0.06		0.06		0.14
Thorium-230	Bq/g	۷	0.50	<	0.40	<	0.40		0.08		0.40	<	0.40
Thorium-232	Bq/g	<	0.30	<	0.04	<	0.30		0.02		0.02		0.016

UNRESTRICTED

Annual Compliance Monitoring Report

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 121 of 172

Information Use

Table 30: Bluff Seepage Water Quality (PG-S-1)

								PC	G-S-1				
		Crit	teria	2017	2018	2019	2020	2021			2022		
Parameter	Units	PWQO	CWQG			Average			2022-03-28	2022-06-22	2022-09-29	2022-11-28	Average
Fluoride	mg/L		0.12	1.17	0.89	No Sample	1.09	2.90	No Sample ²	No Sample ²	No Sample ²	No Sample ²	
Ammonia+Ammonium (N)	as N mg/L			31.7	30.3		20.4	26.0					
Nitrate (as N)	as N mg/L		13	242	193		194	227					-
Arsenic (total)	µg/L	100	5	1047	783		757	967					
Uranium (total)	µg/L	5	15	247	217		178	278					
Radium-226	Bq/L	1		0.30	0.29		0.14	0.55					
Field Parameters													
ODO % Sat	%			-1	-1		- ¹	-1					
ORP	mV			-1	_1 _		- ¹	_1					
SPC	µs/cm			-1	_1		- ¹	_1					
Temperature	°C			-1	_1		_ ¹	_1					
Turbidity	FNU			_1	-1		- ¹	-1					
pH	Units			_1	_1		- ¹	_1					
Note: PWQO = Provincial Water CWQG= Canadian Water Bold values indicate an ex ¹ Field parameters included to ² Inaccessible due to water	Quality Guideline ceedance of a PV for current sampl	s for Prote VQO or C ing year o	e <i>ction of</i> WQG val	Aquatic Life									
No data.													

UNRESTRICTED

UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 122 of 172

Information Use

Table 31: Bluff Seepage Water Quality (PG-S-2)

									PG-S-2					
		Crit	eria	2017	2018	2019	2020	2021			2022			
Parameter	Units	PWQO	CWQG			Average			2022-03-28	2022-06-22	2022-09-29	2022-11-28	A٧	erage
Fluoride	mg/L		0.12	0.87	0.78	0.90	0.96	0.71	No Sample ²	0.66	0.68	0.88		0.74
Ammonia+Ammonium (N)	as N mg/L			0.213	0.793	0.153	0.060	0.053		< 0.04	0.07	0.04		0.05
Nitrate (as N)	as N mg/L		13	7.42	5.29	0.29	2.10	2.97		2.67	0.59	1.86		1.71
Arsenic (total)	µg/L	100	5	953	688	439	543	520		477	986	636		700
Uranium (total)	µg/L	5	15	483	395	229	124	131		80	57	110		82
Radium-226	Bq/L	1		0.24	< 0.04	< 0.04	0.01	0.02		< 0.01	0.01	< 0.01	<	0.01
Field Parameters														
ODO % Sat	%			_1	_1	_1	_1	_1		67.1	74.8	84.6		
ORP	mV			_1	_1	_1	_1	_1		184.9	84.6	142.9		
SPC	µs/cm			_1	_1	_1	_1	_1		909.0	789.0	725.0		
Temperature	°C			_1	_1	_1	_1	_1		10.459	11.641	7.999		
Turbidity	FNU			_1	_1	_1	_1	_1		28.4	411.6	58.24		
pH	Units			_1	_1	_1	_1	_1		7.75	7.90	7.84		
Note: PWQO = Provincial Water CWQG = Canadian Water Bold values indicate an ex ¹ Field parameters included ² Insufficient surface water	Quality Guidelines ceedance of a PV for current sampli	s for Prote VQO or C\ ng year o	ection of WQG val	Aquatic Life										

			Cri	teria								PG	i-BS	-6			
		PS	QG	CC	ME		2017		2018	2019		2020		2021		2022	
Parameter	Units	LEL	SEL	ISQG	PEL					Average					2022-06-22	2022-11-28	Average
Water Soluble Boron	µg/g						0.16		0.14	No Sample	<	0.50	<	0.50	No Sample ¹	No Sample ¹	
Mercury	µg/g	0.2	2	0.17	0.486	<	0.05	<	0.05		<	0.05	<	0.05			
Silver	µg/g					<	0.20	<	0.20		<	0.05	<	0.05			
Arsenic	µg/g	6	33	5.9	17		7.8		3.5			2.2		1.9			
Barium	µg/g						27		25			30		15			
Bery Ilium	µg/g						0.21	<	0.20			0.12		0.10			
Boron	µg/g					<	5.0	<	5.0			3.5		1.5			
Cadmium	hð/ð	0.6	10	0.6	3.5	<	0.10	<	0.10			0.03		0.04			
Cobalt	hð/ð						4.0		2.8			2.4		2.4			
Copper	µg/g	16	110	35.7	197		6.4		5.2			4.2		2.4			
Moly bdenum	µg/g						2.4		1.1			0.8		0.7			
Nickel	µg/g	16	75				6		4.4			4.2		3.0			
Lead	µg/g	31	250	35	91.3		3.9		2.5			2.0		1.7			
Antimony	hð/ð					<	0.20	<	0.20		<	0.80	<	0.80			
Selenium	µg/g					<	0.5	<	0.5		<	0.7	<	0.7			
Uranium	µg/g						2.2		1.6			2.1		1.2			
Vanadium	µg/g						25		17			13		33			
Lead-210	Bq/g						0.05	<	0.05			0.03		0.04			
Radium-226	Bq/g					<	0.10		0.08			0.12		0.08			
Thorium-230	Bq/g					<	0.50	<	0.45			0.25		0.25			
Thorium-232	Bq/g					<	0.30	<	0.17			0.01		0.06			

Table 32: Sediment Quality – Location 1 (PG-BS-6)

Note: PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life, ISQG = Interim Sediment Quality Guidelines,

PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCME value.

¹ Location not accessible

			Cri	teria									PG	-BS	-7						
		PS	QG	CC	ME	1	2017		2018		2019		2020		2021				2022		
Parameter	Units	LEL	SEL	ISQG	PEL					A	verage					20	22-06-22	203	22-11-28	Av	erage
Water Soluble Boron	hð/ð						0.47		0.23	<	0.05	<	0.50	<	0.50	<	0.50		0.90		0.70
Mercury	µg/g	0.2	2	0.17	0.486	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g					<	0.20	<	0.20	<	0.20	<	0.05	<	0.05		0.08	<	0.05		0.07
Arsenic	µg/g	6	33	5.9	17		35		14		15		12		19		11		17		14
Barium	µg/g						15		18		11		19		15		36		16		26
Beryllium	µg/g					<	0.20	<	0.20	<	0.20		0.13		0.09		1.0		0.12		0.56
Boron	µg/g					<	5.0	<	5.0	<	5.0		4		2		3		3		3
Cadmium	µg/g	0.6	10	0.6	3.5	<	0.10	<	0.10	<	0.10		0.03		0.04		0.06	<	0.05		0.06
Cobalt	hð/ð						8.8		4.8		2.6		2.3		3.6		4.4		3.7		4.1
Copper	µg/g	16	110	35.7	197		5.4		5.1		3.2		4.3		2.0		7.2		3.2		5.2
Molybdenum	µg/g						1.6	<	0.5	<	0.5		0.6		0.3		0.8		0.6		0.7
Nickel	µg/g	16	75				12		7.5		3.7		3.8		3.8		6.6		4.5		5.6
Lead	µg/g	31	250	35	91.3		1.8		2.7		1.2		1.9		1.7		3.5		1.9		2.7
Antimony	µg/g						0.21	<	0.20	<	0.20	<	0.80	<	0.80	<	0.80	<	0.80	<	0.80
Selenium	µg/g						1.1	<	0.5	<	0.5	<	0.7	<	0.7	<	0.7	<	0.7	<	0.7
Uranium	µg/g						7.7		2.0		0.8		2.0		1.2		2.7		1.7		2.2
Vanadium	hð/ð						17		19		13		12		32		16		10		13
Lead-210	Bq/g					<	0.05	<	0.05	<	0.05		0.03		0.03	<	0.05		0.03		0.04
Radium-226	Bq/g					<	0.10	<	0.08	<	0.05		0.05		0.05	<	0.05	<	0.03		0.04
Thorium-230	Bq/g					<	0.50	<	0.45	<	0.4		0.15	<	0.20	<	0.20	<	0.20	<	0.20
Thorium-232	Bq/g					<	0.30	<	0.17	<	0.04		0.01		0.03		0.01		0.01		0.01

Table 33: Sediment Quality – Location 2 (PG-BS-7)

Note:

PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life, ISQG = Interim Sediment Quality Guidelines, PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCVE value.

Table 34: Surface Water Quality – Port Granby Creek (PGC-D)

									PGC-D				
		Crit	eria	2017	2018	2019	2020	2021			2022		
Parameter	Units	PWQO	CWQG			Average			2022-01-12	2022-04-04	2022-07-08	2022-10-24	Average
Total Suspended Solids	mg/L			8	5	6	4	7	2	3	4	< 2	3
pH	no unit	6.5-8.5	6.5-9.0	8.30	8.23	8.26	8.38	8.34	8.23	8.35	9.14	8.36	8.52
Alkalinity	mg/L as CaCO ₃	0.0 0.0	0.0 0.0	238	245	245	235	244	273	233	266	249	255
Carbonate	mg/L as CaCO ₃			5	4	4	11	7	< 1	3	71	6	20
Bicarbonate	mg/L as CaCO ₃			233	243	243	223	238	273	229	195	243	235
Total Dissolved Solids	mg/L			371	373	365	351	371	391	377	363	431	391
Fluoride	mg/L		0.12	0.11	< 0.10	< 0.10	0.08	0.09	0.07	< 0.06	0.09	< 0.06	0.07
Total Organic Carbon	mg/L			7	6	7	6	7	6	6	7	5	6
Ammonia+Ammonium (N)	as N mg/L			< 0.05	0.05	0.07	0.06	0.05	0.05	< 0.04	0.04	< 0.04	< 0.04
Chloride (Dissolved)	mg/L		120	44	51	50	46	64	65	69	48	56	60
Sulphate (dissolved)	mg/L			17	16	15	14	18	20	15	13	15	16
Bromide (dissolved)	mg/L			< 1.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.01	< 0.01	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	1.07	1.03	0.90	0.99	1.13	1.62	1.23	0.66	0.73	1.06
Nitrate + Nitrite (as N)	as N mg/L			1.07	1.03	0.90	0.99	1.13	1.63	1.23	0.66	0.73	1.06
Mercury (dissolved)	µg/L	0.2	0.026	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			258	280	295	283	298	343	279	302	271	299
Silver (total)	µg/L	0.1	0.25	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	bq/L			116	83	104	62	63	47	69	61	45	56
Aluminum (0.2µm)	µg/L	75	100	11	7	7	8	5	5	6	12	7	8
Arsenic (total)	µg/L	100	5	< 1.0	< 1.0	< 1.0	0.5	1.7	0.4	0.4	1.0	0.6	0.6
Barium (total)	µg/L			51.8	52.0	52.0	55.1	57.5	58	44.7	69.7	65.4	59.5
Beryllium (total)	µg/L	1100		< 0.50	< 0.50	< 0.50	0.008	0.021	< 0.007	< 0.007	< 0.007	0.023	0.011
Boron (total)	µg/L	200	1500	13	< 13	12	12	13	14	10	15	19	15
Bismuth (total)	µg/L			< 1.0	< 1.0	< 1.0	< 0.007	0.009	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Calcium (total)	µg/L			89250	91500	95250	96175	101575	118000	95700	101000	89600	101075
Cadmium (total)	µg/L	0.2	0.09	< 0.10	< 0.10	< 0.10	0.005	0.014	< 0.003	< 0.003	< 0.003	0.018	0.007
Cobalt (total)	µg/L	0.9		< 0.50	< 0.50	< 0.50	0.080	0.174	0.08	0.096	0.108	0.075	0.091
Chromium (total)	µg/L			< 5.0	< 5.0	< 5.0	0.32	0.63	0.13	0.41	0.36	0.34	0.31
Copper (total)	µg/L	5		1.0	< 1.0	< 1.0	0.6	0.7	0.6	0.8	0.9	0.4	0.7
Iron (total)	µg/L	300	300	240	198	250	158	165	207	151	132	213	176
Potassium (total)	µg/L			1525	1350	1475	1418	1603	1400	1560	1820	1610	1598
Magnesium (total)	µg/L			9550	11075	10050	10323	10685	11900	9720	11900	11400	11230
Manganese (total)	µg/L			25.8	24.3	31.3	20.9	32.1	41.7	30.0	30.5	20.8	30.8
Molybdenum (total)	µg/L	40	73	0.55	0.53	0.55	0.46	0.84	0.44	0.33	0.75	0.57	0.52
Sodium (total)	µg/L			28000	30500	30250	26350	31825	30200	34000	27700	25900	29450
Nickel (total)	µg/L	25	25	< 1.0	< 1.0	< 1.0	0.3	3.6	0.5	0.3	0.4	0.3	0.4
Phosphorus (total)	µg/L	10-30		24	18	18	14	20	26	17	24	9	19
Lead (total)	µg/L	5	7	< 0.50	< 0.50	< 0.50	0.08	0.12	< 0.09	< 0.09	< 0.09	0.15	0.11
Antimony (total)	µg/L	20		< 0.50	< 0.50	< 0.50	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Selenium (total)	µg/L	100	1	< 2.0	< 2.0	< 2.0	0.13	0.25	0.14	0.18	0.17	0.33	0.21
Tin (total)	µg/L			< 1.0	< 1.0	< 1.0	0.08	0.09	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Strontium (total)	µg/L			203	203	195	212	243	253	194	253	245	236
Titanium (total)	µg/L			8.0	6.8	7.9	2.85	3.23	2.27	4.08	3.01	2.16	2.88
Thallium (total)	µg/L	0.3	0.8	< 0.05	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	µg/L	5	15	0.893	0.900	0.820	0.789	0.884	0.984	0.789	0.824	0.851	0.862
Vanadium (total)	µg/L	6		1.06	1.09	1.01	0.76	0.93	0.64	0.60	1.01	0.83	0.77
Zinc (total)	µg/L	30	30	< 5.0	< 5.0	< 5.0	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Lead-210	Bq/L			< 0.02	< 0.10	< 0.10	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	0.02
Radium-226	Bq/L	1		0.03	0.04	< 0.04	0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.01
Thorium-230	Bq/L			< 0.07	< 0.07	< 0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters													
ODO % Sat	%			_1	-1	-1	-1	-1	-2	112.9	100.2	110.7	
ORP	mV			-1	-1	-1	-1	-1	_ ²	190.3	139.8	171.7	
SPC	µs/cm			-1	-1	-1	-1	-1	_2	598	615	639	
Temperature	°C			-1	-1	-1	-1	-1	- ²	3.458	19.625	8.964	
Turbidity	FNU			-1	-1	-1	-1	-1	- ²	2.48	0.62	0.86	
pН	Units			-1	_1	-1	-1	_1	- ²	8.33	8.41	8.28	
Staff Gauge	cm			-1	-1	-1	-1	-1	- ²	5.0	2.0	4.0	
Notes									-				

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Field parameters included for current sampling year only.

² No field parameters - water quality units out for repair -- - No data.

Table 35: Surface Water Quality – Port Granby Creek (PGC-U)

		Crit	eria	-	2017	T	2018	2	019	2020	T	2021	PGC-U			2022			
. .		PWQO	CWQG	-	2017		2010			2020		2021	2022-01-12	2022	2-04-04	2022-07-08	201	22-10-24	Averag
Parameter	Units	PWQU	CWQG			-		AVE	erage	10	-			2022			20.		
Total Suspended Solids pH	mg/L no unit	6.5-8.5	6.5-9.0		6 8.28	_	5 8.13	-	4 8.32	10 8.31	-	8 8.25	No Sample ²		5 8.23	8 6.83	<	2 8.23	5 7.76
		6.5-8.5	6.5-9.0			-		-			_				231	207	-	260	233
Alkalinity	mg/L as CaCO ₃				238 4	-	245 3	-	240	234 3	_	248			231	< 1		260	< 1
Carbonate	mg/L as CaCO ₃				233	-	245		5 235	232	-	247		<	231	207	<	260	233
Bicarbonate	mg/L as CaCO ₃				379	-	245 374	-	235 358	381	_	381			325	383	-	260	233
Total Dissolved Solids	mg/L		0.40	-		-													
Fluoride	mg/L		0.12	< <u> </u>	0.10	-	0.12 7	<	0.10	0.07	-	0.08		<	0.06	0.08	<	0.06	0.07
Total Organic Carbon	mg/L				0.05	-	0.06		8	6 0.05	_	0.07			5 0.04	8		6	6 0.04
Ammonia+Ammonium (N)	as N mg/L		400	<		-		<	0.05		'					0.04	<	0.04	
Chloride (Dissolved)	mg/L		120		47		56		44	51	_	70			70	54		58	61
Sulphate (dissolved)	mg/L			<	16		15		11	13	_	15			14	11		13	13
Bromide (dissolved)	mg/L			<	1.0	< <	1.0	<	1.0	< 0.3		< 0.3 < 0.03		< <	0.3	< 0.3 < 0.03	< <	0.3	< 0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01		0.01			0.00		<	0.03		<	0.03	< 0.03
Nitrate (as N)	as N mg/L		13		1.08	_	0.98		0.80	0.85		1.04			1.16	0.47		0.67	0.77
Nitrate + Nitrite (as N)	as N mg/L				1.08	_	0.99		0.80	0.85		1.04			1.16	0.47		0.67	0.77
Mercury (dissolved)	µg/L	0.2	0.026	<	0.01	<	0.01	<	0.01	< 0.01	ŀ	< 0.01		<	0.01	0.01	<	0.01	< 0.01
Hardness	mg/L as CaCO ₃			I	263	I	280	I	280	275	_	302			255	296	1	270	274
Silver (total)	µg/L	0.1	0.25	<	0.10	<	0.10	<	0.10	< 0.05	ŀ	< 0.05		<	0.05	< 0.05	<	0.05	< 0.05
Aluminum (total)	bq/L			L	106	<u> </u>	105	I	101	97		87		L	148	74	<u> </u>	59	94
Aluminum (0.2µm)	µg/L	75	100	L	7	<u> </u>	7	I	13	10	_	7			4	7	<u> </u>	8	6
Arsenic (total)	µg/L	100	5	<	1.0	<	1.0	<	1.0	0.5		1.7		L	0.4	0.9	1	0.5	0.6
Barium (total)	µg/L		L	L	52.5	L	56.0		57.0	56.0		60.5			45	72	1	68	61.8
Beryllium (total)	µg/L	1100		<	0.50	<	0.50	<	0.50	0.010)	0.021		(0.009	< 0.007		0.010	0.00
Boron (total)	µg/L	200	1500		12		13		13	13		12			10	14		20	15
Bismuth (total)	µg/L			<	1.0	<	1.0	<	1.0	0.009		0.011			0.010	< 0.010	<	0.010	< 0.01
Calcium (total)	µg/L			1	88500		90500		97000	9417		103475			87600	100000		90700	9276
Cadmium (total)	µg/L	0.2	0.09	<	0.10	<	0.10		0.10	0.012		0.010			800.0	0.006		0.025	0.01
Cobalt (total)	µg/L	0.9		<	0.50	<	0.50	<	0.50	0.098	_	0.156			0.122	0.116		1.990	0.74
Chromium (total)	µg/L			<	5.0	<	5.0	<	5.0	0.33		0.51			0.49	0.30		0.44	0.41
Copper (total)	µg/L	5		<	1.1	<	1.0	<	1.0	0.6		0.7			0.7	0.8		0.5	0.7
Iron (total)	µg/L	300	300		255		288		250	256		242			301	255		218	258
Potassium (total)	µg/L				1450		1350	_	1500	1403	_	1603			1400	1410		1500	1437
Magnesium (total)	µg/L				9400		10550		9000	9508		10408			8780	11000		10700	1016
Manganese (total)	µg/L				36.0		40.5		41.0	38.5		55.4			48.2	59.0		40.4	49.2
Molybdenum (total)	µg/L	40	73	<	0.51		0.54		0.68	0.45		0.61			0.42	0.60		0.56	0.53
Sodium (total)	µg/L			1	29000		32750	2	28000	2812	5	34900		:	32200	30100		26300	2953
Nickel (total)	µg/L	25	25	<	1.0	<	1.1	<	1.0	0.3		1.8			0.4	0.4		0.3	0.4
Phosphorus (total)	µg/L	10-30			24		20		31	14		23			15	28		14	19
Lead (total)	µg/L	5	7	<	0.50	<	0.50	<	0.50	0.16		0.13			0.24	0.16	<	0.09	0.16
Antimony (total)	µg/L	20		<	0.50	<	0.50		0.50	< 0.90		< 0.90			0.90	< 0.90	<	0.90	< 0.90
Selenium (total)	µg/L	100	1	<	2.0	<	2.0	<	2.0	0.14		0.31			0.19	0.14		0.27	0.20
Tin (total)	µg/L			<	1.0	<	1.0	<	1.0	0.10		0.09		<	0.06	< 0.06	<	0.06	< 0.06
Strontium (total)	µg/L				195		195		195	202	T	224			185	237		224	215
Titanium (total)	µg/L				8.2		8.3		6.3	4.79		4.30			7.94	3.78		2.83	4.85
Thallium (total)	µg/L	0.3	0.8	<	0.05	<	0.05		0.05	< 0.005		< 0.005			0.005	< 0.005	<	0.005	< 0.00
Uranium (total)	µg/L	5	15		0.795		0.913		0.765	0.748	3	0.826			0.746	0.805		0.809	0.78
Vanadium (total)	µg/L	6			0.85		1.32		1.14	0.92		1.07			0.86	1.21		0.95	1.01
Zinc (total)	µg/L	30	30	<	5.0	<	5.0	<	5.0	3.8		2.5		<	2.0	< 2.0	<	2.0	< 2.0
Lead-210	Bq/L			<	0.02	<	0.10	<	0.10	< 0.02	•	< 0.02		<	0.02	0.04	<	0.02	0.03
Radium-226	Bq/L	1		<	0.03	<	0.04	<	0.04	0.01	ŀ	< 0.01		<	0.01	< 0.01	<	0.01	< 0.01
Thorium-230	Bq/L			<	0.06	<	0.07		0.07	< 0.02		< 0.02			0.02	< 0.02	<	0.02	< 0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.06	< 0.02		< 0.02		<	0.02	< 0.02	<	0.02	< 0.02
Field Parameters			Γ					I											
ODO % Sat	%				_1	1	_1	1	_1	_1	t	_1	İ		110.5	112.1	1	112.1	
ORP	mV		1	1	_1	1	_1	1	_1	_1		_1	1		180.3	132.2	1		
SPC	µs/cm			1	_1	1	_1	1	_1	_1		_1			595	632	t	657	
Temperature	°C			1	_1	1	_1	1	_1	_1	+	_1			4.000	21.714	1	8.622	
Turbidity	FNU			-	1	+	1	1	1	_1	+	1			2.57	12.63	1	14.45	
pH	Units			-	_1	+	_1	1	_1	_1	+	-			8.23	8.31	ł		
	cm			-	_1	+	_1	1	_1	_1	+	_1					1		
Staff Gauge Note:	un		ne Environn	L	-		-	1	-			-					1		

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value. ¹ Field parameters included for current sampling year only.

² Creek frozen, unable to collect surface water samples.

		Crit	eria			PG	C-D		
				2022/06/07	2022/06/07	2022/06/07	2022/06/07 12:00PM	2022/06/07 1:00PM	2022/06/07
Analysis	Units	PWQO	CWQG	9:00AM	10:00AM	11:00AM			2:00PM
Total Suspended Solids	mg/L			37	50	109	153	252	312
pH	no unit	6.5-8.5	6.5-9.0	8.33	8.32	8.31	8.13	8.27	8.23
Alkalinity	mg/L as CaCO3			234	262	257	236	249	245
Carbonate	mg/L as CaCO3			4.0	2.0	1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO3			231	259	257	236	249	245
Total Dissolved Solids	mg/L			363	346	346	340	343	357
Fluoride	mg/L		0.12	0.13	0.06	0.07	0.06	0.07	0.07
Total Organic Carbon	mg/L			7.0	7.0	7.0	7.0	7.0	8.0
Ammonia+Ammonium (N)	as N mg/L			0.07	0.06	0.07	0.07	0.06	0.07
Chloride (Dissolved)	mg/L		120	50	46	45	49	49	57
Sulphate (dissolved)	mg/L			12	13	13	13	13	13
Bromide (dissolved)	mg/L			< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.51	0.54	0.54	0.54	0.63	0.92
Nitrate + Nitrite (as N)	as N mg/L			0.51	0.54	0.54	0.54	0.63	0.92
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01
Hardness	mg/L as CaCO,			278	266	275	278	298	302
Silver (total)	µg/L	0.1	0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	µg/L			547	622	1240	1730	2770	3450
Aluminum (0.2µm)	µg/L	75	100	9	5	4	7	3	9
Arsenic (total)	µg/L	100	5	0.9	1.1	1.2	1.8	1.9	2.1
Barium (total)	µg/L		L -	63.0	64.8	72.0	82.1	99.5	110.0
Beryllium (total)	µg/L	1100		0.023	0.034	0.061	0.064	0.106	0.154
Boron (total)	µg/L	200	1500	16	16	16	25	21	20
Bismuth (total)	µg/L	200	1000	< 0.010	< 0.010	0.010	0.020	0.020	0.030
Calcium (total)	µg/L			92900	89100	92700	94200	101000	103000
Cadmium (total)	µg/L	0.2	0.09	0.015	0.028	0.054	0.059	0.083	0.135
Cobalt (total)	µg/L	0.2	0.03	0.013	0.020	0.034	1.0	1.5	1.9
Chromium (total)	µg/L	0.0		1.07	1.32	3.19	2.86	4.40	4.84
Copper (total)	µg/L	5		1.07	1.02	1.8	2.00	3.2	4.04
		300	300	916	1080	1760	2.4	3930	4.0
Iron (total)	µg/L	300	300	1500	1460	1640	1770	1990	2070
Potassium (total)	µg/L			11100	1460	10700	10400	11300	11100
Magnesium (total)	µg/L								
Manganese (total)	µg/L			131.0	148.0	243.0	347.0	574.0	735.0
Molybdenum (total)	µg/L	40	73	0.63	0.55	0.56	0.60	0.63	0.55
Sodium (total)	µg/L			30200	28500	27100	28200	31200	33000
Nickel (total)	µg/L	25	25	0.9	0.9	1.5	1.9	2.8	3.4
Phosphorus (total)	mg/L	10-30		62	69	121	158	247	286
Lead (total)	µg/L	5	7	0.71	0.85	1.46	2.09	3.31	4.40
Antimony (total)	µg/L	20		< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	µg/L	100	1	0.17	0.20	0.22	0.23	0.34	0.36
Tin (total)	µg/L			0.08	0.13	0.09	0.14	0.11	0.11
Strontium (total)	µg/L			206	210	201	219	228	240
Titanium (total)	µg/L			25.90	30.00	56.50	79.60	127.00	157.00
Thallium (total)	µg/L	0.3	0.8	0.009	0.012	0.018	0.025	0.037	0.045
Uranium (total)	µg/L	5	15	0.884	0.904	0.911	0.964	0.971	1.030
Vanadium (total)	µg/L	6		1.98	2.33	3.41	4.90	7.09	9.11
Zinc (total)	µg/L	30	30	5	5	10	10	17	20
Lead-210	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Thorium-230	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters	541			. 0.02	. 0.02	. 0.02	· 0.02	. 0.02	· 0.02
	mail			105.0	105.0	105.7	105.7	400	405.0
ODO % Sat	mg/L			105.9	105.8	105.7	105.7	106	105.9
ORP	mV			167	175.4	171.2	170.4	165.3	165.2
SPC	us/cm			603	596	586	587	593	600
Temperature	°C			15.256	15.148	15.01	14.983	14.955	14.841
Turbidity	FNU			13.67	22.09	42	58.84	96.27	118.04
pH	Units			8.21 5.5	8.12	8.18	8.15	8.17	8.16
Staff Gauge	cm				6	8	9	13	10

Table 36: Storm Event Sampling – Port Granby Creek (PGC-D)

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQO or CWQG value

Table 37: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-D)

							-		_		PG-LO	.U							
			eria	2017		2018		2019		2020	2021				20	_			
Parameter	Units	PWQO	CWQG				A	verage				20	22-06-15	20	22-09-23	20	22-11-02	-	verage
Total Suspended Solids	mg/L			2.0		1.0		1.3		3.0	2.7	<	2.0	<	2.0	<	2.0	<	2.0
pН	no unit	6.5-8.5	6.5-9.0	8.2	1	8.15		8.27		8.08	7.96		8.24		8.02		8.12		8.13
A Ikalinity	mg/L as CaCO ₃			96		98		95		89	94		104		96		98		99
Carbonate	mg/L as CaOO₃			1.5		1.3		1.6	<	1.0	< 1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaOO₃			94		97		93		89	94		104		96		98		99
Total Dissolved Solids	mg/L			170		130	⊢	155		177	173		174		157		174		168
Fluoride	mg/L		0.12	0.1	_	0.11		0.11		0.11	0.12		0.11		0.11		0.10		0.11
Total Organic Carbon	mg/L			2.4		2.1		2.2		1.5	2.0	_	2.0		2.0		3.0		2.3
Ammonia+Ammonium(N)	as N mg/L			< 0.0	5 <	0.00	<	0.05		0.05	< 0.04	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (Dissolved)	mg/L		120	21		23		22		24	25		28		24		24		25
Sulphate (dissolved)	mg/L			23		24	⊢	23	<u> </u>	21	22	_	26		20		21		22
Bromide (dissolved)	mg/L			< 1.0			<	1.0	<	0.3	< 0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.0	_		⊢	0.01	<	0.03	< 0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.2	_	0.26	-	0.25		0.31	0.34	+	0.35		0.39		0.24		0.33
Nitrate + Nitrite (as N)	as N mg/L		0.000	0.2		0.26	⊢	0.26	-	0.31	0.34	+	0.35		0.39		0.24		0.33
Mercury (dissolved)	µg/L	0.2	0.026	< 0.0			<	0.01	<	0.01	< 0.01	+	0.05	<	0.01	<	0.01		0.02
Hardness	mg/L as CaOO ₃	0.1	0.05	125		125	1	137		120	116	+	124		125		117		122
Silver (total)	µg/L	0.1	0.25	< 0.1) <		<	0.10	<	0.05	< 0.05	<	0.05	<	0.05	<	0.05	<	0.05
A luminum (total)	µg/L	75	100	33	+	23	1	42	-	13 2	19 2	+	10		3	-	2		5 2
A luminum (0. 2µm)	µg/L	75 100		< 5	<		<	5	-	2		+	3	-	0.9	-		-	
Arsenic (total)	µg/L	100	5	< 1.0		1.0 22.5	<	1.0 23.0	+	23.1	0.8	+	1.0 24.5	-	22.5	-	0.9 20.9		0.9
Barium (total)	µg/L	1100		< 0.5			<	0.50	-		< 0.007	-	0.007	<	0.007		0.007		22.6
Bery Ilium(total)	µg/L	200	1500	< 0.5	, <	21	<	21	+	0.013	< 0.007	<	25	<	23	-	20	-	0.007
Boron (total) Bismuth (total)	µg/L	200	1500	< 1.0	-		<	1.0	-	0.03	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01
Calcium (total)	μg/L μg/L			3350		33000	<u>`</u>	35333	-	34350	33133	<u>`</u>	35600	~	35900	~	33500	~	35000
Cadmium(total)	µg/L	0.2	0.09	< 0.1			<	0.10	-	0.003	0.004	+	0.003		0.008	<	0.003	-	0.005
Cobalt (total)	µg/L	0.2	0.09	< 0.5			<	0.10	È	0.003	0.004	+-	0.003	-	0.008	È	0.003	-	0.005
Chromium (total)	µg/L	0.9		< 5.0			<	5.0	-	0.23	0.020	-	0.13		0.26		0.12		0.17
Copper (total)	µg/L	5		2.7	-	1.2	<u> </u>	1.2	-	0.23	0.23	+	0.15		0.20	-	0.12	-	0.8
Iron (total)	µg/L	300	300	< 100				100	+	16	26	+	10	-	42	-	7		20
Potassium (total)	µg/L	300	300	160	_	1550	È	1533	+	1550	1597	+	1590		1660	<u> </u>	1640		1630
Magnesium (total)	µg/L			880		8600	+	8700	-	8330	8120	+	8670		8590	-	8190		8483
Manganese (total)	µg/L			2.6			⊢	2.7	\vdash	1.27	1.59	+	0.80		1.00	-	0.39	-	0.73
Moly bdenum (total)	μg/L	40	73	1.2	_	1.3	┢	1.2	\vdash	1.22	1.33	+	1.12		1.20	+	1.19	<u> </u>	1.17
Sodium(total)	μg/L	40	15	1400		13500	⊢	14000	\vdash	12600	13467	+	14500		13600	-	12400		13500
Nickel (total)	µg/L	25	25	< 1.0			<	1.0	-	0.4	0.6	+	0.5		0.6	-	0.4		0.5
Phosphorus (total)	μg/L	10-30	2.5	8	<		<u> </u>	7	-	4	6	+	6		6	-	6		6
Lead (total)	µg/L	5	7	< 0.5			<	0.5	\vdash	0.03	< 0.09	<	0.09	<	0.09	<	0.09	<	0.09
Antimony (total)	µg/L	20		< 0.5			<	0.5	<	0.9	< 0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium(total)	µg/L	100	1	< 2.0			<	2.0	\vdash	0.14	0.14	+	0.15		0.15	<	0.04		0.11
Tin (total)	µg/L			< 1.0			<	1.0	\vdash	0.11	0.07	+	0.11	<	0.06	<	0.06		0.08
Strontium (total)	µg/L			170		165		170		184	170	-	178		185		178		180
Titanium (total)	µg/L			< 5.0				5.6	\vdash	0.75	1.10		0.55		0.12	<	0.05		0.24
Thallium (total)	µg/L	0.3	0.8	< 0.0			<	0.05	\vdash	0.015	0.005		0.006		0.008		0.006		0.007
Uranium (total)	µg/L	5	15	0.3		0.37	\mathbf{t}	0.36	\mathbf{T}	0.332	0.369	1	0.478		0.364		0.401		0.414
V anadium (total)	µg/L	6		0.5			\mathbf{T}	0.53	\square	0.21	0.23	\top	0.20		0.22		0.20		0.21
Zinc (total)	µg/L	30	30	< 5	-		<	5	1	3	< 2	<	2	<	2	<	2	<	2
Lead-210	Bq/L			< 0.0		-	<	0.10	<	0.02	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		< 0.0	1 <		<	0.04	1	0.01	< 0.01	<	0.01	<	0.01	1	0.01		0.01
Thorium-230	Bq/L			< 0.0	7 <	0.07	<	0.07	<	0.02	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.0) <	0.06	<	0.06	<	0.02	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																			
ODO % Sat	%			_1		_1	1	_1	1	_1	_1		100.3		84.9		113.4		
ORP OR	ml/			_1		_1	+	_1	1	_1	_1	+	173.8		48.1		109.5		
SPC	us/cm			_1		_1	\mathbf{t}	_1	1	_1	_1	+	209.8		308.6	<u> </u>	302.7		
Temperature	°C			_1		_1	t	_1		_1	_1	1	12.42		8.198		11.841		
	FNU			_1	+	_1	\mathbf{t}	_1	1	_1	_1	+	-1.21		-0.36		3.79		
Turbidity																			

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG = Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or OWQG value. ¹ Field parameters included for current sampling year only.

Table 38: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-E)

											PG-L)-F							
		Crit	eria	2017	Т	2018	Г	2019	Γ	2020	2021	Ť			20	22			
Parameter	Units	PWQO	CWQG				A	verage				2	022-06-15	2022-	-09-23	_	2-11-02	Av	erage
Total Suspended Solids	mg/L			2.5		1.0	<u> </u>	1.7		2.0	3.0	<			2.0	-	2.0		2.0
pH	nounit	6.5-8.5	6.5-9.0	8.20		8.16	t	8.25	1	8.04	8.03	+	8.33		8.05		8.03		8.14
Alkalinity	mg/L as CaCO ₃			95		98	+	94		90	97		96		102		95		98
Carbonate	mg/L as CaCO ₃			1.4		1.3	⊢	1.6	<	1.0	< 1.0	<			1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			94		97	\mathbf{T}	93		90	97		96		102		95		98
Total Dissolved Solids	mg/L			188		120	\vdash	160		171	167		154		166		206		175
Fluoride	mg/L		0.12	0.14		0.12	\vdash	0.10		0.12	0.11		0.12		0.10		0.11		0.11
Total Organic Carbon	mg/L			2.3		2.1	\vdash	2.2		1.5	2.0		2.0		2.0		2.0		2.0
Ammonia+Ammonium(N)	as N mg/L			< 0.05	<		\square	0.05		0.05	< 0.04		0.05	(0.05	<	0.04		0.05
Chloride (Dissolved)	mg/L		120	22		22	\square	22		24	24		29		24		24		26
Sulphate (dissolved)	mg/L			23		23	\square	23		22	23		25		21		21		22
Bromide (dissolved)	mg/L			< 1.0	<	1.0	<	1.0	<	0.3	< 0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.01	<	0.01		0.01	<	0.03	< 0.03	<	0.03	< (0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.23		0.30		0.26		0.31	0.34		0.34	(0.40		0.28		0.34
Nitrate + Nitrite (as N)	as N mg/L			0.23		0.30		0.26		0.31	0.34		0.34	(0.40		0.28		0.34
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	< (0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			125		120		133		124	119		122		125		118		122
Silver (total)	µg/L	0.1	0.25	< 0.10	<	0.10	<	0.10	<	0.05	< 0.05	<	0.05	< (0.05	<	0.05	<	0.05
A luminum (total)	µg/L			34		19	Г	34		18	26		8		3		3		5
A luminum (0. 2µm)	µg/L	75	100	< 5	<	-	<	5		2	2	T	3		2	<	1		2
Arsenic (total)	µg/L	100	5	< 1.0	<	1.0	<	1.0		0.9	0.8		0.9		0.9		0.9		0.9
Barium (total)	µg/L			22.0		22.0		22.7		24.3	22.5		23.5	:	22.6		20.6		22.2
Bery llium(total)	µg/L	1100		< 0.50	<	0.50	<	0.50	<	0.007	< 0.007	<	0.007	< 0	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500	29		19		19		20	17		25		22		19		22
Bismuth (total)	µg/L			< 1.0	<		<	1.0		0.02	0.01	<	0.01		0.01	<	0.01	<	0.01
Calcium (total)	µg/L			3450	0	32000		35333		35800	3390		34800		6100		33300		34733
Cadmium(total)	µg/L	0.2	0.09	< 0.10	<	0.10	<	0.10		0.013	0.005		0.012	0).011		0.004		0.009
Cobalt (total)	µg/L	0.9		< 0.5	<		<	0.5		0.026	0.023	_	0.009		.015		0.011		0.012
Chromium (total)	µg/L			< 5.0	<		<	5.0		0.24	0.20		0.30		0.25	<	0.08		0.21
Copper (total)	µg/L	5		2.7		1.4	<	1.0		0.9	0.8		0.8		1.6		0.8		1.1
Iron (total)	µg/L	300	300	< 100	<		<	100		21	37		8		33	<	7		16
Potassium (total)	µg/L			1600	_	1450		1567		1595	1577		1560		1680		1650		1630
Magnesium (total)	µg/L			8850		8350		8800		8295	8463		8480		8590		8400		8490
Manganese (total)	µg/L			2.7	<			2.2		1.34	2.15	_	0.74		0.97		0.40		0.70
Moly bdenum (total)	µg/L	40	73	1.2		1.2		1.1		1.23	1.14	_	1.17		1.21		1.24		1.21
Sodium(total)	µg/L			1350	_	13500		14000		12600	1363	3	14100		4000		12600		13567
Nickel (total)	µg/L	25	25	< 1.0	<		<	1.0		0.4	0.5		0.5		0.7		0.5		0.6
Phosphorus (total)	µg/L	10-30		7		5	⊢	8		4	7		8		6		4		6
Lead (total)	µg/L	5	7	< 0.5	<		<	0.5	<	0.01	< 0.09	<	0.09		0.09	<	0.09	<	0.09
Antimony (total)	µg/L	20		< 0.5	<		<	0.5	<	0.9	< 0.9	<	0.9		0.9	<	0.9	<	0.9
Selenium(total)	µg/L	100	1	< 2.0	<		<	2.0		0.13	0.16		0.14		0.15		0.17		0.15
Tin (total)	µg/L			< 1.0	<		<	1.0		0.12	0.08	<	0.00		0.06	<	0.06	<	0.06
Strontium (total)	µg/L			170		160	⊢	167		189	170		175		186		181		181
Titanium (total)	µg/L			5.1	<	0.0		5.6		0.80	1.31		0.48		0.15	<	0.05		0.23
Thallium (total)	µg/L	0.3	0.8	< 0.05			<	0.05		0.007	< 0.005		0.000		.006		0.006		0.006
Uranium (total)	µg/L	5	15	0.36	_	0.37	⊢	0.35		0.335	0.345		0.462		.363		0.412		0.412
V anadium (total)	µg/L	6		0.51	_		<	0.50	-	0.23	0.25	_	0.17	(0.22		0.18		0.19
Zinc (total)	µg/L	30	30	< 5	<	-	<	5	1	2	3	<	-		3	<	2		2
Lead-210	Bq/L			< 0.02			<	0.10	<	0.02	< 0.02	_			0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		< 0.04			<	0.04	<	0.01	0.01	<			0.01	<	0.01	<	0.01
Thorium-230	Bq/L			< 0.07			<	0.07	<	0.02	< 0.02				0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.06	<	0.06	<	0.06	<	0.02	< 0.02	<	0.02	< (0.02	<	0.02	<	0.02
Field Parameters																			
ODO % Sat	%			_1		_1		_1		_1	_1		105.3		84.4		109.5		
ORP	mV			_1		_1		_1		_1	_1		166.9		54.7		131.1		
SPC	µs/cm			_1		_1		_1		_1	_1		310.5		308.6		299.2		
Temperature	°C			-1		_1		_1		_1	_1		12.138		3.253		11.687		
Turbidity	FNU			_1		_1		_1		_1	_1		8.17		0.35		1.88		
pН	Units			-1		_1		_1		_1	_1		8.43		7.79		8.40		
Note:																			7

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG = Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or OWQG value.

¹ Field parameters included for current sampling year only.

Table 39: Surface Water Quality – Lake Ontario Diffuser – Port Granby Diffuser (PG-LO-W)

				<u> </u>									PG-LO-V	N							
		Crit	eria	\vdash	2017		2018	Г	2019	Г	2020	Γ	2021	ï			20	22			
Parameter	Units	PWQO	CWQG				2010	A	verage	-	2020	-		20	22-06-15	202	22-09-23	_	22-11-02	A	verage
Total Suspended Solids	mg/L		enige		2.5	<	1.0	Ē	1.3		2.0	1	3.0		2.0	<	2.0	<	2.0	<	2.0
pH	nounit	6.5-8.5	6.5-9.0		8.19	-	8.12	\vdash	8.22	-	8.07	+	7.95		8.04	-	8.06	-	8.08	-	8.06
Alkalinity	mg/L as CaOO,	010-010	010 010		95		98		94	+	93	+	95		104		95		95		98
Carbonate	mg/L as CaCO ₃				1.4		1.2	⊢	1.4	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				93		96	⊢	92	-	93	-	95	-	104	-	95	-	95	-	98
Total Dissolved Solids	mg/L as caces			-	201		118	⊢	172	+	173	+-	160		146	-	157		174	-	159
Fluoride	mg/L		0.12		0.11	-	0.12	⊢	0.10	+	0.12	+	0.11	-	0.11	<u> </u>	0.11	\vdash	0.09	-	0.10
Total Organic Carbon	mg/L		0.12		2.3	-	2.1	-	2.1	-	1.5	+	2.3		2.0	-	2.0		2.0		2.0
Ammonia+Ammonium(N)	as N mo/L			<	0.05	<	0.05	<	0.05	+	0.06	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (Dissolved)	mg/L		120	È	22	<u> </u>	22	È	22	-	25	È	25	<u> </u>	28	È	24	È	25	<u> </u>	26
Sulphate (dissolved)	mg/L		120		23	-	24	⊢	23	+	22	+	23	-	31	<u> </u>	24	-	21	-	20
Bromide (dissolved)	mg/L			-	1.0	<	1.0	<	1.0	<	0.3	-	0.3	-	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	È	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	È	0.01	È	0.01	⊢	0.26	È	1.10	È	0.03	È	0.05	È	0.03	È	0.03	È	0.03
Nitrate + Nitrite (as N)	as N mg/L		15		0.23	-	0.29	-	0.26	-	1.10	+	0.34		0.35	<u> </u>	0.37	-	0.30	-	0.34
		0.2	0.026	<	0.23	<	0.29	<	0.20	<	0.01	-	0.34	-	0.35	<	0.01	<	0.00	<	0.04
Mercury (dissolved)	µg/L	0.2	0.020	<		<		<		<		<		<		<		<		<	
Hardness Silver (tetal)	mg/L as CaOO ₃	0.1	0.25	<	125	-	120		133 0.10	<	126 0.05	-	117 0.05	<	125 0.05	<	120 0.05	<	118 0.05	-	121 0.05
Silver (total)	µg/L	0.1	0.20	1×	0.10 54	<	20	<	36	1×		<	30	È		È		1×		<	
A luminum (total)	µg/L	75	100	<		<		<	36 5	+	13 2	+	30	-	8	<u> </u>	3	-	2	-	4
A luminum (0. 2µm)	µg/L	100		<	5	<	5	<		-		+	0.9	-		I—	0.8	<u> </u>			
Arsenic (total)	µg/L	100	5	<	1.0	<	1.0	<	1.0	-	0.9	+	22.2		0.8	 		-	0.8		0.8
Barium (total)	µg/L	4400					21.5	-		-		+				<u> </u>	21.8	<u> </u>			22.7
Bery Ilium(total)	µg/L	1100	4500	<	0.50	<	0.50	<	0.50	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500		26	_	21	-	20	_	21	-	20		26	I	27		21		25
Bismuth (total)	µg/L			<	1.0	<	1.0	<	1.0		0.02	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Calcium (total)	µg/L				35000		32000		35000		36100	-	32900		35600	L	34000		34000		34533
Cadmium(total)	µg/L	0.2	0.09	<	0.10	<	0.10	<	0.10	-	0.006	-	0.005		0.005		0.007	<u> </u>	0.006		0.006
Cobalt (total)	µg/L	0.9		<	0.5	<	0.5	<	0.5		0.020	_	0.028		0.014		0.019		0.017		0.017
Chromium (total)	µg/L	-		<	5.0	<	5.0	<	5.0		0.21	-	0.71		0.16		0.21		0.14		0.17
Copper (total)	µg/L	5			1.4		1.7		1.4		0.9		0.9		1.2		1.6		0.8		1.2
Iron (total)	µg/L	300	300		115		210	<	100		17	_	48		9		152	<	7		56
Potassium (total)	µg/L				1650		1550		1533		1640		1590		1630		1580		1640		1617
Magnesium (total)	µg/L				9050		8400		8633		8540		8373		8660		8520		8020		8400
Manganese (total)	µg/L				4.2		3.2		2.1		1.21		2.74		0.77		1.15		0.62		0.85
Moly bdenum (total)	µg/L	40	73		1.2		1.1		1.1		1.26		1.41		1.13		1.12		1.11		1.12
Sodium(total)	µg/L				14000		13000		14000		13000		13933		14600		13200		12300		13367
Nickel (total)	µg/L	25	25	<	1.0	<	1.0	<	1.0		0.4		0.7		0.6		0.6		0.4		0.5
Phosphorus (total)	µg/L	10-30			9	<	4		8	<	3		11		7		4		3		5
Lead (total)	µg/L	5	7	<	0.5	<	0.5	<	0.5		0.01		0.09	<	0.09	<	0.09	<	0.09	<	0.09
Antimony (total)	µg/L	20		<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium(total)	µg/L	100	1	<	2.0	<	2.0	<	2.0		0.15		0.15		0.17		0.1		0.1		0.14
Tin (total)	µg/L			<	1.0	<	1.0	<	1.0		0.28		0.07		0.08	<	0.06	<	0.06		0.07
Strontium (total)	µg/L				170		165		163		191		169		181		178		176		178
Titanium (total)	µg/L				6.4	<	5.0		5.1		0.80		1.60		0.32		0.17		0.10		0.20
Thallium (total)	µg/L	0.3	0.8	<	0.05	<	0.05	<	0.05		0.006		0.005		0.005	<	0.005		0.006		0.005
Uranium (total)	µg/L	5	15		0.35		0.38		0.35		0.325		0.350		0.476		0.367		0.346		0.396
V anadium (total)	µg/L	6			0.53	<	0.50		0.50		0.23		0.25		0.23		0.18		0.18		0.20
Zinc (total)	µg/L	30	30	<	5	<	5	<	5		2		2	<	2	<	2	<	2	<	2
Lead-210	Bq/L			<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.04	<	0.04	<	0.04	<	0.01		0.01		0.02	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																					
ODO % Sat	%				-1		_1		_1		_1		_1		104.8		84.2		111.9		
ORP	mV				_1	1	_1	1	_1	1	_1	1	_1	1	162.4	<u> </u>	51.9		118.4		
SPC	µs/cm				_1		_1	\vdash	_1		_1	1	_1		305.8		308		298.8		
Temperature	°C			1	_1	1	_1	t	_1	1	_1	1	_1	1	12.075	<u> </u>	8.496	1	11.753	<u> </u>	
Turbidity	FNU			1	_1	+	_1	t	_1	1	_1	+	_1	1	1.71	-	-0.32	1	1.42	-	
pH	Units				_1	+	_1	\vdash	_1	\vdash	_1	+	_1	1	8.45		7.86	1	8.40		
Note:	Tourino			-		1		-		1		1		<u>ا</u>	0.40	L	1.50		0.40		
1010.		·																			

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG = Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or OWQG value.

¹ Field parameters included for current sampling year only.

Table 40: Surface Water Quality – North Storm Water Pond – Location 1 (PG-SP1)

					1	1	n				PG-	SP1 (North S	storm Water	Pond)							
			teria	2017	2018	2019	2020	2021		1					2022			1		n	
Parameter	Units	PWQO	CWQG			Average			2022-01-06	2022-02-01	2022-03-18	2022-04-14			2022-07-22			2022-10-21	2022-11-18	2022-12-22	
Total Suspended Solids	mg/L			14	29	21	34	18	No Sample ²	No Sample ²	22	5	16	2	17	10	3	10	7	No Sample ²	11
pH	no unit	6.5-8.5	6.5-9.0	8.22	8.14	8.03	8.09	8.19			7.75	8.35	10.30	8.93	8.50	8.27	8.05	7.68	7.38		8.38
Alkalinity	mg/L as CaCO ₃			77	68	87	79	82			101	109	30	49	71	108	83	52	59		69
Carbonate	mg/L as CaCO ₃			2	2	1	1	3			< 1	2	30	11	4	< 1	< 1	< 1	< 1		6
Bicarbonate	mg/L as CaCO ₃			76	66	86	79	80			101	107	< 1	38	67	108	83	52	59		64
Total Dissolved Solids	mg/L			233	299	298	313	269			130	274	223	266	160	150	209	183	234		207
Fluoride	mg/L		0.12	0.16	0.27	0.43	0.24	0.18			0.12	0.13	0.15	0.17	0.18	0.15	0.17	0.22	0.23		0.17
Total Organic Carbon	mg/L			4.8	3.5	3.5	2.5	4.0			6.0	5.0	9.0	6.0	5.0	5.0	5.0	5.0	7.0		5.9
Ammonia+Ammonium (N)	as N mg/L			0.064	0.065	0.083	< 0.04	0.06			0.10	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		0.05
Chloride (Dissolved)	mg/L		120	18	31	14	79	42			7.2	39	32	25	11	16	16	23	24		22
Sulphate (dissolved)	mg/L			67	108	94	84	65			15	61	88	84	47	22	32	43	55		53
Bromide (dissolved)	mg/L			< 1.0	< 1.0	< 1.0	0.3	0.4			< 0.3	0.4	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3		< 0.3
Nitrite (as N)	as N mg/L			0.01	0.01	0.02	< 0.03	< 0.03			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03
Nitrate (as N)	as N mg/L		13	0.58	0.39	0.27	0.37	0.51			0.28	< 0.06	< 0.06	0.32	< 0.06	< 0.06	< 0.06	< 0.06	0.10		0.11
Nitrate + Nitrite (as N)	as N mg/L			0.59	0.39	0.28	0.37	0.51			0.28	< 0.06	< 0.06	0.32	< 0.06	< 0.06	< 0.06	< 0.06	0.10		0.11
Mercury (dissolved)	µg/L	0.20	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			< 0.01	< 0.01	0.03	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.01
Hardness	mg/L as CaCO ₃			157	200	197	222	199			133	217	161	170	125	139	121	114	160		150
Silver (total)	µg/L	0.1	0.25	< 0.10	< 0.10	0.11	< 0.05	< 0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aluminum (total)	µg/L			458	691	359	746	407			944	186	402	142	639	127	141	266	219		350
Aluminum (0.2µm)	µg/L	75	100	29	12	11	120	35			9	24	16	36	39	42	39	29	22		28
Arsenic (total)	µg/L	100	5	1.8	1.6	190.9	3.5	5.4			0.9	1.9	6.0	3.8	2.5	4.9	3.6	2.5	1.7		3.4
Barium (total)	µg/L			26	37	36	47	31			27.1	22.1	6.26	22.4	24.4	27.9	24.4	21.9	27		21
Beryllium (total)	µg/L	1100		0.50	< 0.50	< 0.50	0.029	0.015			0.036	0.007	< 0.007	0.008	0.032	0.007	0.010	0.014	0.008		0.014
Boron (total)	µg/L	200	1500	61	87	77	36	44			10	21	48	54	31	40	33	26	35		33
Bismuth (total)	µg/L			< 1.0	< 1.0	< 1.0	0.038	0.022			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.010	< 0.010		< 0.010
Calcium (total)	µg/L			52455	64500	65143	75073	66890			46800	74500	49300	54900	43900	45600	40500	36200	54000		49400
Cadmium (total)	µg/L	0.20	0.09	< 0.10	< 0.10	< 0.10	0.012	0.010			0.021	0.007	0.007	0.004	0.023	0.005	0.004	0.009	0.026		0.012
Cobalt (total)	µg/L	0.90		0.52	0.66	1.62	0.579	0.309			0.787	0.16	0.341	0.166	0.407	0.170	0.175	0.248	0.170		0.297
Chromium (total)	µg/L			< 5.0	< 5.0	< 5.0	1.184	0.822			1.56	0.36	0.61	0.43	1.14	0.40	0.34	0.350	0.390		0.628
Copper (total)	µg/L	5		1.2	1.6	3.7	2.3	1.5			1.9	1.0	1.2	1.0	1.8	0.7	1.3	1.1	1.9		1.3
Iron (total)	µg/L	300	300	505	757	373	686	374			1060	160	467	119	750	175	202	252	213		391
Potassium (total)	µg/L			3091	3130	4086	2579	2810			3560	3040	2620	1910	3010	3430	3620	4470	6960		3526
Magnesium (total)	µg/L			8055	11630	10057	8497	7733			3910	7450	9300	7930	3790	6050	4780	5640	6130		6396
Manganese (total)	µg/L			52	30	33	33.9	23.6			222	20.4	64.9	15.1	61.0	86.1	44.0	13.2	8.7		60.1
Molybdenum (total)	µg/L	40	73	2.3	3.3	13.9	2.35	1.68			0.90	1.10	1.72	1.50	1.54	1.30	1.36	1.49	1.46		1.37
Sodium (total)	µg/L			9591	11610	7743	38227	12805			2800	5240	7820	7140	3680	7760	6640	7760	8740		6478
Nickel (total)	µg/L	25	25	1.1	1.4	3.2	1.2	0.7			1.3	0.6	0.8	0.5	1.1	0.6	0.5	0.7	0.7		0.8
Phosphorus (total)	µg/L	10-30		41	40	48	38	34			81	25	35	24	79	52	27	27	73		45
Lead (total)	µg/L	5	7	0.53	0.69	1.44	0.52	0.33			0.60	0.17	0.30	0.12	0.48	0.09	0.13	0.22	0.21		0.27
Antimony (total)	µg/L	20		< 0.5	< 0.5	1.7	< 0.9	< 0.9			< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9		< 0.9
Selenium (total)	µg/L	100	1	< 2.0	< 2.0	< 2.0	0.16	0.15			0.07	0.15	0.15	0.10	0.15	0.14	< 0.04	0.20	0.45		0.16
Tin (total)	µg/L		-	< 1.0	< 1.0	< 1.0	0.13	0.08			0.06	< 0.06	< 0.06	0.06	0.06	0.11	0.20	0.47	0.15		0.13
Strontium (total)	µg/L			1088	1792	1307	1008	837	1		334	810	784	830	490	381	405	410	512	1	579
Titanium (total)	µg/L			20	32	16	28.1	14.1	1		37.3	7.0	14.5	4.7	43.9	3.0	4.1	8.9	8.0	1	14.7
Thallium (total)	µg/L	0.3	0.8	0.050	< 0.050	0.054	0.011	0.008	1	1	0.016	< 0.005	< 0.005	< 0.005	0.014	< 0.005	< 0.005	< 0.005	< 0.005	1	0.007
Uranium (total)	μg/L	5	15	1.1	2.9	51.8	4.32	3.19	1		1.08	3.41	1.94	2.65	1.04	1.10	1.20	1.95	1.98	1	1.83
Vanadium (total)	µg/L	6		1.80	1.74	7.60	2.01	1.29	1		2.48	0.64	1.62	0.93	2.49	0.75	0.90	0.98	0.80	1	1.35
Zinc (total)	µg/L	30	30	5.9	7.1	< 5.0	5	4	1		15	< 2	< 2	< 2	4	3	< 2	< 2	4	1	4
Lead-210	Bq/L			0.04	< 0.10	< 0.10	0.02	< 0.02	ł		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	1	< 0.02
Radium-226	Bq/L	1		< 0.04	< 0.04	0.10	0.02	0.02	ł		< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	1	< 0.01
Thorium-230	Bq/L	<u> </u>		< 0.07	< 0.04	0.09	< 0.02	< 0.02	1		< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	1	< 0.02
Thorium-232	Bq/L			< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	1		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	1	< 0.02
Field Parameters				0.00	3.00	0.00	5.0L	0.02	1		5.02	0.02	0.02	0.02	0.02	0.02	3.02	0.02	0.02	1	0.02
ODO % Sat	%			_1	_1	_1	_1	_1	<u> </u>		94	143.5	152.5	_3	100.8	111.3	128.4	90.8	132.2	1	
ORP	mV			_1	1	_1	_1	_1	1		138.8	143.3	165.9	_3	99.2	137.7	113.1	87.8	105.3	1	
SPC	µs/cm			- 1	1	_1	- 1	- 1	1		274.9	429.6	361.8	_3	274.2	313.3	293.9	277.1	375.1		
Temperature	°C			1	1	1	1	- _1	1		3.096	429.6	20.793	_3	214.2	23.962	293.9	7.165	5.236	1	
	FNU		<u>├</u>	- 1	1	1	-	- 1				12.413	41.1	3	24.535			8.97	5.236	1	
Turbidity pH	Units		<u>├</u>	- 1	-	- 1	-	- 1			51.13 7.91	8.70	10.32	3	8.89	4.16 8.38	1.91 8.25	8.97	9.04	1	
	LL JUINS						-				1.91	0.70	10.32		0.09	0.30	0.20	0.31	9.04	1	

CWQG = Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

² Pond frozen, unable to collect surface water sample.

³ No field parameters - w ater quality units out for repair.

-- - No data.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 131 of 172

Table 41: Surface Water Quality – South Storm Water Pond – Location 2 (PG-SP2)

											PG-	SP2 (South S	torm Water	Pond)							
- .		Crite		2017	2018	2019	2020	2021				0000 04 44	0000 05 05	0000 00 10	2022	0000 00 15			0000 44 40	0000 40 00	
Parameter	Units	PWQO	CWQG			Average		-	2022-01-06	2022-02-01	2022-03-18	2022-04-14			2022-07-22	2022-08-15	1			2022-12-22	J
Total Suspended Solids	mg/L			11	4	9	8	9	No Sample ²	No Sample ²	11	2	2	2	3	6	4	4	8	No Sample ²	5
pH	no unit	6.5-8.5	6.5-9.0	8.30	7.92	8.08	8.22	7.81			8.02	8.08	9.42	8.14	7.69	7.73	8.59	7.65	7.94		8.14
Alkalinity	mg/L as CaCO ₃			78	70	78	79	93			35	91	49	53	99	163	73	111	126		89
Carbonate	mg/L as CaCO ₃			2	1	1	4	2			< 1	< 1	16	< 1	< 1	< 1	3	< 1	< 1		3
Bicarbonate	mg/L as CaCO ₃			74	70	77	75	92			35	91	32	53	99	163	70	111	126		87
Total Dissolved Solids	mg/L			178	198	261	367	285			57	243	197	229	191	240	194	214	209		197
Fluoride	mg/L		0.12	0.17	0.19	0.18	0.15	0.18			< 0.06	0.14	0.16	0.19	0.18	0.16	0.20	0.20	0.16		0.16
Total Organic Carbon	mg/L			4.8	4.3	4.6	3.9	4.0			1.0	3.0	2.0	5.0	6.0	6.0	5.0	4.0	5.0		4.1
Ammonia+Ammonium (N)	as N mg/L			0.054	< 0.050	< 0.050	< 0.04	0.06			0.29	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.04		0.07
Chloride (Dissolved)	mg/L		120	25	63	86	140	57			8.4	76	62	58	43	26	24	31	30		40
Sulphate (dissolved)	mg/L			26	22	19	42	62			3.2	32	33	38	28	16	14	14	16		21.6
Bromide (dissolved)	mg/L			< 1.0	< 1.0	< 1.0	0.4	< 0.3			< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3		< 0.3
Nitrite (as N)	as N mg/L			< 0.011	< 0.010	< 0.010	< 0.03	< 0.03			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03
Nitrate (as N)	as N mg/L		13	0.17	< 0.10	< 0.10	< 0.06	0.10			0.09	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06		< 0.06
Nitrate + Nitrite (as N)	as Nmg/L			0.17	< 0.10	< 0.10	< 0.06	0.10			0.09	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06		< 0.06
Mercury (dissolved)	µg/L	0.20	0.026	0.01	< 0.01	< 0.01	< 0.01	< 0.01			< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01		< 0.01
Hardness	mg/L as CaCO ₃			109	110	123	166	189			39	135	96	115	127	179	97	133	160		120
Silver (total)	µg/L	0.1	0.25	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05
Aluminum (total)	µg/L			205	124	92	113	178			268	76	128	22	53	20	25	64	106	1	85
Aluminum (0.2µm)	µg/L	75	100	16	13	8	49	6			9	8	15	10	< 1	4	7	6	4		7
Arsenic (total)	µg/L	100	5	1.4	1.9	6.1	17.6	22.3			1.4	11.7	11.0	8.5	7.1	5.7	5.2	4.5	4.4	1	6.6
Barium (total)	µg/L		-	16	1.0	20	27	30			9.2	10.3	4.31	18.8	26.2	31.3	15.0	15.0	17.9	1	16
Beryllium (total)	µg/L	1100		< 0.50	< 0.50	< 0.50	0.009	0.012			0.014	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.012	1	0.008
Boron (total)	µg/L	200	1500	27	21	19	24	42			< 2	18	32	34	31	58	26	21	34		28
Bismuth (total)	µg/L	200	1000	< 1.0	< 1.0	< 1.0	0.008	< 0.010			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
Calcium (total)	µg/L			37527	38500	42111	54360	62010			14500	46800	30100	37500	43100	63300	31000	45200	56000		4083
Cadmium (total)	µg/L	0.20	0.09	0.10	< 0.10	< 0.10	0.006	0.018			0.010	0.004	< 0.003	0.006	< 0.003	< 0.003	0.003	0.005	0.021		0.006
Cobalt (total)	µg/L	0.20	0.09	0.10	0.51	< 0.10	0.628	0.018			0.010	0.004	0.41	0.000	0.16	0.10	0.003	0.005	0.021	ł	0.000
Cobait (total)		0.90				< 5.0					0.315										0.32
- ()	µg/L	_		5.0	< 5.0		0.362	7.941				0.23	0.32	0.21	0.19	0.23	0.19	0.19	0.41		
Copper (total)	µg/L	5		1.1	< 1.0	1.2	1.0	0.9			1.0	0.4	0.9	0.5	0.7	< 0.2	1.1	0.5	0.8		0.7
Iron (total)	µg/L	300	300	271	241	148	120	225			287	97	281	52	114	146	66	71	106		136
Potassium (total)	µg/L			2325	1838	1733	5119	4965			1660	5410	3600	2290	2790	3400	1830	2280	4810		3119
Magnesium (total)	µg/L			3742	4460	4933	7300	8192			730	4510	5040	5200	4580	5110	4730	4910	4920		4414
Manganese (total)	µg/L			44	116	28	43.1	36.4			56.1	13.80	68.8	33.0	179.0	30.0	15.8	7.9	17.1		46.8
Molybdenum (total)	µg/L	40	73	0.88	0.60	0.61	2.58	6.16			0.64	2.73	2.55	1.67	1.67	1.12	0.97	1.14	1.13		1.51
Sodium (total)	µg/L			14082	31260	47111	68590	25455			5010	25600	30900	27800	16300	14900	14500	13800	14600		1815
Nickel (total)	µg/L	25	25	1.0	1.0	< 1.0	3.2	3.3			0.6	2.8	2.5	1.9	1.4	0.9	0.9	0.9	0.9		1.4
Phosphorus (total)	µg/L	10-30		36	23	30	26	30			67	17	22	27	45	22	21	25	40		32
Lead (total)	µg/L	5	7	0.55	0.50	0.51	0.30	0.32			0.35	0.11	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09		0.12
Antimony (total)	µg/L	20		< 0.5	< 0.5	< 0.5	< 0.9	< 0.9			< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9		< 0.9
Selenium (total)	µg/L	100	1	< 2.0	< 2.0	< 2.0	0.05	0.07			0.07	0.04	0.09	0.09	0.07	0.05	< 0.04	< 0.04	0.17		0.07
Tin (total)	µg/L			< 1.0	< 1.0	< 1.0	0.13	0.07			0.06	< 0.06	< 0.06	0.06	0.06	< 0.06	< 0.06	< 0.06	< 0.06		< 0.06
Strontium (total)	µg/L			414	307	359	566	596			70.5	454	346	386	387	442	357	353	361		351
Titanium (total)	µg/L			11	8	7	4.3	10.8			10.1	2.5	3.4	1.3	2.6	0.8	0.8	2.5	4.7		3.2
Thallium (total)	µg/L	0.3	0.8	< 0.050	< 0.050	< 0.050	0.006	0.006			0.005	< 0.005	< 0.005	< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005
Uranium (total)	µg/L	5	15	1.4	1.8	2.4	2.62	49.57			3.3	18.3	6.8	3.8	4.4	5.7	3.5	4.0	4.8		6.1
Vanadium (total)	µg/L	6		0.85	0.73	0.83	0.42	0.69			0.77	0.31	0.54	0.29	0.51	0.29	0.27	0.24	0.30		0.39
Zinc (total)	µg/L	30	30	5.7	16.6	5.1	4	3			5	< 2	< 2	< 2	< 2	< 2	< 2	2	< 2	İ	< 2
Lead-210	Bq/L		~~	0.03	< 0.10	0.12	< 0.02	< 0.02			< 0.02	< 0.02	0.05	0.03	< 0.02	0.06	< 0.04	< 0.02	< 0.02	1	0.03
Radium-226	Bq/L	1		< 0.04	< 0.04	0.12	0.01	0.01			< 0.01	< 0.01	< 0.00	0.00	< 0.01	< 0.00	< 0.01	< 0.01	< 0.01	1	< 0.00
Thorium-230	Bq/L			< 0.07	< 0.04	0.12	< 0.02	< 0.02			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	l	< 0.02
Thorium-232	Bq/L Bq/L			< 0.07	< 0.05	< 0.06	< 0.02	< 0.02			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02
Field Parameters				. 0.00	0.00	0.00	0.02	. 0.02			0.02	. 0.02	. 0.02	. 0.02	0.02	0.02	. 0.02	. 0.02	- 0.02	1	- 0.02
ODO % Sat	%			1	1	1	1	1			86.3	124.4	174	3	53.5	104.5	260.5	73.7	95.0	1	
ODD % Sat	mV			1	_1	- 1	- 1	1			122.9	124.4	162.9	- _3	130.5	104.5	260.5	91.4	95.0	ł	
				_1		_1	_1	_1						 -3							
SPC	μs/cm		ļ	-'	- ¹ 1	-'	-'				104.8	420.1	354.2		354.4	438	268.2	339.8	383.5		
Temperature	°C			-	-'	- 1	-'	_1 _1			1.896	12.056	20.099	-3	25.635	23.006	24.149	7.328	2.884	ł	
Turbidity pH	FNU			- ¹	- ¹	-'	-'	- ¹			0.94	4.56	2.79	- ³	2.25	1.77	1.63	1.04	3.7		
	Units			-'	-'	-'	-'	-1			8.36	8.42	9.48	_ ³	7.81	7.85	8.85	7.99	8.28		

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

² Pond frozen, unable to collect surface water sample.

³ No field parameters - w ater quality units out for repair.

-- - No data.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 132 of 172

Table 42: Drainage Water Quality – PG LTWMF (PG-SW-1/DP1-02)

pwdepwdepwdepwdepwde2017201820182020202170202270PwrageTotal separate fornourt6.5.856.5.007.83.47.87.87.7.87.7.77.2.87.7.97.8.87.7.87.7.97.8.87.7.87.7.97.8.87.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.9.97.7.87.7.97.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.97.7.97.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.97.7.87.7.87.7.87.7.97.7.8 <td< th=""><th></th><th></th><th>Crit</th><th>eria</th><th>I</th><th></th><th></th><th></th><th></th><th></th><th></th><th>PG-SV</th><th>V1/[</th><th>)P1-02</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			Crit	eria	I							PG-SV	V1/[)P1-02						
ParameterUnitsPMC0ConstructVerageV						2017	Г	2018		2019	Г		1		—			2022		
Total Superverde Solds mpl mol for 3 34 7 9 28 36 37 Allalmin mpl, as CACO, inclusional for 7.8 7.7	Parameter	Units	PWQO	CWQG		2011		2010	A		-	2020	-	2021	20	22-05-03	20		A	verage
pi no.unt 65.8.5 65.8.0 7.96 7.74 9.07 7.84 7.73 7.97 7.98 7.83 7.83 Carbonate mpt.as CACO, 1.12 <1.0		ma/l				10	Г	3			Г	7	1	9						-
Alkalardy mpL as CaCO, mode mpL as CaCO, mpL as CaCO, mpL mpL mpL <td>· · ·</td> <td>-</td> <td>6.5 - 8.5</td> <td>6.5-9.0</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>\vdash</td> <td>7.84</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · ·	-	6.5 - 8.5	6.5-9.0				-			\vdash	7.84		-						
Carbonate mpL as CarDO, Exatonate mpL mpL 12 12 10 10 10 10 10 10 10 10 10 10 100 Total Desolved Soids mpL 0.12 0.10 0.21 0.28 0.18 0.14 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.14 0.10 0.21 0.25 0.55 0.15 0.40 0.11 0.00 0.05 0.15 0.04 0.11 0.08 0.05 0.15 0.04 0.01 0.00 0.01											1									
Biorhanie mpl. 8 (200) [12] [12] [12] [12] [13] [13] [13] [13] [13] [13] [14] [14] [14] [14] [14] [14] [14] [14							<				<		<		<		<		<	
Total Deschue 3 olds mpl. 201 115 118 119 119 101 20.3 22.4 22.9 Total Organic Carbon mpl. 11 7.9 10.2 7.5 7.5 7.0 9.0 8.0 Total Organic Carbon mpl. 12 2.5 2.5 6.4 4.3 7.4 3.9 5.7 Bromes Ammount() as Nmpl. 2.7 4.2 1.7 1.3 2.4 7.4 3.9 5.7 Bromes Ammount() as Nmpl. 1.0 < 1.0											t									
Fluenide mpL mp		- 3									+									
Total Organic Carbon mpL				0.12	<						\vdash									
Armona (h) as M mpL mpL 120 3.2 2.5 2.5 0.5 6.4 4.3 2.4 3.2 1.2 2.2 Suphate (sissove) mpL mpL 2.7 4.2 1.1 1.3 2.4 3.2 1.2 2.2 2.2 2.5 0.5 6.4 4.3 3.2 1.2 2.2 2.2 2.2 1.3 1.3 2.2<							-				\vdash									
Chardre (Dissover) rpL 120 3.2 2.5 6.4 3.7 4.3 7.4 3.9 5.7 Bromed (dissover) rpL 27 4.2 1.7 1.3 2.4 3.2 4.2 2.2 4.2 1.7 1.3 2.4 3.2 4.2 4.2 4.2 1.7 1.3 2.4 3.2 4.2 4.2 4.03		-			<		<		<		⊢		-		<					
Suphate (dsable ed) promfe (dsable) mpL				120	-		-				-		-							
Bromed (isbelowed) mpL < 10 < 10 < 10 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33				120			-		-		-		-							
Ninthe (as h) as NropL (((0.01 (0.01 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.03 (0.05 (0.06 (0.06 (0.06 (0.06 (0.06 (0.06 (0.01 0		-			2		2		2		2		2		2		2		2	
Nihate (as h) as N mg/L (a) (a)< (a) (a) (a)< (a) (a)< (a) (a)<					~		2		_		-		_		2		~		~	
Nihate + Nifte (as N) as N mp(L) NMM NMM NMM				13	-		-		-				-				-		~	
Mercury (dissived) up1. 0.2 0.06 < 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.018 0.015 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <				15					_		-		-		_					
Hardness ngL as GaCO, byer (tota) ngL 0.1 0.1 0.1 0.10 100 122 113 112 173 1199 181 Alumnum (tota) µgL 75 100 7 5 0.15 <0.05			0.2	0.026			_		-				~				-		-	
Silver (total) upit 0.1 0.1 0.1 0.10 0.10 0.18 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.05 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.01			0.2	0.020	È		<u> </u>		È		È		-		<u>`</u>		<u> </u>		-	
Aluminum (old) upl. 75 100 7 5 5 1 2 3 7 19 13 Arismic (bla) upl. 100 5 <1			0.4	0.4	-		-		-		-		-		-		-		-	
Aluminum (0.2µm) µpL 76 100 7 < 5 5 1 2 3 2 3 Arsenic (total) µpL 100 5 < 1 1.1 5.9 1.2 1.2 0.6 0.5 0.6 0.50 < 0.50 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 << 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007			0.1	0.1	< <u> </u>		~		-		<		<u></u>		< <u> </u>		<u> </u>		~	
Arsenic (total) μpL 100 5 < 1 1 5.9 1.2 1.2 0.6 0.5 0.6 Barum(total) μpL 1100 14 100 12 15 14 14.8 15.0 14.9 Barum(total) μpL 200 1500 < 0.50 < 0.50 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.017 0.01 < 0.010 0.004 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.004 0.013 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0			75	400	-		6		6		⊢		-		-		-			
Barlum(tota) μpL 110 12 15 14 148 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><</td><td></td><td><</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							<		<				-							
Berylum (tota) upl. 1100 < 0.50 < 0.007 < 0.007 < 0.007 0.007 0.007 < 0.007 < 0.007 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.001 < 0.010 < 0.010 < 0.010 0.014 0.010 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003			100	5	<								_		L					
Born (rota) µg/L 200 1500 < 10 < 10 T< T T< T T< T T T T T T T T T T T T T T T T T <tht< th=""> T T</tht<>																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_		_		<		<		<	0.007	<		<		<	
Calcum (tota) µgL 0.2 0.09 < 57500 46000 68500 64700 58650 64800 77000 67700 Cadmum (tota) µgL 0.2 0.09 < 0.10 < 0.10 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.004 0.004 0.004 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1 1		200	1500			-													
Cadmum(total) μgL 0.2 0.09 < 0.10 < 0.10 0.004 0.003 0.004 0.003 0.004 Cabat (total) μgL 0.9 < 0.5 < 0.5 0.8 0.11 0.11 0.003 0.044 0.046 Corport (total) μgL 5 < 5.0 < 5.0 < 5.0 0.11 0.12 0.017 < 0.08 0.13 Corport (total) μgL 5 1.1 < 1.0 695 172 172 130 24 77 Potassum(total) μgL 2700 2100 2550 2710 2655 2740 2010 2875 Magnesic (total) μgL 40 73 0.66 0.50 0.10 0.11 0.11 0.09 0.10 2010 Sodum (total) μgL 10.300 87 4.3 145 37 52 2.7					<		<		<						<		<		<	
Cobat (tota) µg/L 0.9 < 0.5 < 0.6 0.1 0.1 0.11 0.035 0.046 0.04 Chrontum (tda) µg/L 5 1.1 < 0.0 0.1 0.2 0.17 < 0.08 0.13 0.5 tron (tota) µg/L 300 300 200 110 695 172 127 130 24 77 Plassum(tota) µg/L 2 300 3000 3000 3000 3100 2855 2710 2855 2740 3010 2875 Magnesum(tota) µg/L 2 2 0.5 < 0.50 0.10 0.11 0.11 0.10 2.875 Magnesum(tota) µg/L 25 25 1.02 2.875 1.175 1.620 960 1.20 961 1.1 0.1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11																				
Chromum(tetal) µg/L < 5.0 < 5.0 < 5.0 3.0 <td></td> <td></td> <td></td> <td>0.09</td> <td>-</td> <td></td> <td>-</td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td></td> <td></td>				0.09	-		-		<								<			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.9				-													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					<		-		<								<			
Potassum(total) μg/L 3100 3000 3500 3150 3725 4790 2240 3515 Magnessum (total) μg/L 2700 22650 2710 2655 2740 3010 22875 Magnessum (total) μg/L 40 73 0.66 < 0.50							<													
Magnesium (total) µg/L 2700 2100 2560 2710 2655 2740 3010 2875 Manganese (total) µg/L 40 73 0.66 \sim 0.50 0.010 0.111 0.11 0.09 0.100 Sodium(total) µg/L 40 73 0.66 \sim 0.50 0.010 0.11 0.11 0.10 0.09 1290 Sodium(total) µg/L 25 25 <1.0			300	300																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
Sodum(total) µg/L 25 25 < 1400 940 925 1175 1620 960 1290 Nickel(total) µg/L 10-30 87 43 145 37 52 27 12 20 Lead (total) µg/L 5 7 <																				
Nickel (tota) µg/L 25 25 < 1.0 1.2 0.2 < 0.1 0.01 <			40	73			<		<											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		µg/L				1400		940		925		1295		1175		1620		960		1290
Lead (total) µg/L 5 7 < 0.5 1.3 0.1 0.2 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 <		µg/L		25	<		<	1.0				0.2	<	0.1						
Antimory (total) µg/L 20 < 0.50 < 0.50 < 0.50 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90	Phosphorus (total)	µg/L																		
Selenium (total) µg/L 100 1 < 2.0 < 2.0 2.0 0.05 0.05 0.08 < 0.04 0.06 Tin (total) µg/L 1.05 8.6 1.01 1.0 0.1 <	Lead (total)	µg/L	5	7	<	0.5	<	0.5		1.3		0.1		0.2	<	0.09	<	0.09	<	0.09
Tin (total) µg/L 1.0 < 1.0 < 1.0 < 1.0 < 0.1 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 0.06 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0	Antimony (total)	µg/L	20		<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90
Strontum (total) µg/L 105 86 101 111 105 114 133 124 Ttanium (total) µg/L 5 5 17 2.2 1.8 0.29 0.40 0.3 Thallium (total) µg/L 0.3 0.8 < 0.05 < 0.05 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	Selenium (total)	µg/L	100	1	<	2.0	<	2.0	<	2.0		0.05		0.05		0.08	<	0.04		0.06
Titanium (total) µg/L 0.3 0.8 < 5 < 5 17 2.2 1.8 0.29 0.40 0.3 Thalium (total) µg/L 0.3 0.8 < 0.05 < 0.05 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002 < 0.002 <td>Tin (total)</td> <td>µg/L</td> <td></td> <td></td> <td><</td> <td>1.0</td> <td><</td> <td>1.0</td> <td><</td> <td>1.0</td> <td></td> <td>0.1</td> <td><</td> <td>0.1</td> <td><</td> <td>0.06</td> <td><</td> <td>0.06</td> <td><</td> <td>0.06</td>	Tin (total)	µg/L			<	1.0	<	1.0	<	1.0		0.1	<	0.1	<	0.06	<	0.06	<	0.06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Strontium (total)	µg/L				105		86		101		111		105		114		133		124
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Titanium (total)	µg/L				5	<	5		17	Γ	2.2		1.8		0.29		0.40		0.3
Vanadium (total) µg/L 6 0.65 $<$ 0.5 1.13 0.17 0.14 0.09 0.03 0.06 Zinc (total) µg/L 30 30 $<$ 5.0 $<$ 5.9 2.5 $<$ 2.0 $<$ 2 3 2.5 Lead-210 Bq/L $<$ 0.02 $<$ 0.01 0.013 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.01 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 </td <td>Thallium (total)</td> <td>µg/L</td> <td>0.3</td> <td>0.8</td> <td><</td> <td>0.05</td> <td><</td> <td>0.05</td> <td><</td> <td>0.05</td> <td><</td> <td>0.005</td> <td><</td> <td>0.005</td> <td><</td> <td>0.005</td> <td><</td> <td>0.005</td> <td><</td> <td>0.005</td>	Thallium (total)	µg/L	0.3	0.8	<	0.05	<	0.05	<	0.05	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Zinc (total) μg/L 30 30 < 5.0 5.9 2.5 < 2.0 < 2 3 2.5 Lead-210 Bq/L 0.02 < 0.01 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.01 0.02 < 0.01 < 0.02 < 0.01 0.01 0.02 < 0.01 < 0.01 0.01 0.01 0.01 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <	Uranium (total)	µg/L	5	15		0.2		1.1		2.1	Γ	0.56		0.46		0.445		0.29		0.37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V anadium (total)	µg/L	6			0.65	<	0.50		1.13		0.17		0.14		0.09		0.03		0.06
Bq/L 1 < 0.03 < 0.04 0.01 0.02 0.01 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 </td <td>Zinc (total)</td> <td>µg/L</td> <td>30</td> <td>30</td> <td><</td> <td>5.0</td> <td><</td> <td>5.0</td> <td></td> <td>5.9</td> <td></td> <td>2.5</td> <td><</td> <td>2.0</td> <td><</td> <td>2</td> <td></td> <td>3</td> <td></td> <td>2.5</td>	Zinc (total)	µg/L	30	30	<	5.0	<	5.0		5.9		2.5	<	2.0	<	2		3		2.5
Bq/L < 0.07 0.07 0.07 0.07 0.02	Lead-210	Bq/L			<	0.02	<	0.10		0.13	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232 Bq/L < 0.06 < 0.06 < 0.06 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.02 0.02 0.02 0.02 < 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <	Radium-226	Bq/L	1		<	0.03	<	0.04	<	0.04	<	0.01		0.02	<	0.01	<	0.01	<	0.01
Display Display <t< td=""><td>Thorium-230</td><td>Bg/L</td><td></td><td></td><td><</td><td>0.07</td><td><</td><td>0.07</td><td><</td><td>0.07</td><td><</td><td>0.02</td><td><</td><td>0.02</td><td><</td><td>0.02</td><td><</td><td>0.02</td><td><</td><td>0.02</td></t<>	Thorium-230	Bg/L			<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters Image: Constraint of the system of the syst	Thorium-232														<					
ODD % Sat % .1 .1 .1 .1 .1 .1 .1 1 1 10.7 57 ORP ml/ .1 .1 .1 .1 .1 .1 190.9 124.7 SPC µs/cm .1 .1 .1 .1 .1 190.9 124.7 Temperature *C .1 .1 .1 .1 .1 333 358.2 Turbidity FNU .1 .1 .1 .1 .1 1.2053 11.673 pH Units .1 .1 .1 .1 .1 .1 .1 .20 11.05	Field Parameters										Γ									
ORP m/ .1	ODO % Sat	%				_1	1	_1		_1	t	_1		_1		120.7		57		
SPC µs/cm .1 <th< td=""><td>ORP</td><td></td><td></td><td></td><td></td><td>_1</td><td>1</td><td>_1</td><td></td><td>_1</td><td>t</td><td>_1</td><td></td><td>_1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ORP					_1	1	_1		_1	t	_1		_1						
"C" -1 -1 -1 -1 12.953 11.673 Turbidty FNU -1 -1 -1 -1 10.05 pH Units -1 -1 -1 -1 -1 7.92 7.97	SPC					_1	1	_1	1	_1	t	_1	1	_1						
Turbidity FNU -1 -1 -1 -1 1.20 11.05 pH Units -1 -1 -1 -1 1 7.92 7.97							1		1		t		1							
pH Units -1 -1 -1 -1 -1 7.92 7.97		-					1		1		\vdash		1							
	pH					_1	1	_1	1	_1	\vdash	_1	1	_1						
					-						-									

Note: PWQQ = Provincial Water Quality Objectives, Ministry of the Environment CWQG = Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQQ or CWQQ value. 1 Field parameters included for current sampling year only.

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 134 of 172

Information Use

Appendix C Port Granby Groundwater Monitoring Results

Table 43: PG-BH1002A

											PG-	-BH1002A							
		Crit	eria	2017		2018	2	019	2020	1	2021					2022			
Parameter	Units	COPC	Table 3				Ave	erage				2022/03/02	202	2/06/21	20	22/09/01	2022/12/06	Av	/erage
рH	рH			7.88		7.81		7.80	7.67	T	7.63	_3		7.63		7.57	_3		7.60
Alkalinity	mg/L as CaCO3			170		223		218	363	1	463	_3		361		816	_3		589
Carbonate	mg/L as CaCO ₃			1.2		1.4		1.3	< 1.0	<	1.0	_3	<	1.0	<	1.0	_3	<	1.0
Bicarbonate	mg/L as CaCO3			170		223		215	363		463	_3		361		816	_3		589
Total Dissolved Solids	mg/L			398		392		466	432		501	_3		427		463	_3	-	445
Fluoride	mg/L	1.5		< 0.10	<	< 0.10	<	0.10	0.06	<	0.06	_3	<	0.06	<	0.06	_3	<	0.06
Total Organic Carbon	mg/L			16.5		3.5		17.7	1.0	1	2.0	_3		1.0	<	1.0	_3	1	1.0
Dissolved Organic Carbon	mg/L			1.6		1.3		1.5	1.5		1.7	_3		2.0		1.0	_3	-	1.5
Ammonia+Ammonium (N)	as N mg/L			< 0.05		0.14		0.17	0.05	<	0.04	_3	<	0.04	<	0.04	_3	<	0.04
Chloride (dissolved)	mg/L			24		20		45	40		51	_3		54		55	_3	÷	55
Sulphate (dissolved)	mg/L			35	-	33		31	44		46	_3		50		37	_3		44
Bromide (dissolved)	mg/L			< 1.0	-	< 1.0	<	1.0	< 0.3	<	0.3	_3	<	0.3	<	0.3	_3	<	0.3
Nitrite (as N)	as N mg/L			0.01			-	0.02	< 0.03	Ż	0.03	_3	~	0.03	~	0.03	_3	<	0.03
Nitrate (as N)	as N mg/L			9.21	-	7.62		11.66	8.22	È	14.14	_3	`	8.17	-	9.22	3	-	8.70
Nitrate + Nitrite (as N)	as N mg/L			9.2		7.62		11.66	8.22	+	14.14	_3		8.17	-	9.22	3	-	8.70
Mercury (dissolved)	µg/L	1	0.29	< 0.10	-	< 0.10		0.10	< 0.01	-	0.01	< 0.01	/	0.01	/	0.01	< 0.01	/	0.01
Hardness	µg/∟ mg/L as CaCO₃	<u> </u>	0.23	297	+	290		333	676	Ê	906	< 0.01 _3	-	887	<u>`</u>	360	< 0.01 _3	È	624
			1.5	< 0.10	+	0.11		0.10	0.05	-	906	< 0.05	~	0.05	<	0.05	< 0.05	<	0.05
Silver (dissolved)	µg/L		1.5		_	0.11	<u>`</u>		0.05	È		< 0.05	È	2	È		< 0.05 2	È	
Aluminum (dissolved)	µg/L	25	1900	370 < 1.0	-	8 : 1.0	/	10 1.0	4		3 0.2	< 0.2	-	2	-	41 0.2	0.5	-	12 0.3
Arsenic (dissolved) Barium (dissolved)	μg/L μg/L	1000	29000	< 1.0	-	55	Ê	1.0 62	0.2 59	È	43	< 0.2 35.9	<u>`</u>	43	È.	0.2 57	0.5 62	-	0.3 50
		1000			<				0.007		43	< 0.007	<	43		0.007	< 0.007	<	0.007
Beryllium (dissolved)	µg/L	5000	67	< 0.50	_		< <	0.50		<			<		<			<	
Boron (dissolved)	µg/L	5000	45000	10	<		<	10	6	-	7	3 ≤ 0.010	~	7		6	6		6
Bismuth (dissolved)	µg/L			< 1.0	_	• 1.0	-	1.0	0.007	-	0.009	- 0.010		0.010	<	0.010	< 0.010	<	0.010
Calcium (dissolved)	µg/L	-		10833	_	107500		20000	141667	-	128750	126000	_	156000		118000	122000		130500
Cadmium (dissolved)	µg/L	5	2.7	< 0.10	_	< 0.10		0.10	0.011		0.006	0.003		0.009		0.009	0.012		0.008
Cobalt (dissolved)	µg/L		66	0.73	<	0.00	<	0.50	0.04		0.04	0.035		0.04		0.05	0.07		0.049
Chromium (dissolved)	µg/L		810	< 5.0	<	0.0	<	5.0	1.1		0.7	0.64		0.52		0.89	0.94		0.75
Copper (dissolved)	µg/L	1000	87	2.6		1.1		1.2	0.9		1.1	0.6		1.1		1.2	1.4		1.1
Iron (dissolved)	µg/L			500	<	÷ 100		100	7		8	< 7	<	7		22	< 7		11
Potassium (dissolved)	µg/L			460		465		488	562		431	320		434		561	522		459
Magnesium (dissolved)	µg/L			5100		6525		7700	10000		6460	6760		6130		7580	8500		7243
Manganese (dissolved)	µg/L			41	<	\$ 2.0	<	2.0	0.47		0.29	0.03		0.29		0.67	0.23		0.31
Molybdenum (dissolved)	µg/L		9200	< 0.50	<	0.00		0.50	0.44		0.28	0.18		0.19		0.37	0.42		0.29
Sodium (dissolved)	µg/L			3500	_	3925		3975	4827		4410	4340		4980		4510	4230		4515
Nickel (dissolved)	µg/L		490	1.2	<	1.0	<	1.0	0.2		0.2	0.1		0.2		0.2	0.2		0.2
Phosphorus (dissolved)	µg/L			12		23		8	3	<	3	< 3		7	<	3	< 3		4
Lead (dissolved)	µg/L	10	25	1.70	<	\$ 0.50		0.50	0.03		0.07	< 0.09	<	0.09	<	0.09	< 0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	< 0.50	<		<	0.50	< 0.90	<	0.90	< 0.90	<	0.90	<	0.90	< 0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	< 2.0	<	. 2.0	<	2.0	1.10	L	1.36	1.20		1.08	L	1.07	1.29		1.16
Tin (dissolved)	µg/L			< 1.0	<	1.0	<	1.0	0.10	L	0.08	< 0.06	<	0.06	<	0.06	< 0.06	<	0.06
Strontium (dissolved)	µg/L			183		183		203	246	1	211	213		246		219	236		229
Titanium (dissolved)	µg/L			12.0	<	\$ 5.0	<	5.0	0.18	I_	0.13	< 0.05		0.08		1.10	< 0.05		0.32
Thallium (dissolved)	µg/L		510	< 0.05	_	< 0.050		0.05	0.005	<	0.005	< 0.005		0.005	<	0.005	< 0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	0.44	_	0.275		0.275	0.348	L	0.254	0.209		0.251		0.399	0.370		0.307
Vanadium (dissolved)	µg/L		250	1.0	<			0.50	0.20	1	0.17	0.16		0.21		0.26	0.20		0.21
Zinc (dissolved)	µg/L		1100	8	<		<	5	2	<	2	< 2	<	2	<	2	< 2	<	2
Lead-210	Bq/L	0.2		< 0.02	<	0.10		0.10	< 0.02	<	0.02	< 0.02	<	0.02	<	0.02	0.03		0.02
Radium-226	Bq/L	0.49		< 0.04	<	• 0.04		0.04	< 0.01	<	0.01	< 0.01	<	0.01	<	0.01	0.01	<	0.01
Thorium-230	Bq/L	0.65		< 0.07	<	0.01		0.07	< 0.02	<	0.02	< 0.02	<	0.02	<	0.02	< 0.02	<	0.02
Thorium-232	Bq/L	0.6		< 0.06	<	: 0.06	<	0.06	< 0.02	<	0.02	< 0.02	<	0.02	<	0.02	< 0.02	<	0.02
Field Parameters																			
ODO % Sat	%			_1	T	-1		_1	-1		-1	_2		86.6		-2	-2		
ORP	mV			_1	Т	-1		_1	_1		-1	-2		158.5		-2	-2		
SPC	µs/cm			_1		_1		-1	_ ¹		_1	-2		744.0		-2	-2		
Temperature	°C			_1		-1		_1	_ ¹	İ.	-1	- ²		12.631		- ²	-2		
Turbidity	FNU			_1		-1		_1	-1		-1	_2		1185.0		-2	-2		
pH	Units			_1		-1		_1	_1		-1	-2		7.46		-2	-2		

pH Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

³ Insufficient volume of groundw ater for full sample collection

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 135 of 172

Information Use

PG-BH1003A 2017 2018 2019 2020 2021 2022 Criteria COPC Table 3 Well Broken Parameter Units Average pН pН 7.49 Alkalinity mg/L as CaCO₃ 190 Carbonate mg/L as CaCO 1.0 mg/L as CaCO. 190 Bicarbonate Total Dissolved Solids mg/L 249 Fluoride mg/L 1.5 0.10 Total Organic Carbon 51 mg/L 9.2 Dissolved Organic Carbon mg/L 3.65 Ammonia+Ammonium(N) as N mg/L Chloride (dissolved) mg/L 6 Sulphate (dissolved) 7 mg/L Bromide (dissolved) 1.0 mg/L as Nmg/L 0.04 Nitrite (as N) Nitrate (as N) 0.38 as N mo/L Nitrate + Nitrite (as N) as Nmg/L 0.41 Mercury (dissolved) µg/L 1 0.29 0.1 Hardness mg/L as CaCO₃ 155 Silver (dissolved) 1.5 0.10 µg/L Aluminum (dissolved) µg/L 21 Arsenic (dissolved) µg/L 25 1900 1 Barium (dissolved) µg/L 1000 29000 22 Beryllium (dissolved) 67 0.50 µg/L Boron (dissolved) 5000 45000 µg/L 26 1.0 Bismuth (dissolved) µg/L Calcium (dissolved) µg/L 55500 Cadmium (dissolved) 5 2.7 0.1 µg/L Cobalt (dissolved) 66 µg/L 0.61 810 5 Chromium (dissolved) µg/L 1000 1.7 Copper (dissolved) µg/L 87 Iron (dissolved) µg/L 800 Potassium (dissolv ed) 14000 µg/L Magnesium(dissolved) 3800 µg/L Manganese (dissolved) 325 µg/L 9200 Moly bdenum (dissoly ed) µg/L 1.6 Sodium (dissolved) µg/L 1550 Nickel (dissolved) 490 1.3 µg/L 12 Phosphorus (dissolved) µg/L 10 25 0.50 Lead (dissolved) µg/L 20000 0.57 Antimony (dissolved) µg/L 6 Selenium (dissolved) µg/L 10 63 2.0 Tin (dissolved) 1.0 µg/L Strontium (dissolved) 105 µg/L 5.00 Titanium (dissolved) µg/L 510 Thallium (dissolved) µg/L 0.05 Uranium (dissolved) µg/L 20 420 0.270 V anadium (dissolv ed) 250 1.85 µg/L Zinc (dissolved) 1100 5 µg/L 0.02 0.2 Lead-210 Ba/L Radium-226 Bq/L 0.49 0.04 Thorium 230 Bq/L 0.65 0.07 Thorium 232 Bq/L 0.6 0.06 Field Parameters ODO % Sat % ---ORP ml/ SPC µs/cm Temperature Turbidity FNU pН Units

Table 44: PG-BH1003A

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment. Bold values indicate an exceedance of the COPC or Table 3 criteria.

UNRESTRICTED

Annual Compliance Monitoring Report UNRESTRICTED / ILLIMITÉE

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 136 of 172

Information Use

Table 45: PG-BH1003B

					_					_	PG	-BH1003B	_						
		Crit	eria	2017		2018		2019	2020	I	2021					2022			
Parameter	Units	COPC	Table 3				4	verage				2022/03/02	20	022/06/21	20	022/09/01	2022/12/0)6	Average
рН	pH			7.84		7.84	É	7.88	7.78	T	7.69	7.68	1	7.64		7.81	_3		7.71
Alkalinity	mg/L as CaCO ₃			218	+	238		235	229	-	313	391		423		234	_3		349
Carbonate	mg/L as CaCO ₃			1.4	+	1.6		1.7	< 1.0	1	< 1.0	< 1.0	<	1.0	<	1.0	_3		< 1.0
Bicarbonate	mg/L as CaCO ₃			215	+	235		235	229	-	313	391		423	-	234	_3		349
Total Dissolved Solids	mg/L			419	+	389		454	435	-	504	534		420		443	_3		466
Fluoride	mg/L	1.5		< 0.10	<	0.10	-	0.11	0.09	+	0.08	0.07	-	0.07		0.06	3	_	0.07
Total Organic Carbon	mg/L	1.5		15	+	1.8	-	1.5	1.3	+	1.8	2.0	-	1.0		1.0	_3	_	1.3
Dissolved Organic Carbon	mg/L			1.9	+	1.4	-	1.3	1.5	+	1.8	2.0	-	1.0		1.0	3	_	1.3
Ammonia+Ammonium (N)	as N mg/L			0.06	+	0.06	-	0.07	< 0.04	+	< 0.04	0.06	-	0.04	<	0.04	_3	_	0.05
Chloride (dissolved)	mg/L			17	+	14	-	15	20	+	29	69	È	41	-	37	3	_	49
Sulphate (dissolved)	mg/L			65	+	65	+	70	68	+	46	52	+	60	-	55	3	-	49 56
Bromide (dissolved)	mg/L			< 1.0	-	1.0	-	1.0	< 0.3	-	< 0.3	< 0.3	<	0.3	<	0.3	3	_	< 0.3
Nitrite (as N)	as N mg/L			0.01	È	0.01	È	0.01	< 0.03	-	< 0.03	< 0.03	È	0.03)	0.03	3	_	< 0.03
Nitrate (as N)	as N mg/L			10.06	È	11.20	È	10.30	11.38		27.38	10.70	È	14.00	È	14.00	_3	_	12.90
					+		-			_			-		-		-	_	
Nitrate + Nitrite (as N)	as N mg/L		0.00	10.06	-	11.20		10.30	11.38	5	27.38	10.70		14.00		14.00	-	_	12.90
Mercury (dissolved)	μg/L	1	0.29	< 0.10	<	0.10	<	0.10	< 0.01	-	< 0.01	< 0.01	<	0.01	<	0.01	< 0.01	_	< 0.01
Hardness	mg/L as CaCO ₃			313	-	343	ŀ	360	377	+	875	722	+-	6400	+-	352			2491
Silver (dissolved)	µg/L		1.5	< 0.10	<	0.10	<	0.10	< 0.05	-	< 0.05	< 0.05	<	0.05	<	0.05	< 0.05		< 0.05
Aluminum (dissolved)	µg/L			404	-	14	<u> </u>	6	54	4	5	61	+	74	L	1	< 1	_	34
Arsenic (dissolved)	µg/L	25	1900	< 1.0	<	1.0	<	1.0	< 0.2	_	0.2	< 0.2	<	0.2	<	0.2	0.4		0.3
Barium (dissolved)	µg/L	1000	29000	48		55		60	62		54	62		66		88	79		74
Beryllium (dissolved)	µg/L		67	< 0.50	<	0.50	<	0.50	< 0.008	3	< 0.007	0.012		0.009	<	0.007	< 0.007	'	0.009
Boron (dissolved)	µg/L	5000	45000	12	<	10		10	7		10	6		26		8	9		12
Bismuth (dissolved)	µg/L			< 1.0	<	1.0	<	1.0	< 0.007	_	0.009	< 0.010	<	0.010	<	0.010	< 0.010	_	< 0.010
Calcium (dissolved)	µg/L			106000		107500		110000	11100	0	133500	144000		140000		105000	12800	_	129250
Cadmium (dissolved)	µg/L	5	2.7	< 0.10	<	0.10	<	0.10	0.00		0.01	0.008		0.003	<	0.003	0.008	_	0.006
Cobalt (dissolved)	µg/L		66	< 0.50	<	0.50	<	0.50	0.04		0.03	0.044		0.044		0.033	0.032	2	0.038
Chromium (dissolved)	µg/L		810	< 5.0	<	5.0	<	5.0	2.0		1.6	1.39		2.18		0.80	2.59		1.74
Copper (dissolved)	µg/L	1000	87	1.2	<	1.0	<	1.0	0.9		0.4	1.1		0.6		0.5	0.9		0.8
Iron (dissolved)	µg/L			273	<	100	<	100	37		7	34		35	<	7	< 7		21
Potassium (dissolved)	µg/L			508		573		643	613		522	382		696		1690	911		920
Magnesium (dissolved)	µg/L			11525		16250		19500	21000)	11938	8530		17400		19400	2170	C	16758
Manganese (dissolved)	µg/L			9.25	<	2.0	<	2.0	1.10		0.14	2.47		2.29	<	0.01	0.23		1.25
Molybdenum (dissolved)	µg/L		9200	< 0.50	<	0.50	<	0.50	0.34		0.24	0.17		0.46		0.69	0.31		0.41
Sodium (dissolved)	µg/L			4675		5075		5225	5205		5838	5740		5850		5190	5820	1	5650
Nickel (dissolved)	µg/L		490	< 1.0	<	1.0	<	1.0	0.3		0.2	1.3		0.2		0.3	0.3		0.5
Phosphorus (dissolved)	µg/L			9		53		7	< 3		< 3	6		10	<	3	4		6
Lead (dissolved)	µg/L	10	25	0.68	<	0.50	<	0.50	0.04		0.07	0.16		0.10	<	0.09	< 0.09		0.11
Antimony (dissolved)	µg/L	6	20000	0.54	<	0.50	<	0.50	< 0.90		< 0.90	< 0.90	<	0.90	<	0.90	< 0.90		< 0.90
Selenium (dissolved)	µg/L	10	63	< 2.0	<	2.0	<	2.0	1.0		1.4	0.7		0.96		0.54	1.19		0.84
Tin (dissolved)	µg/L			< 1.0	<	1.0	<	1.0	0.11		0.07	< 0.06	<	0.06	<	0.06	< 0.06		< 0.06
Strontium (dissolved)	µg/L			198		218	T	225	240		236	254	1	263		239	301		264
Titanium (dissolved)	µg/L			11.5	<	5.0	<	5.0	1.39		0.07	1.63	1	1.85	<	0.05	< 0.05		0.90
Thallium (dissolved)	μg/L		510	< 0.050	<	0.050	<	0.050	< 0.005	;	< 0.005	< 0.005	<	0.005	<	0.005	< 0.005	;	< 0.005
Uranium (dissolved)	μg/L	20	420	0.478		0.445	t	0.465	0.546	_	0.364	0.416	1	0.475	t	3.860	0.541	_	1.323
Vanadium (dissolved)	µg/L		250	0.59	<	0.50	<	0.50	0.47	+	0.21	0.13	\mathbf{T}	0.25	t	0.45	0.39		0.31
Zinc (dissolved)	µg/L		1100	< 5	<	5	<	5	3	+	< 2	3	<	2	ŀ	3	< 2		3
Lead-210	Bq/L	0.2		< 0.02	<	0.10	<	0.10	< 0.02	+	< 0.02	< 0.02	<	0.02	<	0.02	0.06	\neg	0.03
Radium-226	Bq/L Bq/L	0.49		< 0.02	<	0.04	<	0.04	< 0.02	╉	0.02	< 0.02	t	0.02	~ <	0.02	< 0.00	\neg	< 0.01
Thorium-230	Bq/L	0.65		< 0.07	<	0.07	<	0.07	< 0.02	+	< 0.02	< 0.02	<	0.01	<	0.01	< 0.02		< 0.02
Thorium-232	Bq/L	0.65		< 0.07	<	0.07	<	0.07	< 0.02		< 0.02	< 0.02	Ì	0.02	~	0.02	< 0.02	+	< 0.02
Field Parameters	D4/L	0.0		- 0.00	È	0.00	È	0.00	- 0.02	+	- 0.02	- 0.02	È	0.02	È	0.02	- 0.02		- 0.02
ODO % Sat	%			_1	+	_1	┢	_1	_1	+	_1	_2	+	_2	ŀ	_2	_2	-	
ORP Sat	% mV			_1	+	_1	┢	_1	_1	+	_1	_= _2	┢	_2	┝	_2	_2	-	
-		<u> </u>	<u> </u>	1	+	1	┢	_1	_1	+	_1	2	┢	_2 _2	┢	_2	2	-	
SPC	µs/cm			-'	+	1	┢	1	1	+	_'	- ²	+	- ²	┝	_2 _2	-2 -2		
Temperature	°C	L	<u> </u>	-	_		┡	-'	1	+	-	_2 _2	-	-² _2	L	_2	- ²		
Turbidity	FNU			-1	+	_1	⊢	-		_	-1		<u> </u>		<u> </u>			_	
pH	Units			_1		- ¹	L	- ¹	_1		- ¹	_2	1	- ²	I	_ ²	-2		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

³ Insufficient volume of groundw ater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 137 of 172

Information Use

Table 46: PG-BH1003C

													·BH	1003C								
		Crit	eria		2017		2018		2019	2020		2021						2022				
Parameter	Units	COPC	Table 3					A	verage				20	022/03/02	20	22/06/21	20	22/09/01	20	022/12/06	Av	/erage
pН	pН				7.95		7.89		7.87	7.68	Т	7.76		7.62		7.99	t	-3		7.83		7.81
Alkalinity	mg/L as CaCO ₃				210		220		205	213	t	210		199		212	1	_3		213		208
Carbonate	mg/L as CaCO ₃				1.8		1.6		1.5	< 1.0	t.	< 1.0	<	1.0	<	1.0	1	_3	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				207.5	-	220		205	213	T	210		199		212	1	_3		213		208
Total Dissolved Solids	mg/L				388		379		398	412	t	445		480		503	-	_3		426		470
Fluoride	mg/L	1.5		<	0.11	<	0.10	<	0.10	0.09	t	0.10		0.08		0.09	-	_3		0.08		0.08
Total Organic Carbon	mg/L			-	2.2		1.6		1.9	2.0	t	2.0		2.0		2.0	-	_3		2.0		2.0
Dissolved Organic Carbon	mg/L				1.6		1.4		1.8	2.3	t	2.0		2.0		2.0	-	_3		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			<	0.05	-	0.05	~	0.05	< 0.04	+	0.04	~	0.04		0.07	-	_3	-	0.04		0.05
Chloride (dissolved)	mg/L			-	15	-	14	È	15	24	+	27	-	33		50	-	_3	-	33		39
Sulphate (dissolved)	mg/L				63	-	65	-	56	62	+	62		59		68	-	_3	-	67		65
Bromide (dissolved)	mg/L			<	1.0		1.0		1.0	< 0.3	+	< 0.3	-	0.3	<	0.3	┢─	_3	-	0.3	<	0.3
Nitrite (as N)	as N mg/L			È	0.01	È	0.01	Ì	0.01	< 0.03	ť	< 0.03	Ì	0.03	-	0.03	<u> </u>	3)	0.03		0.03
	ů.			È		È		È			Ŧ		Ì		È		<u> </u>	_3	È		`	
Nitrate (as N)	as N mg/L				8.66	-	9.93 9.93		11.36	9.09 9.09	+	12.68 12.68		15.50		12.10	⊢	_3		12.30 12.30		13.30
Nitrate + Nitrite (as N)	as Nmg/L		0.00	-	8.66	-		Ŀ	11.36		+		-	15.50	-	12.10	Ł					13.30
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.10	<	0.10	< 0.01	ŀ	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃		4-		300	.	320	<u> </u>	325	346	╀	416	-	344		422	<u> </u>	320	<u> </u>	355	_	360
Silver (dissolved)	µg/L		1.5	<	0.10	<	0.10	<	0.10	< 0.05	ŀ	< 0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5	<	5	<	5	22	+	2	<	1		2	⊢	358		2		91
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	1.0	<	1.0	0.2	1	0.2	<	0.2	<	0.2	<	0.2	<u> </u>	0.7		0.3
Barium (dissolved)	μg/L	1000	29000		61		66		66	54	4	69		71.7		80	L	72		81		76
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.50	<	0.50	< 0.007	ŀ	< 0.007	<	0.007	<	0.007	L	0.011	<	0.007		0.008
Boron (dissolved)	μg/L	5000	45000		14	<	10	<	10	7	4	14		7		15	L	7		10		10
Bismuth (dissolved)	μg/L			<	1.0	<	1.0	<	1.0	0.010		0.009	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L				81500		87250		93750	77000		104100		105000		139000		111000		119000		118500
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10	0.004		0.003	<	0.003		0.004		0.003		0.006		0.004
Cobalt (dissolved)	μg/L		66	<	0.50	<	0.50	<	0.50	0.042		0.024		0.028		0.035		0.073		0.053		0.047
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0	0.67		0.69		0.77		0.68		2.27		1.16		1.22
Copper (dissolved)	µg/L	1000	87	۷	1.0	<	1.0	<	1.0	0.8		0.8		0.5		0.7		0.5		1.5		0.8
Iron (dissolved)	µg/L			<	100	<	100	<	100	25	ŀ	< 7	<	7	<	7		172		8		49
Potassium (dissolved)	µg/L				1575		1575		1525	827		1650		1490		1690		827		2050		1514
Magnesium (dissolved)	μg/L				23250		24250		21500	15556		22475		19700		18600		18700		22000		19750
Manganese (dissolved)	μg/L			<	2.0	<	2.0		2.2	1.0		0.2	<	0.01		0.04		5.14		0.36		1.39
Molybdenum (dissolved)	μg/L		9200		0.80		0.82		0.71	0.67		0.76		0.63		0.61		0.26		0.91		0.60
Sodium (dissolved)	μg/L				5025		5175		4775	3738		5418		4710		5130		5430		5490		5190
Nickel (dissolved)	μg/L		490	۷	1.0	<	1.0	<	1.0	0.3		0.3		0.3		0.3		0.3		0.4		0.3
Phosphorus (dissolved)	µg/L				610		14		6	< 3	•	< 3		3		4	<	3		3		3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50	0.04	T	0.07	<	0.09	<	0.09		0.21	<	0.09	<	0.12
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.50	<	0.50	< 0.90	•	< 0.90	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0	0.38	t	0.70		0.6		0.53		1.07	T	0.82		0.76
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0	0.09	ŀ	< 0.06	<	0.06	<	0.06	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L				210		220	1	210	169	t	238		241		263		246	T	286		259
Titanium (dissolved)	μg/L		l	<	5.0	<	5.0	<	5.0	1.14	T	0.06		0.13		0.07		7.49	<	0.05	<	1.94
Thallium (dissolved)	µg/L	l	510	<	0.050	<	0.050	<	0.050	< 0.005	ţ.	< 0.005	<	0.005	<	0.005	<	0.005	İ	0.006		0.005
Uranium (dissolved)	µg/L	20	420		3.975	1	3.775	t	2.800	2.325	t	2.970		2.600		2.370	1	0.600	\square	3.160		2.183
Vanadium (dissolved)	µg/L		250		0.57	1	0.55	t	0.52	0.42	t	0.56		0.38		0.41	t	0.43	t	0.59		0.45
Zinc (dissolved)	µg/L		1100	<	5	<	5	<	5	< 2	t	3	<	2	<	2	<	2	<	2	<	2
Lead-210	Bq/L	0.2		<	0.02	F	0.10	h	0.11	< 0.02	1.	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.02	<	0.04	<	0.04	0.01	t	0.02	<	0.01	<	0.01	<	0.02	<	0.02	<	0.02
Thorium-230	Bq/L	0.45		<	0.07	<	0.07	<	0.07	< 0.02	1.	< 0.02	<	0.01	<	0.02	<	0.01	<	0.01	<	0.02
Thorium-232	Bq/L	0.6		<	0.07	<	0.07	<	0.07	< 0.02	1.	< 0.02	<	0.02	~	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	54L	<u> </u>		ŀ.	0.00	1	0.00		0.00	0.02	$^{+}$	0.02	È	0.02	-	0.02	È	0.02	È	0.02	-	5.02
ODO % Sat	%			-	_1	⊢	_1	-	_1	_1	+	_1	-	_2	⊢	2	┢──	_2	⊢	59.0		
ODO % Sat				-	_1	┢	_1	-	_1	1	+	1		_2	⊢	_2	┢	2	⊢			
-	mV			-	_1	┢	_1	-	_1	_1	+	_1	-	_ ²	-	_2	⊢	_2	┢	116.8		
SPC	µs/cm			-	_1	┢		-	_1	1	+	-' -1		_2 _2	⊢	_2	⊢	_2 _2	⊢	711.0		
Temperature	°C			-	-	┢	-	-	-	1	+	-	<u> </u>	_2 _2	-	_2	┢──	_2 _2	⊢	10.3		
Turbidity	FNU			_	- ¹ 1	⊢	_1 _1	L	_1 _1		1	_1 1	L	-2	L		⊢		1	5.2		
pH	Units				-'		- ¹		_1	-1		-1		-2		_ ²	L	_2		7.52		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

³ Insufficient volume of groundwater for full sample collection

----Nodata.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 138 of 172

Information Use

Table 47: PG-BH1003D

												PG	BH1	1003D								
		Crit	teria		2017	Γ	2018	Γ	2019	2020	Τ	2021						2022				
Parameter	Units	COPC	Table 3			-			verage		-		20	22/03/02	20	22/06/21	20	22/09/01	20	22/12/06	A	verage
рН	pН				7.87	Γ	7.81	Ĺ	7.85	7.68	Т	7.67		7.67		7.73		7.65		7.80		7.71
Alkalinity	mg/L as CaCO ₃				240	\vdash	245	⊢	240	254	t	298		253		245		244		229		243
Carbonate	mg/L as CaCO ₃			⊢	1.7	\vdash	1.5	┢	1.6	< 1.0	<	: 1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				240	\vdash	245	⊢	240	254	t	298		253		245		244		229		243
Total Dissolved Solids	mg/L			-	407	\vdash	375	⊢	431	423	+	447		437		406		431		409		421
Fluoride	mg/L	1.5			0.12	<	0.10	<	0.10	0.07	+	0.07	<	0.06	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2.0	-	2.0	-	2.1	1.0	+	2.0		1.0		1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L				1.4	+	1.3	┢	1.3	1.5	+	2.0	-	1.0		1.0		1.0		1.0	-	1.0
Ammonia+Ammonium (N)	as N mg/L			<	0.05	\vdash	0.06	⊢	0.09	< 0.04	-	0.04	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L			-	18	\vdash	14	┢	15	17	1	19	-	22	-	26	-	23	-	22	-	23
Sulphate (dissolved)	mg/L			-	64	\vdash	63	┢	62	64	╈	62		59		60		54		62	-	59
Bromide (dissolved)	mg/L			2	1.0	2	1.0	<	1.0	< 0.3	-	0.3	~	0.3	2	0.3	<	0.3	<	0.3	2	0.3
Nitrite (as N)	as N mg/L			~	0.01	2	0.01	2	0.01	< 0.03		0.03	~	0.03	~	0.03	<	0.03	2	0.03	<	0.03
Nitrate (as N)	as N mg/L			-	7.74	-	8.89	-	8.17	7.63	+	9.16		9.07		9.46	-	9.16		8.27	-	8.99
Nitrate + Nitrite (as N)	as N mg/L			⊢	7.74	\vdash	8.89	⊢	8.17	7.63	+	9.16	-	9.07		9.46		9.16		8.27	-	8.99
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.09	<	0.10	< 0.01	-	0.01	<	0.01	<	0.01	<	0.01	<	0.27	<	0.01
Hardness	mg/L as CaCO ₃	· ·	0.20	Ê	323	Ê	340	È	348	407	f	542	-	378	~	414	-	329	-	344	-	366
Silver (dissolved)	µg/L as caco ₃		1.5	~	0.10	<	0.10	<	0.10	0.06	-	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L		1.5	2	5	<u> </u>	18	2	5	614	F	3	2	1	~	2	~	1	2	1	-	1
Arsenic (dissolved)	μg/L	25	1900	È	1.0	-	1.0	È	1.0	0.3	+	0.2	-	0.3	2	0.2	-	0.2	-	0.4	-	0.3
Barium (dissolved)	μg/L	1000	29000	È	58	È	59	È	61	70	+	61		61.3	-	68	È	70	-	73	-	68
Beryllium (dissolved)	µg/L	1000	67	2	0.50	2	0.50	<	0.50	0.030	12	0.007	2	0.007	2	0.007	<	0.007	2	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	-	13	2	10	2	10	8	F	9	~	8	~	10	-	7	-	8	-	8
Bismuth (dissolved)	µg/L	5000	40000	/	1.0	È	1.0	<	1.0	0.008	╋	0.009	/	0.010	/	0.010		0.010	/	0.010	/	0.010
Calcium (dissolved)	µg/L			È	92750	È	98000	È	99250	108550	+	107500	È	100000	-	122000	È	97600	È	104000	È	105900
Cadmium (dissolved)		5	2.7	<	0.10	<	0.10	<	0.10	0.02	+	0.01	-	0.006		0.003	<	0.003		0.004	<u> </u>	0.004
Cobalt (dissolved)	µg/L µg/L	5	66	-	0.10	-	0.10	<	0.50	0.02	+	0.01		0.008	~	0.003	~	0.003	-	0.004	-	0.004
Chromium (dissolved)	µg/L		810	È	5.0	È	5.0	È	5.0	2.1	+	1.7		1.59		1.34		1.45		1.35	-	1.43
Copper (dissolved)	µg/L	1000	87	~	1.0	È	1.0	<	1.0	1.5	+	0.9		0.8		0.7		0.5		0.9	<u> </u>	0.7
Iron (dissolved)	μg/L	1000	0/	\$ _	100	~	100	~	100	579	+	8		0.0		7	-	7		7		7
				`	790	~	838	È	853	1073	╋	1019	`	977	`	1080	`	1020	`	1020	~	1024
Potassium (dissolved)	µg/L			-	22000	-	23000	⊢	23000	22025	+	23900		24100		22500		21800		21600	-	22500
Magnesium (dissolved) Manganese (dissolved)	µg/L			-	22000	-	23000	-	2.0	22025	╀	0.4		0.24		0.39		0.01		0.14	<u> </u>	0.20
	µg/L		9200	<u> </u>		<u> </u>		<		0.45	╋		<u> </u>				~	0.01	-	0.14	-	
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50 4525	<	0.50 4525		+	0.24 4950		0.33		0.21				4600	<u> </u>	0.24 4778
Sodium (dissolved)	µg/L		490	-	1.0	-	4525	-	4525	4645 0.8	╀	4950		4920 0.5		4960 0.3		4630 0.2		4600	-	0.3
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	212	30	+	0.4		0.5 9		9		3		3	<u> </u>	0.3
Phosphorus (dissolved)	µg/L	10	25		0.50	-	0.50		0.50	0.38	+	4		9		0.09	<	0.09		0.09		0.09
Lead (dissolved)	µg/L	10 6	25	<	0.50	<	0.50	<	0.50	< 0.90	+	0.07	<	0.09	<	0.09	<	0.90	< <	0.09	<	0.09
Antimony (dissolved)	µg/L			<		<		<			<		<		<		<	0.90	<		<	
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0	0.7	╀	0.9		0.6		0.68		0.06		0.84	<u> </u>	0.66
Tin (dissolved) Strontium (dissolved)	µg/L			<	225	<	228	<	228	243	+	250		252	<	256	<	242	<	258	<u> </u>	252
Titanium (dissolved)	µg/L			-	5.0	\vdash	5.2	-	5.0	243	+	0.21	-	0.07		0.10	c .	0.05	-	0.05	-	252
Thallium (dissolved) Thallium (dissolved)	µg/L		510	Ś	0.050	-	0.050	<	0.050	30.35		0.21	-	0.07	-	0.10	<	0.05	<	0.05	<	0.07
. ,	µg/L	20	510 420	<	0.050	<	0.050	<	0.050	1.538	+	0.640	<	0.005	5	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420 250	⊢	0.653	\vdash	0.538	\vdash	0.625	1.538	+	0.640	┣	0.666		0.629	-	0.767	-	0.694	-	0.689
Vanadium (dissolved)	µg/L		250	<	0.68	-	0.73	-	0.70	1.71	+	4		9	-	2	<	2	<	2	<	4
Zinc (dissolved)	µg/L Ra/l	0.2	1100	<		<		<			+		-		<		<		<		<	
Lead-210 Radium 226	Bq/L Bg/l	0.2		<	0.02	<	0.10	<	0.10	0.02	+	0.02	< -	0.02	~	0.02	<	0.02	< 	0.02	<u> </u>	0.02
Radium-226	Bq/L	0.49	<u> </u>	<	0.04	<	0.04	<	0.04	< 0.01	+	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65	-	<	0.07	<	0.07	<	0.07	< 0.02	1	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.6		<	0.06	<	0.06	<	0.06	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				⊢	_1	-	_1	\vdash	_1	_1	+	_1	—	2		02.4	-	2	-	75.4	<u> </u>	
ODO % Sat	%			-	_1	\vdash	_1	\vdash	_1	_'	+	1	-	_2 _2	-	83.4	-	_2	-	75.1	<u> </u>	
ORP	mV			⊢	_1	-	_1	-	_1	_1 _1	+	-'	-	_2 _2		146.4	-	_2	-	144.3	<u> </u>	
SPC	µs/cm			-		-	-1	1			+		-	-2		694.0	-	-2	-	683.0	<u> </u>	
Temperature	°C			-	_1	-	-	-	_1	_1 _1	+	_1	 	-		14.1	-	-	-	9.7	<u> </u>	
Turbidity	FNU			⊢	_1	1	_1	1	_1	_1	+	_1	L	-2		17.0		-2	-	273.27	<u> </u>	
pH	Units				_1	1	_1		-1	-1		-1		_2		7.57		_2		7.33		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 139 of 172

Information Use

Table 48: PG-MW03-01B

ParameterIbitaCOPCTableParameterParamete									PG-	MW03-01B		-																		
ParameterUnitsCOPCFalorsAverage202.0029 <t< th=""><th></th><th></th><th>Crit</th><th>teria</th><th>2017</th><th>2018</th><th>2019</th><th>2020</th><th></th><th></th><th></th><th>2022</th><th></th><th></th></t<>			Crit	teria	2017	2018	2019	2020				2022																		
pinp	Parameter	Units					Average		1	2022/03/29	2022/06/27	2022/10/06	2022/12/21	Average																
Akainymyl.a s c.c.O. put. so c.c.O. Tablasolved Solutionmyl.a s c.c.O. myl.a sc.c.O.Image: solution myl.a sc.c.O. myl.a sc.c.O.Image: solution myl.a sc.c.O. <t< td=""><td>рН</td><td>рH</td><td></td><td></td><td>No Samp</td><td>le due to cor</td><td></td><td>7.83</td><td>7.79</td><td></td><td>No Sample²</td><td></td><td></td><td>7.86</td></t<>	рН	рH			No Samp	le due to cor		7.83	7.79		No Sample ²			7.86																
Carboards mg/L as CaCO, N	Alkalinity							866	296	1300			158	729																
Bischende mg/L SCO. Mg/L	-	- 3										-		< 1.0																
Taci Dasolved Solidsmgl,1.5Imagemgl,1.6ImageMgl, <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>729</td></t<>														729																
Pipenta mg/L 1.5 M M 0.03 0.07 0.01 M 0.01 Diasolved Organe Carlon mg/L N <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>316</td></td<>														316																
Tail Organic Carbon mg/L model model <td></td> <td></td> <td>15</td> <td></td> <td>0.16</td>			15											0.16																
Dasked Organic Carten mg/L model Amound Amo			1.5											1.0																
Among-A	-	_												1.0																
Chonder (dissolved) mg/L mg/L <thmg l<="" th=""> mg/L <thmg l<="" th=""> mg/L mg/L<td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.07</td></thmg></thmg>	-													0.07																
Saphate (idea)very mg/L mg/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13</td>														13																
Brande (issolved) myL model														74																
Nintr (an N)as N mgL <th< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		_																												
Nitrake Nitrik (ss) s N mg/L Image		_																												
Intrate Intrate <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-																												
Marcury (slashved) pgL 1 0.22 0.01 0.01 0 <th0< th=""> 0</th0<>		-																												
Hardness mg/L & GaCO, by er (dasolved) mg/L 15 model 6.258 96:00 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013				0.00					-																					
Sker (dssolved) ypl. 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 0.05 0.07 0.007 0.007 0.007 0.007 0.001 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 0.011 0.033 0.011 0.003 0.007 0.020 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 </td <td></td> <td></td> <td>1</td> <td>0.29</td> <td></td>			1	0.29																										
Aumman (dissolved) up(L) 25 1900 1 1 1 1 1 1 Arsenic (dissolved) up(L) 1000 28000 - - 1				4.5										8169																
Arsenic (dissolved) pgL 12 12 12 10 10 Barlum (dissolved) pgL 1000 28000 67 54 58 57 Barlum (dissolved) pgL 600 4600 12 14 38 12 12 Barn (dissolved) ugL 5000 4600 12 14 38 12 12 Barn (dissolved) ugL 5000 4600 4 0.007 0.000 0.010 < <td><<td>0.010 <<td><<td>0.010 <<td><<td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td><td></td><td></td><td> </td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td></td></td></td>	< <td>0.010 <<td><<td>0.010 <<td><<td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td><td></td><td></td><td> </td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td></td></td>	0.010 < <td><<td>0.010 <<td><<td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td><td></td><td></td><td> </td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td></td>	< <td>0.010 <<td><<td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td><td></td><td></td><td> </td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td>	0.010 < <td><<td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td><td></td><td></td><td> </td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	< <td>0.010 0.010 0.010 0.010 0.011 0.013 0.</td> <td></td> <td></td> <td> </td> <td>1.5</td> <td></td>	0.010 0.010 0.010 0.010 0.011 0.013 0.				1.5																				
Brun (dissolved) up(L) 1000 26000 (m) 67 54 58 (m) 677 54 58 Baryllan (dissolved) up(L) 500 657 (m) (m) 0.010 (m)														8																
Berylam (dissolved) µpL 600 45000 < < 0.007 < 0.007 0.001 < < 0.007 0.007 0.007 0.001 < 0.001 < 0.001 < < 0.001 < < 0.001 < < 0.001 < < 0.001 < < 0.001 < < 0.001 < < 0.003 0.007 0.020 0.013 0.003 0.007 0.020 0.013 0.011 < < 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.011 < <th>0.013 0.013 0.011 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013</th>	0.013 0.013 0.011 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013														1.0															
Bornon (dissolved) pgL 5000 45000 1 1 1 38 1 1 2 Bamuth (dissolved) pgL 0 0.009 0.010 <	< <td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td></td></td></td></td></td>	0.02 < <td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td></td></td></td></td>	< <td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td></td></td></td>	0.02 < <td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td></td></td>	< <td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td></td>	0.02 < <td><<td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td></td>	< <td>0.02 <<td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td></td>	0.02 < <td><<td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td></td>	< <td>0.02 <<td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td></td>	0.02 < <td><<td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td></td>	< <td>0.02 <<td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td></td>	0.02 < <td><<td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td></td>	< <td>0.033 0.03 0.011 1.83 0.111 <<td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td></td>	0.033 0.03 0.011 1.83 0.111 < <td><<td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td></td>	< <td>0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300</td> <td></td> <td></td> <td>1000</td> <td></td> <td>57</td>	0.03 0.011 1.030 0.033 0.011 0.03 0.011 1.030 Magainese (dissolved) pgL 1.02 1.02 1.02 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300 1.0300			1000											57
Bamuth (dssolved) ygL Image: constraint of the solution of the soluti														0.009																
Calcum (dissolved) µg/L F 2.7 0.003 0.007 0.020 < 0.003 Cadmim (dissolved) µg/L 66 0.006 0.017 0.200 <	<<0.08	<<0.2	<	<0.02	0.08 110 1.133 0.11 <<0.08			5000	45000										25											
Cadmium (dissolved) µpL 5 2.7 0.003 0.007 0.020 < 0.003 Cobat (dissolved) µpL 86 0.011 1.13 0.111 <																														
Cobalt (dissolved) upl. 66 0.06 0.17 0.200 0.133 0.133 Chromium (dissolved) upl. 100 87 0.11 1.83 0.11 <	Calcium (dissolved)	µg/L												74500																
Chromium (dissolved) µg/L 840 0 0.11 1.83 0.11 < 0.08 Copper (dissolved) µg/L 1000 87 0 0.7 4.8 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2 0.2 0.2 0.2 0.33 0.11 1.83 0.11 1.83 0.011 1.83 0.011 1.83 0.01 3.33 0 Magnesse (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L 1.55 1 Molybdenum (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese (dissolved) µg/L Imaginese	Cadmium (dissolved)	µg/L	5											0.012																
Copper (dissolved) µgL 1000 87 0 0.7 4.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2 0.2 0.2 < 0.2 <th0.2< th=""> 0.2 <th0.2< th=""> 0.2 0.2</th0.2<></th0.2<>		µg/L												0.167																
Iron (dissolved) µg/L Imagesium (diss		µg/L		810				0.11	1.83	0.11			< 0.08	0.10																
Potassium (dissolved) µg/L Image (lissolved) Image (lissolved) µg/L Image (lissolved) Image (lissolved) µg/L Image (lissolved) Image (lissolved) µg/L Image (lissolved) <t< td=""><td>Copper (dissolved)</td><td>µg/L</td><td>1000</td><td>87</td><td></td><td></td><td></td><td>0.7</td><td>4.8</td><td>< 0.2</td><td></td><td></td><td>< 0.2</td><td>< 0.2</td></t<>	Copper (dissolved)	µg/L	1000	87				0.7	4.8	< 0.2			< 0.2	< 0.2																
Magnesium (dissolved) µp/L Image Imag	Iron (dissolved)	µg/L						119	2063	60			33	47																
Manganese (dissolved) $\mu g/L$ S200 12.3 27.9 14.7 15.5 Molybdenum (dissolved) $\mu g/L$ 9200 0.89 1.19 1.02 1.20 Sodium (dissolved) $\mu g/L$ 490 0.89 1.19 1.02 8440 Nickel (dissolved) $\mu g/L$ 490 0.3 1.6 0.6 0.3 Lead (dissolved) $\mu g/L$ 10 25 0.03 0.11 0.09 <<0.09	Potassium (dissolved)	µg/L						1130	1388	1410			1520	1465																
Moybdenun (dissolved) $\mu g/L$ 9200 0.89 1.19 1.02 1.20 Sodium (dissolved) $\mu g/L$ 490 0.3 1.6 0.6 0.3 Nickel (dissolved) $\mu g/L$ 490 0.3 1.6 0.6 0.3 Phosphorus (dissolved) $\mu g/L$ 10 25 0.03 0.11 0.09 <<0.09	Magnesium (dissolved)	µg/L						14325	14050	13100			13800	13450																
Solum (dissolved) µg/L 490 4583 4553 4630 8440 Nickel (dissolved) µg/L 490 0.3 1.6 0.6 0.3 1 Phosphorus (dissolved) µg/L 490 3 5 10 <	Manganese (dissolved)	µg/L						12.3	27.9	14.7			15.5	15.1																
Nickel (dissolved) µg/L 490 0.3 1.6 0.6 0.3 0.3 Phosphorus (dissolved) µg/L 10 25 0.03 0.11 <0.09	Molybdenum (dissolved)	µg/L		9200				0.89	1.19	1.02			1.20	1.11																
Phosphorus (dissolved) $\mu g/L$ IO $<$ 3 5 10 $<$ 3 Lead (dissolved) $\mu g/L$ 10 25 0.03 0.11 $<$ 0.09 $<$ 0.09 $<$ 0.09 $<$ 0.09 $<$ 0.09 $<$ 0.09 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$ 0.90 $<$	Sodium (dissolved)	µg/L						4583	4553	4630			8440	6535																
Lead (dissolved) $\mu g/L$ 10260.030.01 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.014 0.05 0.005 0.05 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.021 0.005 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0	Nickel (dissolved)			490				0.3	1.6	0.6			0.3	0.5																
Lead (dissolved) $\mu g/L$ 10 25 0.03 0.11 < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < 0.09 < < < 0.09 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Phosphorus (dissolved)	µg/L						< 3	5	10			< 3	7																
Antimony (dissolved) µg/L 6 2000 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.034 0.16 0.04 0.024 0.04 0.05 1.18 0.05 1.18 1.12 1.18 0.05 0.005 <th< td=""><td></td><td></td><td>10</td><td>25</td><td></td><td></td><td></td><td>0.03</td><td>0.11</td><td>< 0.09</td><td></td><td></td><td>< 0.09</td><td>< 0.09</td></th<>			10	25				0.03	0.11	< 0.09			< 0.09	< 0.09																
Selenium (dissolved) µg/L 10 63																														
Tin (dissolved) µg/L Image: Constraint of the solution of the solutio			10	63				< 0.04	0.09	< 0.04			0.04	0.04																
Strontium (dissolved) µg/L Image: constraint of the second secon														0.35																
Ttanium (dissolved) µg/L Image: Constraint of the second														150																
Thallium (dissolved) $\mu g/L$ 510 Image: solved of the solution of t														0.62																
Uranium (dissolved) µg/L 20 420 0.285 0.323 0.550 0.410 Vanadium (dissolved) µg/L 250 0 0.40 0.23 0.54 0.410 0.455 Zinc (dissolved) µg/L 1100 2 4 5 <	. ,			510																										
Vanadium (dis solved) $\mu g/L$ 250 0 0.40 0.23 0.54 0.45 0.45 Zinc (dissolved) $\mu g/L$ 1100 2 4 5 <<2			20											0.480																
Zinc (dissolved) $\mu g/L$ 1100 2 4 5 < 2 < Lead-210 Bq/L 0.2 0.2 0.2 0.02 0.02 < 0.02												-		0.50																
Lead-210 Bq/L 0.2 Image: constraint of the system of t														< 4																
Radium-226 Bq/L 0.49 0.01 0.02 <.0.01 <.0.01 <			0.2	1100																										
Thorium-230 Bq/L 0.65 Image: constraint of the system 0.02 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.02 0.02 0.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																														
Thorium-232 Bq/L 0.6 Image: constraint of the system o		-																												
Field Parameters Image: state st		-																												
ODO % Sat % -1 -1 -1 -1 -1 81.7 55.0 ORP mV -1 -1 -1 -1 77.3 81.8 SPC µs/cm -1 -1 -1 -1 77.3 81.8 Temperature °C -1 -1 -1 -1 488.3 175.7 Turbidity FNU -1 -1 -1 -1 2315.40 51.52		Bq/L	0.6					0.02	< 0.02	< 0.02			< 0.02	< 0.02																
ORP mV Image: system state					4	4	4	4	4																					
BPC µs/cm -1 -1 -1 -1 48.3 175.7 Temperature °C -1 -1 -1 -1 6.556 8.080 Turbidity FNU -1 -1 -1 -1 2315.40 51.52						-			-																					
Temperature °C -1 -1 -1 -1 6.556 8.080 Turbidity FNU -1 -1 -1 -1 2315.40 51.52					-	_		_																						
Turbidity FNU -1 -1 -1 -1 2315.40 51.52																														
							-		_1																					
pH Units -1 -1 -1 -1 7.78 8.06	Turbidity	FNU			-1	-	-	-	_1	2315.40			51.52																	
	pH	Units			-1	-1	-1	_1	-1	7.78			8.06																	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 140 of 172

Information Use

Table 49: PG-MW03-01C

						00.15	0000		MW03-01C				
			teria	2017	2018	2019	2020	2021			2022		
Parameter	Units	COPC	Table 3			Average			2022/03/29	2022/06/27	2022/09/14	2022/12/07	Average
pН	pН			No Samp	le due to cor	Istruction	7.54	7.56	7.65	7.42	7.52	7.73	7.58
Alkalinity	mg/L as CaCO $_{\scriptscriptstyle 3}$						423	469	304	319	312	305	310
Carbonate	mg/L as CaCO $_{\scriptscriptstyle 3}$						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as $\text{CaCO}_{\scriptscriptstyle 3}$						423	469	304	319	312	305	310
Total Dissolved Solids	mg/L						499	540	483	489	566	534	518
Fluoride	mg/L	1.5					0.08	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Total Organic Carbon	mg/L						1.0	1.0	1.0	1.0	1.0	1.0	1.0
Dissolved Organic Carbon	mg/L						1.5	1.3	2.0	1.0	2.0	1.0	1.5
Ammonia+Ammonium (N)	as N mg/L						0.04	< 0.04	< 0.04	0.04	< 0.04	0.06	0.05
Chloride (dissolved)	mg/L						43	58	53	52	52	75	58
Sulphate (dissolved)	mg/L						53	59	61	53	55	50	55
Bromide (dissolved)	mg/L						< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L						< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L						3.82	3.34	2.98	2.74	2.66	2.67	2.76
Nitrate + Nitrite (as N)	as N mg/L						3.82	3.34	2.98	2.74	2.66	2.67	2.76
Mercury (dissolved)	µg/L	1	0.29				0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃						10740	3863	417	416	434	393	415
Silver (dissolved)	µg/L		1.5				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	µg/L						12	2	1	< 1	1	< 1	< 1
Arsenic (dissolved)	µg/L	25	1900				0.23	0.58	0.50	0.60	0.40	< 0.20	0.43
Barium (dissolved)	µg/L	1000	29000				40	44	39.1	42	51	37	42
Beryllium (dissolved)	μg/L	1000	67				0.009	< 0.007	< 0.007	< 0.007	< 0.007	0.010	0.008
Boron (dissolved)	μg/L	5000	45000				20	19	21	27	28	21	24
Bismuth (dissolved)	µg/L	3000	43000				< 0.007	0.009	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Calcium (dissolved)	µg/L						163250	167250	145000	150000	152000	138000	146250
· /		5	2.7				0.005	0.004	0.010	< 0.003	< 0.003	< 0.003	0.005
Cadmium (dissolved) Cobalt (dissolved)	µg/L	5	66				0.005	0.004	0.010	0.003	< 0.003	0.003	0.005
. ,	µg/L												
Chromium (dissolved)	µg/L	4000	810				0.61	0.64	0.53	0.68	0.65	0.46	0.58
Copper (dissolved)	µg/L	1000	87				0.6	0.6	1.1	0.4	0.7	0.4	0.7
Iron (dissolved)	µg/L						26	10	< 7	< 7	< 7	< 7	< 7
Potassium (dissolved)	µg/L						568	580	559	551	544	514	542
Magnesium (dissolved)	µg/L						9775	10153	10100	10700	10300	10800	10475
Manganese (dissolved)	µg/L						1.07	0.25	0.53	0.09	0.19	0.03	0.21
Molybdenum (dissolved)	µg/L		9200				0.13	0.07	0.04	< 0.04	< 0.04	0.05	0.04
Sodium (dissolved)	µg/L						14275	18175	22600	23100	21500	19400	21650
Nickel (dissolved)	µg/L		490				0.2	0.3	0.6	0.2	0.2	0.2	0.3
Phosphorus (dissolved)	µg/L						< 3	< 3	< 3	< 3	< 3	< 3	< 3
Lead (dissolved)	µg/L	10	25				0.02	0.07	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Antimony (dissolved)	µg/L	6	20000				< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Selenium (dissolved)	µg/L	10	63				0.59	0.44	0.56	0.51	0.55	0.70	0.58
Tin (dissolved)	µg/L						0.10	0.09	0.12	< 0.06	0.51	< 0.06	0.19
Strontium (dissolved)	µg/L						281	306	279	282	286	255	276
Titanium (dissolved)	µg/L						1.23	0.12	< 0.05	< 0.05	0.11	0.07	0.07
Thallium (dissolved)	µg/L		510				0.006	0.006	0.005	< 0.005	0.009	0.013	0.008
Uranium (dissolved)	µg/L	20	420				0.499	0.504	0.444	0.451	0.464	0.446	0.451
Vanadium (dissolved)	µg/L		250				0.65	0.64	0.54	0.55	0.62	0.55	0.57
Zinc (dissolved)	µg/L		1100				< 2	4	4	< 2	< 2	< 2	3
Lead-210	Bq/L	0.2					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	0.49					< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.01	0.01
Thorium-230	Bq/L	0.65					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	0.6					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters													
ODO % Sat	%			-1	_1	_1	_1	_1	69.3	67.6	54.7	41.0	
ORP	mV			_1	_1	_1	_1	_1	93.1	125.9	231.5	151.8	
SPC	µs/cm			_1	_1	_1	_1	_1	825.0	845.0	574.0	860.0	
Temperature	°C			_1	_1	_1	_1	_1	7.891	11.553	12.247	10.524	
Turbidity	FNU			_1	_1	_1	_1	_1	5506.50	446.72	30.95	3.14	
pH	Units			_1	_1	_1	_1	_1	7.29	7.57	7.40	7.29	
	onica			-	-	-	-	-	1.23	1.01	1.40	1.23	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 141 of 172

Information Use

Table 50: PG-MW03-02A

								PG-I	WW03-02A				
		Crit	teria	2017	2018	2019	2020	2021			2022		
Parameter	Units	COPC	Table 3			Average		I				2022/12/09	Average
рH	pН			No Samp	le due to cor			No Sample	No Sam	ple due to we	ll da mage	7.88	7.88
Alkalinity	mg/L as CaCO ₃											382	382
Carbonate	mg/L as CaCO3											< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃											382	382
Total Dissolved Solids	mg/L											257	257
Fluoride	mg/L	1.5										0.21	0.21
Total Organic Carbon	mg/L	1.5					-					< 1.0	< 1.0
Dissolved Organic Carbon	mg/L						-					< 1.0	< 1.0
Ammonia+Ammonium (N)	as N mg/L											0.07	0.07
Chloride (dissolved)	-											5	5
Sulphate (dissolved)	mg/L											27	27
	mg/L											_	
Bromide (dissolved)	mg/L											< 0.3	< 0.3
Nitrite (as N)	as N mg/L											< 0.03	< 0.03
Nitrate (as N)	as N mg/L											0.13	0.13
Nitrate + Nitrite (as N)	as N mg/L		0.55									0.13	0.13
Mercury (dissolved)	µg/L	1	0.29									< 0.01	< 0.01
Hardness	mg/L as CaCO ₃											661	661
Silver (dissolved)	µg/L		1.5				< 0.05					< 0.05	< 0.05
Aluminum (dissolved)	µg/L						2					3	3
Arsenic (dissolved)	µg/L	25	1900				1.9					1.70	1.70
Barium (dissolved)	μg/L	1000	29000				62.4					68	68
Beryllium (dissolved)	µg/L		67				< 0.007					< 0.007	< 0.007
Boron (dissolved)	µg/L	5000	45000				15					58	58
Bismuth (dissolved)	μg/L						< 0.007					< 0.010	< 0.010
Calcium (dissolved)	µg/L						39000					43300	43300
Cadmium (dissolved)	µg/L	5	2.7				0.003					0.004	0.004
Cobalt (dissolved)	µg/L		66				0.035					0.090	0.09
Chromium (dissolved)	µg/L		810				0.15					0.20	0.20
Copper (dissolved)	µg/L	1000	87				0.4					2.3	2.3
Iron (dissolved)	µg/L						< 7					< 7	< 7
Potassium (dissolved)	µg/L						1410					1220	1220
Magnesium (dissolved)	µg/L						25100					18300	18300
Manganese (dissolved)	µg/L						10.5					17.3	17.3
Molybdenum (dissolved)	μg/L		9200				1.03					1.01	1.01
Sodium (dissolved)	μg/L						6820					5180	5180
Nickel (dissolved)	μg/L		490				0.4					0.3	0.3
Phosphorus (dissolved)	μg/L						< 3					11	11
Lead (dissolved)	μg/L	10	25				0.01					< 0.09	< 0.09
Antimony (dissolved)	µg/L	6	20000				< 0.90					< 0.90	< 0.90
Selenium (dissolved)	μg/L	10	63				< 0.04					0.06	0.06
Tin (dissolved)	µg/L	10					0.20					0.00	0.11
Strontium (dissolved)							482					297	297
	µg/L						0.11					0.59	0.59
Titanium (dissolved)	µg/L												
Thallium (dissolved)	µg/L		510				0.010					0.007	0.007
Uranium (dissolved)	µg/L	20	420				0.591					0.188	0.188
Vanadium (dissolved)	µg/L		250				1.14					0.87	0.87
Zinc (dissolved)	µg/L		1100				< 2					< 2	< 2
Lead-210	Bq/L	0.2					< 0.02					< 0.02	< 0.02
Radium-226	Bq/L	0.49					0.13					0.02	0.02
Thorium-230	Bq/L	0.65					< 0.04					< 0.03	< 0.03
Thorium-232	Bq/L	0.6		L			< 0.04			L	L	< 0.03	< 0.03
Field Parameters													
ODO % Sat	%						-1					_2	
ORP	mV						-1					_2	
SPC	µs/cm						_1					-2	
Temperature	°C						_1					-2	
Turbidity	FNU						_1					_2	
pН	Units						_1					_2	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 142 of 172

Information Use

Table 51: PG-MW03-02B

Parameter pH	Units		teria Table 3	2017	2018	2019	2020	2021			2022	
рН	Units	COPC										A
			Tuble o	No Come	-	Average		No Como la		well Da	amaged	Average
	pH			No Samp	le due to cor	Istruction	7.91	No Sample				
Alkalinity	mg/L as CaCO ₃						219					-
Carbonate	mg/L as CaCO ₃						< 1.0					
Bicarbonate	mg/L as CaCO ₃						219					
Total Dissolved Solids	mg/L						286					
Fluoride	mg/L	1.5					0.08					
Total Organic Carbon	mg/L						1.0					
Dissolved Organic Carbon	mg/L						1.0					
Ammonia+Ammonium (N)	as N mg/L						0.07					
Chloride (dissolved)	mg/L						2					
Sulphate (dissolved)	mg/L						30					
Bromide (dissolved)	mg/L						< 0.3					
Nitrite (as N)	as N mg/L						< 0.03					
Nitrate (as N)	as N mg/L						< 0.06					
Nitrate + Nitrite (as N)	as N mg/L						< 0.06					
Mercury (dissolved)	µg/L	1	0.29				0.01					
Hardness	mg/L as CaCO3						3993					
Silver (dissolved)	µg/L		1.5				< 0.05					
Aluminum (dissolved)	µg/L						8					
Arsenic (dissolved)	µg/L	25	1900				0.5					
Barium (dissolved)	µg/L	1000	29000				233					
Beryllium (dissolved)	µg/L		67				< 0.01					
Boron (dissolved)	µg/L	5000	45000				11					
Bismuth (dissolved)	µg/L						< 0.007					<u> </u>
Calcium (dissolved)	µg/L						59633					<u> </u>
Cadmium (dissolved)	µg/L	5	2.7				< 0.003					
Cobalt (dissolved)	µg/L		66				0.023					<u> </u>
Chromium (dissolved)	µg/L		810				0.34					
Copper (dissolved)	µg/L	1000	87				< 0.2					
Iron (dissolved)	μg/L		<u>.</u>				327					
Potassium (dissolved)	μg/L						990					
Magnesium (dissolved)	µg/L						14067					
Manganese (dissolved)	ру/L						17.44					
Molybdenum (dissolved)	μg/L		9200				0.83					───
Sodium (dissolved)	μg/L		3200				3540					
Nickel (dissolved)			490				0.1					
	µg/L		490									
Phosphorus (dissolved)	µg/L	40	25									-
Lead (dissolved)	µg/L	10	25				0.03					
Antimony (dissolved)	µg/L	6	20000				< 0.90					<u> </u>
Selenium (dissolved)	µg/L	10	63				< 0.04					
Tin (dissolved)	µg/L						0.09					
Strontium (dissolved)	µg/L						175					<u> </u>
Titan ium (dissolved)	µg/L						0.80					<u> </u>
Thallium (dissolved)	µg/L		510				< 0.005					<u> </u>
Uranium (dissolved)	µg/L	20	420				0.053					<u> </u>
Vanadium (dissolved)	µg/L		250				0.12					<u> </u>
Zinc (dissolved)	µg/L		1100				< 2					<u> </u>
Lead-210	Bq/L	0.2				L	< 0.02					L
Radium-226	Bq/L	0.49					< 0.01					
Thorium-230	Bq/L	0.65					< 0.02					
Thorium-232	Bq/L	0.6					< 0.02					
Field Parameters												
ODO % Sat	%						-1					
ORP	mV						-1					
SPC	µs/cm						_1					
							_1		1			
Temperature	°C						- '					
	°C FNU						_1					

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 143 of 172

Information Use

Table 52: PG-MW03-02C

									W03-02C					
			teria	2017	2018	2019	2020	2021			2022			
Parameter	Units	COPC	Table 3			Average						2022/12/08	Aver	rage
pН	pН			No Samp	le due to cor	struction	7.80	No Sample	No Sam	ple due to wel	ldamage	7.68	7.	7.68
Alkalinity	mg/L as $CaCO_3$						167					156	1	156
Carbonate	mg/L as \mbox{CaCO}_3						< 1.0					< 1.0		1.0
Bicarbonate	mg/L as $CaCO_3$						167					156		156
Total Dissolved Solids	mg/L						311					329	3	329
Fluoride	mg/L	1.5					0.06					< 0.06	< 0	0.06
Total Organic Carbon	mg/L						1.0					< 1.0	< 1	1.0
Dissolved Organic Carbon	mg/L						1.3					< 1.0	< 1	1.0
Ammonia+Ammonium (N)	as N mg/L						< 0.04					0.06	0	0.06
Chloride (dissolved)	mg/L						11					11	1	11
Sulphate (dissolved)	mg/L						91					90	ę	90
Bromide (dissolved)	mg/L						< 0.3					< 0.3	< (0.3
Nitrite (as N)	as N mg/L						< 0.03					< 0.03	< 0	0.03
Nitrate (as N)	as N mg/L						< 0.06					< 0.06	< 0	0.06
Nitrate + Nitrite (as N)	as N mg/L						< 0.06					< 0.06	< 0	0.06
Mercury (dissolved)	µg/L	1	0.29				0.04					0.03	0	0.03
Hardness	mg/L as $CaCO_3$						282					274	2	274
Silver (dissolved)	µg/L		1.5				< 0.05					< 0.05	< 0	0.05
Aluminum (dissolved)	µg/L						8					< 1	<	1
Arsenic (dissolved)	µg/L	25	1900				0.3					0.2	(0.2
Barium (dissolved)	µg/L	1000	29000				70					60	6	60
Beryllium (dissolved)	µg/L		67				< 0.01					< 0.007	< 0	0.01
Boron (dissolved)	µg/L	5000	45000				11					22	1	22
Bismuth (dissolved)	µg/L						0.008					< 0.010	< 0.	0.010
Calcium (dissolved)	µg/L						83425					74500	74	4500
Cadmium (dissolved)	µg/L	5	2.7				0.003					< 0.003	< 0.	0.003
Cobalt (dissolved)	µg/L		66				0.04					0.057	0	0.06
Chromium (dissolved)	µg/L		810				0.15					< 0.08	< 0	80.0
Copper (dissolved)	µg/L	1000	87				0.3					0.2	0	0.2
Iron (dissolved)	µg/L						115					138.0	1	138
Potassium (dissolved)	µg/L						1120					1360	13	1360
Magnesium (dissolved)	µg/L						14350					14300	14	4300
Manganese (dissolved)	µg/L						12.53					13.20	13	3.20
Molybdenum (dissolved)	µg/L		9200				0.93					0.98	0	0.98
Sodium (dissolved)	µg/L						4558					4440	44	4440
Nickel (dissolved)	µg/L		490				0.2					0.2	(0.2
Phosphorus (dissolved)	µg/L						< 3					3		3
Lead (dissolved)	µg/L	10	25				0.02					< 0.09	< 0	0.09
Antimony (dissolved)	µg/L	6	20000				< 0.90					< 0.90		0.90
Selenium (dissolved)	µg/L	10	63				< 0.04					< 0.04		0.04
Tin (dissolved)	µg/L						0.06					< 0.06		0.06
Strontium (dissolved)	µg/L						187					165		165
Titanium (dissolved)	µg/L						0.49					< 0.05		0.05
Thallium (dissolved)	µg/L		510				< 0.005					< 0.005		0.005
Uranium (dissolved)	µg/L	20	420				2.375					1.252		.252
Vanadium (dissolved)	µg/L		250				0.17					0.11		0.11
Zinc (dissolved)	µg/L		1100				< 2					< 2		2
Lead-210	Bq/L	0.2					< 0.02					< 0.02		0.02
Radium-226	Bq/L	0.49					0.01					< 0.01		0.01
Thorium-230	Bq/L	0.65					< 0.02					< 0.02		0.02
Thorium-232	Bq/L	0.6					< 0.02					< 0.02		0.02
Field Parameters													Ť	
ODO % Sat	%						_1					32.6		
	mV						_1					52.0		
ORP			1											
ORP SPC	us/cm						_1					254.4		
SPC	µs/cm °C						_1					254.4		
	µs/cm °C FNU						_1 _1 _1					254.4 11.098 18.86		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 144 of 172

Information Use

Table 53: PG-MW03-03A

								PG-I	WW03-03A				
		Crit	teria	2017	2018	2019	2020	2021			2022		
Parameter	Units	COPC	Table 3	1	1	Average	1					2022/12/07	Average
рН	рН			No Samp	le due to cor	nstruction	No Sample	No Sample	No Sam	ple due to we	l dama ge	No Sample ¹	
Alkalinity	mg/L as CaCO ₃									1			
Carbonate	mg/L as CaCO ₃												
Bicarbonate	mg/L as CaCO3												
Total Dissolved Solids	mg/L												
Fluoride	mg/L	1.5											
Total Organic Carbon	mg/L												
Dissolved Organic Carbon	mg/L												
Ammonia+Ammonium (N)	as N mg/L												
Chloride (dissolved)	mg/L												
Sulphate (dissolved)	mg/L												
Bromide (dissolved)	mg/L												
Nitrite (as N)	as N mg/L												
Nitrate (as N)	as N mg/L												
Nitrate + Nitrite (as N)	as N mg/L												
Mercury (dissolved)	µg/L	1	0.29									1	
Hardness	mg/L as CaCO ₃	-					1						
Silver (dissolved)	µg/L		1.5										
Aluminum (dissolved)	µg/L												
Arsenic (dissolved)	µg/L	25	1900										
Barium (dissolved)	μg/L	1000	29000			-							
Beryllium (dissolved)	μg/L	1000	67										
Boron (dissolved)	μg/L	5000	45000										
Bismuth (dissolved)	μg/L	3000	43000										
Calcium (dissolved)	μg/L											_	
Cadmium (dissolved)	μg/L	5	2.7									-	
Cobalt (dissolved)	μg/L	5	66										
Chromium (dissolved)			810										
Copper (dissolved)	μg/L μg/L	1000	87										
Iron (dissolved)	μg/L	1000	0/										
Potassium (dissolved) Magnesium (dissolved)	μg/L												
	μg/L μg/L											-	
Manganese (dissolved)			9200										
Molybdenum (dissolved)	µg/L		9200										
Sodium (dissolved)	μg/L		400										
Nickel (dissolved)	µg/L		490										
Phosphorus (dissolved)	µg/L	40											
Lead (dissolved)	µg/L	10	25									-	
Antimony (dissolved)	µg/L	6	20000										
Selenium (dissolved)	µg/L	10	63										
Tin (dissolved)	µg/L												
Strontium (dissolved)	µg/L												
Titanium (dissolved)	µg/L		F.40										
Thallium (dissolved)	µg/L		510										
Uranium (dissolved)	µg/L	20	420										
Vanadium (dissolved)	µg/L		250			-					-		
Zinc (dissolved)	µg/L		1100										
Lead-210	Bq/L	0.2											
Radium-226	Bq/L	0.49											
Thorium-230	Bq/L	0.65											
Thorium-232	Bq/L	0.6	<u> </u>			L				ļ	L		
Field Parameters						L							
ODO % Sat	%												
ORP	mV												
SPC	µs/cm												
Temperature	°C												
Turbidity	FNU												
pH	Units												
Note:													

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Insufficient volume of groundwater for full sample collection

-----Nodata.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 145 of 172

Information Use

Table 54: PG-MW03-03B

								PG-I	MW03-03B					
		Crit	teria	2017	2018	2019	2020	2021			2022			
Parameter	Units	COPC	Table 3			Average	·					2022/12/08	Ave	erage
pН	pН			No Samp	le due to cor	nstruction	7.90	7.92	No Samp	ole due to well	damage	7.78		7.78
Alkalinity	mg/L as CaCO ₃						208	238				1149		1149
Carbonate	mg/L as CaCO₃						< 1.0	< 1.0				< 1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃						208	238				1150		1150
Total Dissolved Solids	mg/L						248	254				211		211
Fluoride	mg/L	1.5					0.06	0.10				< 0.06	<	0.06
Total Organic Carbon	mg/L						< 1.0	< 1.0				< 1.0	<	1.0
Dissolved Organic Carbon	mg/L						< 1.0	1.0				< 1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L						0.07	0.04				0.08		0.08
Chloride (dissolved)	mg/L						2	2				2		2
Sulphate (dissolved)	mg/L						28	28				28		28
Bromide (dissolved)	mg/L						< 0.3	< 0.3				< 0.3	<	0.3
Nitrite (as N)	as N mg/L						< 0.03	< 0.03				< 0.03	<	0.03
Nitrate (as N)	as N mg/L						< 0.06	< 0.06				0.08		0.08
Nitrate + Nitrite (as N)	as N mg/L						< 0.06	< 0.06				0.08		0.08
Mercury (dissolved)	µg/L	1	0.29			1	< 0.01	< 0.01	1			< 0.01		0.01
Hardness	mg/L as CaCO3						302	666				4730		4730
Silver (dissolved)	µg/L		1.5				< 0.05	< 0.05				< 0.05		0.05
Aluminum (dissolved)	µg/L						< 1	< 1				1		1
Arsenic (dissolved)	µg/L	25	1900				< 0.2	< 0.2	1			< 0.20	<	0.2
Barium (dissolved)	µg/L	1000	29000				197	175				185		185
Beryllium (dissolved)	µg/L		67				< 0.007	< 0.007				< 0.007	< (0.007
Boron (dissolved)	µg/L	5000	45000				8	8				9		9
Bismuth (dissolved)	µg/L						< 0.007	< 0.007				< 0.010	< (0.010
Calcium (dissolved)	µg/L						51500	50300				4550.0		45500
Cadmium (dissolved)	µg/L	5	2.7				< 0.003	0.003				< 0.003		0.003
Cobalt (dissolved)	µg/L		66				0.021	0.018				0.022		0.022
Chromium (dissolved)	μg/L		810				0.12	0.19				< 0.08		0.08
Copper (dissolved)	µg/L	1000	87				< 0.2	< 0.2				< 0.2	<	0.2
Iron (dissolved)	µg/L		<u>.</u>				105	82				11.0		11
Potassium (dissolved)	µg/L						1170	1210				1280	<u> </u>	1280
Magnesium (dissolved)	µg/L						13200	13600				14200		14200
Manganese (dissolved)	μg/L						17.43	12.90				9.53		9.53
Molybdenum (dissolved)	µg/L		9200				1.14	1.06				1.06		1.06
Sodium (dissolved)	μg/L		3200				3300	3170				3130		3130
Nickel (dissolved)	μg/L		490				< 0.1	< 0.1				< 0.1	<	0.1
Phosphorus (dissolved)	μg/L		430				< 3	5				< 3	<	3
Lead (dissolved)	μg/L	10	25				0.05	< 0.01				< 0.09		0.09
Antimony (dissolved)	μg/L	6	20000				< 0.90	< 0.90				< 0.90		0.90
Selenium (dissolved)	μg/L	10	63				< 0.04	< 0.04				0.06		0.06
Tin (dissolved)	μg/L	10	05				0.18	0.14				< 0.06		0.06
Strontium (dissolved)	μg/L						152	159				144	-	144
Titan ium (dissolved)	μg/L						0.12	0.35				0.17	<u> </u>	0.17
Thallium (dissolved)	μg/L		510				< 0.005	< 0.005				< 0.005		0.005
Uranium (dissolved)	μg/L	20	420				0.052	0.031				0.094		0.094
Vanadium (dissolved)	μg/L	20	250				0.032	0.031				1.49		1.49
Zinc (dissolved)	μg/L μg/L		1100				< 2	< 2				< 2	<	2
Lead-210	Bq/L	0.2	1100			-	< 0.02	< 0.02				< 2		2
Radium-226	Bq/L	0.2					< 0.02	< 0.02				0.04		0.04
Thorium-230	Bq/L Bq/L	0.49					< 0.01	< 0.01				< 0.02	-	0.01
Thorium-232	Bq/L Bq/L	0.65					< 0.02	< 0.02				< 0.02		0.02
		0.0					× 0.02	~ 0.02				- U.UZ	-	J.UZ
Field Parameters ODO % Sat	%						_1	_1				52.6	<u> </u>	
ORP Sat	mV						_1	_1				142.3	<u> </u>	
SPC	mv µs/cm						_1	_1				362.0	<u> </u>	
							_1	_1					<u> </u>	
Temperature	°C						1	_1				9.377	<u> </u>	
Turbidity	FNU						_1					2820.80	<u> </u>	
pН	Units						-'	-1				8.00		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 146 of 172

Information Use

Table 55: PG-MW03-03C

		I									W03-03C						
			eria	2017	2018	2019		2020		2021				2022			
Parameter	Units	COPC	Table 3			Average					2022/03/31	202	22/06/20	2022/10/06	2022/12/07	Av	verage
рН	pН			No Sampl	le due to con	struction		7.87		7.87	7.85		8	No Sample ²	7.84		7.90
Alkalinity	mg/L as $CaCO_3$							184		188	164		169		152		162
Carbonate	mg/L as CaCO ₃						<	1.0	<	1.0	< 1.0	<	1.0		< 1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃							184		188	164		169		152		162
Total Dissolved Solids	mg/L							294		231	234		77		243		185
Fluoride	mg/L	1.5						0.13		0.06	< 0.06	<	0.06		< 0.06	<	0.06
Total Organic Carbon	mg/L						<	1.0	<	1.0	< 1.0	<	1.0		< 1.0	<	1.0
Dissolved Organic Carbon	mg/L							1.0	<	1.0	< 1.0	<	1.0		< 1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L						<	0.04	<	0.04	< 0.04	<	0.04		0.12		0.07
Chloride (dissolved)	mg/L							4		5	4		3		3		3
Sulphate (dissolved)	mg/L							40		38	36		42		34		37
Bromide (dissolved)	mg/L						<	0.3	<	0.3	< 0.3	<	0.3		< 0.3	<	0.3
Nitrite (as N)	as N mg/L							0.12		0.15	0.15		0.13		0.14		0.14
Nitrate (as N)	as N mg/L							2.90		2.76	2.02		1.81		1.32		1.72
Nitrate + Nitrite (as N)	as N mg/L							3.02		2.91	2.17		1.94		1.46		1.86
Mercury (dissolved)	µg/L	1	0.29				<	0.01	<	0.01	< 0.01	<	0.01		< 0.01	<	0.01
Hardness	mg/L as CaCO ₃							244	\vdash	380	203		247		200		217
Silver (dissolved)	μg/L		1.5				<	0.05	<	0.05	< 0.05	<	0.05		< 0.05	<	0.05
Aluminum (dissolved)	µg/L						<	1		3	1		2		1		1
Arsenic (dissolved)	μg/L	25	1900				<	0.2	<	0.2	< 0.2	<	0.2		< 0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000					61		56	54.1	-	56		49		53
Beryllium (dissolved)	μg/L		67				<	0.007	<	0.007	< 0.007	<	0.007		< 0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000					10		12	11		13		9		11
Bismuth (dissolved)	µg/L	0000	40000				<	0.007	-	0.009	< 0.010	<	0.010		< 0.010	<	0.010
Calcium (dissolved)	μg/L						-	64700	-	60750	57800	-	68400		58900		61700
Cadmium (dissolved)	µg/L	5	2.7				<	0.003	⊢	0.003	0.004	<	0.003		0.003		0.003
Cobalt (dissolved)	µg/L		66				-	0.075	-	0.055	0.048	<u> </u>	0.054		0.073		0.058
Chromium (dissolved)	μg/L		810					0.075	-	0.21	0.040		0.13		0.073		0.030
Copper (dissolved)	µg/L	1000	87					0.03		0.21	< 0.2	<	0.13		< 0.2	<	0.2
Iron (dissolved)	µg/L	1000	0/				<	7	-	7	< 7	È	7		< 7	<	7
Potassium (dissolved)	μg/L						<u> </u>	2120	-	2108	2010	È	2360		2120	~	2163
							<u> </u>	11800	-	12200	10500		12100		12400		11667
Magnesium (dissolved)	µg/L								-								
Manganese (dissolved)	µg/L		0200					12.50		8.24	5.1		8.8		11.4		8.42
Molybdenum (dis solved)	µg/L		9200					1.4	-	1.6	1		1		1		1.4
Sodium (dissolved)	µg/L		400					3760	-	3798	3690		3840		3510		3680
Nickel (dissolved)	µg/L		490				<	0.1		0.1	< 0.1	<	0.1		0.2		0.1
Phosphorus (dissolved)	µg/L						<	3	<	3	< 3	<	3		< 3	<	3
Lead (dissolved)	µg/L	10	25					0.04	-	0.07	< 0.09	<	0.09		< 0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000				<	0.90	<	0.90	< 0.90	<	0.90		< 0.90	<	0.90
Selenium (dissolved)	µg/L	10	63					0.40	-	1.00	0.91		0.76		0.34	<u> </u>	0.67
Tin (dissolved)	µg/L	L						0.12	-	0.06	< 0.06	<	0.06		< 0.06	<	0.06
Strontium (dissolved)	µg/L	L						130		141	127		141		129		132
Titanium (dissolved)	µg/L							0.07		0.25	< 0.05		0.07		0.08		0.07
Thallium (dissolved)	µg/L	L	510					0.014		0.008	0.011		0.006		0.009		0.009
Uranium (dissolved)	µg/L	20	420					9.980		9.985	9.850		8.367		9.135		9.117
Vanadium (dissolved)	µg/L		250					0.39		0.41	0.39		0.44		0.46		0.43
Zinc (dissolved)	μg/L		1100				<	2	<	2	< 2	<	2		< 2	<	2
Lead-210	Bq/L	0.2					<	0.02	<	0.02	< 0.02	<	0.02		0.13		0.06
Radium-226	Bq/L	0.49					<	0.01		0.01	< 0.01	<	0.01		0.02		0.01
Thorium-230	Bq/L	0.65					<	0.02	<	0.02	< 0.02	<	0.02		< 0.02	<	0.02
Thorium-232	Bq/L	0.6					<	0.02	<	0.02	< 0.02	<	0.02		< 0.02	<	0.02
Field Parameters																	
ODO % Sat	%							_1		-1	28.2		44.7		50.1		
ORP	mV							_1		_1	162.7		151.8		183.5		
SPC	µs/cm							_1	1	_1	406.4		423.8		399.8		
Temperature	°C							_1	1	_1	9.638	1	11.503		11.416		
Turbidity	FNU							_1		_1	8.37	1	7.2		4.76		

pH Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Well was being repaired by contractor

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 147 of 172

Information Use

Table 56: PG-MW1A-02

										PG-N	W1A-02				
		Crit	teria	2017	2018		2019	2	020	2021			2022		
Parameter	Units	COPC	Table 3			Av	erage				2022/03/11	2022/06/20	2022/09/07	2022/12/07	Average
рH	рH			8.10	No Sample	<u> </u>	8.13		8.21	8.27	No Sample ²	No Sample ²	No Sample ²	No Sample ²	
Alkalinity	mg/L as CaCO ₃			110			98		90	1162					
Carbonate	mg/L as CaCO ₃			1.2		-	1.2		28	< 1					
Bicarbonate	mg/L as CaCO ₃			110			93		62	1160					
Total Dissolved Solids				445		-	483		503	760					
	mg/L	4.5													
Fluoride	mg/L	1.5		0.64		<u> </u>	0.53		0.64	0.63					
Total Organic Carbon	mg/L			6.2			4.2		1.0	2.0					
Dissolved Organic Carbon	mg/L			1.4			1.1		1.0	2.0					
Ammonia+Ammonium (N)	as N mg/L			0.37			0.35		0.18	0.26					
Chloride (dissolved)	mg/L			220			205		230	230					
Sulphate (dissolved)	mg/L			2			2		7	5					
Bromide (dissolved)	mg/L			3.9			3.1		2.8	2.8					
Nitrite (as N)	as N mg/L			< 0.01		<	0.01	<	0.03	< 0.03					
Nitrate (as N)	as N mg/L			< 0.10		<	0.10	<	0.06	< 0.06					
Nitrate + Nitrite (as N)	as N mg/L			< 0.10		<	0.10	<	0.06	< 0.06					
Mercury (dissolved)	µg/L	1	0.29	< 0.10		<	0.1	<	0.01	< 0.01					
Hardness	mg/L as CaCO ₃			410			100		2140	2140					
Silver (dissolved)	µg/L		1.5	< 0.10		<	0.10	<u> </u>	0.05	< 0.05					
Aluminum (dissolved)	µg/L			3054		<u> </u>	47		3	362					
Arsenic (dissolved)	µg/L	25	1900	1.5		-	1.2	-	1.2	1.4					
. ,		25	29000	1.5		-	93	-	78	1.4					
Barium (dissolved)	µg/L	1000				<u> </u>									
Beryllium (dissolved)	µg/L		67	< 0.50		<	0.50	<	0.007	0.022					
Boron (dissolved)	µg/L	5000	45000	280			265		260	215					
Bismuth (dissolved)	µg/L			< 1.0		<	1.0	<u> </u>	0.007	< 0.010					
Calcium (dissolved)	µg/L			79000			25500		20600	18000					
Cadmium (dissolved)	µg/L	5	2.7	< 0.10		<	0.10	<u> </u>	0.003	< 0.003					
Cobalt (dissolved)	µg/L		66	1.05		<	0.50		0.055	0.113					
Chromium (dissolved)	µg/L		810	6.2		<	5.0		0.12	0.47					
Copper (dissolved)	µg/L	1000	87	1.5		<	1.0	<	0.2	1.2					
Iron (dissolved)	µg/L			1750			120	<	7	158					
Potassium (dissolved)	µg/L			3000			2050		1840	1470					
Magnesium (dissolved)	µg/L			10700			9150	1	10700	6910					
Manganese (dissolved)	µg/L			67.1			10.0		6.3	10.7					
Molybdenum (dissolved)	µg/L		9200	10.05			9.50		11.80	10.76					
Sodium (dissolved)	μg/L			150000			145000	-	49000	157000					
Nickel (dissolved)	µg/L		490	2.2		<	1.0	<u> </u>	0.2	0.3					
Phosphorus (dissolved)	µg/L		430	1		<u> </u>	2	<	3	7					
Lead (dissolved)	µg/L	10	25	1.70		<	0.50	<u>`</u>	0.02	0.31					-
		6	20000	0.70		`			0.90						
Antimony (dissolved)	µg/L						1.0	<		< 0.90					
Selenium (dissolved)	µg/L	10	63	< 2.0		<	2.0		0.04	< 0.04					
Tin (dissolved)	µg/L			< 1.0		<	1.0		0.18	1.08					
Strontium (dissolved)	µg/L			835			770		940	550					
Titanium (dissolved)	µg/L			87.5		<	5.0		0.44	8.63					
Thallium (dissolved)	µg/L		510	< 0.050		<	0.05	<u> </u>	0.005	< 0.005					
Uranium (dissolved)	µg/L	20	420	0.925			0.480		0.931	0.967					
Vanadium (dissolved)	µg/L		250	4.88			0.51		0.45	0.27					
Zinc (dissolved)	µg/L		1100	8		<	5	<	2	3					
Lead-210	Bq/L	0.2		0.03		<	0.10	<	0.02	0.03					
Radium-226	Bq/L	0.49		< 0.04		<	0.04	<	0.01	0.01					
Thorium-230	Bq/L	0.65		< 0.07		<	0.07	<	0.02	< 0.02					
Thorium-232	Bq/L	0.6		< 0.06		<	0.06	<	0.02	< 0.02					
Field Parameters				0.00		<u> </u>		1		0.02					<u> </u>
ODO % Sat	%			_1			_1	<u> </u>	_1	_1					
ORP	mV		<u> </u>	_1		-	1	-	1	_1					
				_1			1	-	1	_1					
SPC	µs/cm			1		-	_1		_1	1					
Temperature	°C					-		-							
Turbidity	FNU			-1			-1	<u> </u>	_1	-1					
pH	Units			-1			_1		_1	_1					

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Gran by Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 148 of 172

Information Use

Table 57: PG-MW1B-02

								PG	-MW1B-02				
		Crit	teria	2017	2018	2019	2020	2021			2022		
Parameter	Units	COPC	Table 3			Average		1	2022/03/11	2022/06/21	2022/09/08	2022/12/08	Average
рН	рH			8.01	8.10	8.11	8.24	7.94	8.45	8.38	7.72	7.92	8.12
Alkalinity	mg/L as CaCO ₃			75	77	74	211	238	318	194	144	153	202
Carbonate	mg/L as CaCO ₃			< 1.0	1.1	< 1.0	1.8	< 1.0	5.0	3.0	< 1.0	< 1.0	2.5
Bicarbonate	mg/L as CaCO ₃			74	76	73	210	238	313	191	144	153	200
Total Dissolved Solids	mg/L			522	469	457	465	459	437	383	509	431	440
Fluoride	mg/L	1.5		0.44	0.44	0.42	0.50	0.33	0.46	0.44	0.47	0.47	0.46
Total Organic Carbon	mg/L			2.9	5.6	1.7	1.3	1.0	1.0	< 1.0	< 1.0	1.0	1.0
Dissolved Organic Carbon	mg/L			1.1	1.0	0.9	1.3	1.0	1.0	1.0	2.0	1.0	1.3
Ammonia+Ammonium (N)	as N mg/L			0.25	0.31	0.29	0.27	0.27	0.24	0.25	0.29	0.31	0.27
Chloride (dissolved)	mg/L			200	210	203	225	220	260	230	240	260	248
Sulphate (dissolved)	mg/L			3	6	3	5	3	4	4	3	3	3
Bromide (dissolved)	mg/L			1.8	3.9	3.4	2.7	2.7	2.8	2.6	2.6	2.7	2.7
Nitrite (as N)	as N mg/L			< 0.01	< 0.01	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L			< 0.10	< 0.10	< 0.10	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	< 0.10	< 0.10	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	µg/L	1	0.29	< 0.10	< 0.10	< 0.10	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00
Hardness	mg/L as CaCO ₃	<u> </u>	0.20	90	89	87	455	496	517	207	300	280	326
Silver (dissolved)	µg/L		1.5	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	µg/L			< 5	5	8	150	475	70	7	7	4	22
Arsenic (dissolved)	µg/L	25	1900	< 1.0	< 1.0	2.0	0.4	0.5	0.30	0.50	0.40	0.20	0.4
Barium (dissolved)	µg/L	1000	29000	60	69	64	63	80	65	70	62	53	62
Beryllium (dissolved)	µg/L	1000	67	< 0.50	< 0.50	< 0.50	0.01	0.05	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (dissolved)	µg/L	5000	45000	270	263	267	257	244	229	296	265	251	260
Bismuth (dissolved)	µg/L	5000	45000	< 1.0	< 1.0	< 1.0	0.0	0.0	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Calcium (dissolved)	µg/L			1950	-	19000	22175	45167	21900	24900	19500	18600	21225
Cadmium (dissolved)	µg/L	5	2.7	< 0.10	< 0.10	< 0.10	0.00	0.01	0.004	0.003	0.003	0.007	0.004
Cobalt (dissolved)	µg/L	5	66	< 0.10	< 0.50	< 0.50	0.00	0.37	0.004	0.062	0.003	0.007	0.004
Chromium (dissolved)	µg/L		810	< 5.0	< 5.0	< 5.0	0.03	1.1	0.34	0.002	< 0.08	0.032	0.034
Copper (dissolved)	µg/L	1000	87	< 1.0	< 1.0	1.9	0.3	0.8	0.34	0.13	< 0.2	< 0.2	0.13
Iron (dissolved)	µg/L	1000	0/	< 1.0	< 1.0	< 100	117	660	68	< 7	34	9	30
Potassium (dissolved)	µg/L			1250	1250	1267	1288	1373	1190	1300	1120	1050	1165
Magnesium (dissolved)	µg/L			9800	9800	9400	9778	10927	9260	9140	9060	9260	9180
Manganese (dissolved)	µg/L			4.1	4.2	7.8	7.5	37.6	7.01	7.4	5.6	6.1	6.5
Molybdenum (dissolved)	μg/L		9200	13	4.2	11	12	12	9.92	11	12	10	11
Sodium (dissolved)	µg/L		5200	13000	_	133333	128750	130333	123000	133000	127000	114000	124250
Nickel (dissolved)	µg/L		490	< 1.0	< 1.0	< 1.0	0.3	0.8	0.7	0.2	0.1	< 0.1	0.3
Phosphorus (dissolved)			430	430	685	308	3	76	5	6	< 3	< 3	4
Lead (dissolved)	µg/L µg/L	10	25	< 0.50	< 0.50	< 0.50	0.08	0.69	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Antimony (dissolved)	µg/L	6	20000	< 0.50	< 0.50	< 0.50	< 0.90	< 0.90	< 0.09	< 0.09	< 0.09	< 0.09	< 0.90
Selenium (dissolved)		10	63	< 2.0	< 2.0	< 2.0	< 0.04	< 0.04	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Tin (dissolved)	μg/L μg/L	10	03	< 1.0	< 1.0	< 1.0	0.2	0.2	0.39	0.13	0.04	0.13	0.18
Strontium (dissolved)	μg/L			\$ 1.0	873	830	942	10.2	904	1050	855	839	912
Titanium (dissolved)				< 5.0	< 5.0	< 5.0	4.10	23.82	3.13	0.19	0.32	0.11	0.94
Thallium (dissolved)	µg/L		510	< 0.050		< 0.050	< 0.005	0.010	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	µg/L	20	420	< 0.100	-	0.733	0.153	0.010	0.125	0.129	0.003	0.039	
Uranium (dissolved)	µg/L	20	250	< 0.100	0.165	< 0.50	0.155	1.36	0.125	0.129	0.091	0.039	0.096
Vanadium (dissolved)	µg/L				< 5	< 0.50							
Zinc (dissolved) Lead-210	µg/L Bq/L	0.2	1100	< 5 < 0.02	< 5	< 0.10	< 2	4	< 2 < 0.02	< 2 < 0.02	< 2	< 2	< 2
	Bq/L Bq/L	0.2			< 0.08			0.03		< 0.02	< 0.02	< 0.02	< 0.02
Radium-226				< 0.04	_	< 0.04	< 0.01		< 0.01				
Thorium-230	Bq/L Bq/L	0.65		< 0.07 < 0.06	< 0.07	< 0.07	< 0.02	0.03	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	< 0.02
Thorium-232	bq/L	0.0		× 0.06	< 0.06	< 0.06	< 0.02	0.03	< 0.0Z	< 0.0Z	< 0.02	< 0.02	< 0.02
Field Parameters	0/			_1	_1	_1	_1	1	04.4	_2	42.0	45	
ODO % Sat	%				_			_1	84.1		43.3	45	
ORP	mV			- ¹	_1	_1	_1	_1	177.1	_2 2	188.3	144.5	
SPC	µs/cm			- ¹	_1	_1	_1 _1	_1	829	-2	848	408.1	
Temperature	°C			-1	_1	_1	_1	_1	8.162	-2	12.478	8.897	
Turbidity	FNU			-1	_1	_1	_1	_1	615.38	-2	328.02	232.63	
pH	Units			-1	_1	_1	_1	-1	8.51	_2	8.02	8.56	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 149 of 172

Information Use

Table 58: PG-MW1C-02

ParameterIntoCOPCTableParameterCOUNCConstructCounceC														PG-	MW	V1C-02								
Parameter Units COPC Table 3 Average Parameter Parameter </th <th></th> <th></th> <th>Crit</th> <th>teria</th> <th></th> <th>2017</th> <th>Γ</th> <th>2018</th> <th>Γ</th> <th>2019</th> <th></th> <th>2020</th> <th></th> <th>2021</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2022</th> <th></th> <th></th> <th></th> <th></th>			Crit	teria		2017	Γ	2018	Γ	2019		2020		2021						2022				
pit mpl as CAC0, Constraint Top Top <thtop< th=""> Top</thtop<>	Parameter	Units	COPC	Table 3			-		A	verage	-		-		20	022/02/21	20	22/06/20	20	22/09/07	20	22/11/25	A	verage
Carbonit mg/L SCO. Image 1.0 0.00	рН	рH				8.01		7.91	Ē		Γ	7.89		7.86		7.86		7.79		7.49		7.59		7.68
Carbonith mg/L as Carbo, v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1	Alkalinity								\vdash											227		254		221
Binerhonsher mg/L, as CAO, e 200 220 200 223 216 111 120 2277 300 349 396 Fluoride mg/L 4.5 212 20.0 0.01 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.01 0.00 0.00 0.01 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.00	,	-			⊢				┢		<		<		<		<		<		<		<	1.0
Taul Gasolve Solids mpl. 15 2 2 3 1									\vdash				-		-				-					221
Pipende mg/L 1 0 0 0 0									\vdash										-					308
Tail Organic Carbon mpL Part Part Part Part Part Part Part Part			1.5		<		-		<						-				+					0.10
Dase of Segmen Carten mg/L model -Amound -Amo					-		-		1				<		<		<		<				<	1.0
Ammona-Ammona Num P()	-	-					-		┢				<		<		<		-		<		<	1.0
Chords (isouhed) myL	-	-					-		⊢								-		<					0.05
Supbate (issolved) myL									\vdash										-					32
Bramter (issolved) myL 1.0 < 1.0 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 0.3 0.3 0.3 </td <td></td> <td></td> <td></td> <td></td> <td>⊢</td> <td></td> <td></td> <td></td> <td>┢</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>33</td>					⊢				┢						-				-					33
Ninte (as N) as N mgL Image (a) as N mgL Image (a) <		-			<		<		<		<		<		<		<		<		<		<	0.3
Nitrake Nitrik (ss) s N mg/L Image		-			<		<		<		<		<		<		<				<		<	0.03
Nirsle SN Indi, India SN In		-			2		2		2		2		2		~		<		-		2		2	0.06
Introduction ps/L 1 0.29 0.10 0.10 0.11 0.01					~		<		<		<		<		~		<		-		-		-	0.06
Hardness mg/L is CaCO, by: mg/L is CaCO, is Cope mg/L is Cope 15 6 0 0 0.00		-	1	0.29	~		<		<				~		<		<				-			0.00
Sher (Basolved) ygL 15 0.10 0.10 0.10 0.10 0.1			<u> </u>	0.20	È		È		F		ŀ		È		-		Ľ.		Ļ.		<u> </u>		ŀ	278
Aummun (dissolved) up/L 25 1980 5 7 5 2 2 11 1 1 1 1 1 2 1 3 0.03 0.03 0.03 0.03 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 << 0.007 << 0.007 << 0.007 < 0.007 < 0.007 < 0.007				1.5	<		<		<		<		-		<		<		<		<		<	0.05
Arsenic (dissolved) pg/L 100 25 100 1.0 0.3 0.3 0.2 0.3 0.3 Barium (dissolved) pg/L 1000 2800 2233 233 223 223 223 223 223 233 233 230 233 230 233 2					۔ ح		Ê		2				-		-		<		-		-		-	4
Britum (dissolved) upgl. 1000 2000 223 233 200 2710 6 0.007 < 0.007 < 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003			25	1900	Ì		<		Ê		-		-		<		-		Ľ.		-		-	0.3
Berylum (dissolved) pgL 600 4000 12 11 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.017 < 0.010 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003	. ,				È		È		È						-				-					222
Baron (dissolved) µgL 5000 45000 12 11 12 11 11 12 11 12 Baruh (dissolved) µgL 1.0 <			1000		/		-		-		/		-		/		-		-		/		/	0.007
Bamuth (dssolved) ygL c 1.0 c 1.0 c 1.0 c 1.0 c 0.000 c 0.010 c 0.003 c 0.010 c 0.010 0.010 0.010 0.010 0.010 0.010 0.010			5000		<u>`</u>		-		È		-		È		`		-		<u> </u>		<u>`</u>		~	12
Calcum (dissolved) µg/L F 61000 66750 66000 69000 6625 62100 74700 65500 77100 Cadmim (dissolved) µg/L 66 0.50 0.50 0.50 0.056 0.003 0.043 0.003 0.043 0.045 0.003 0.043 0.045 0.045 0.003 0.043 0.045 0.003 0.03 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081			5000	45000					È		-		-				-		-				-	0.010
Cadmum (dissolved) µg/L 5 2.7 < 0.10 < 0.10 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 0.003 0.003 0.003 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 <th< td=""><td></td><td></td><td></td><td></td><td>`</td><td></td><td><u>`</u></td><td></td><td>È</td><td></td><td>~</td><td></td><td>-</td><td></td><td>`</td><td></td><td>-</td><td></td><td>È</td><td></td><td>`</td><td></td><td>~</td><td>69850</td></th<>					`		<u>`</u>		È		~		-		`		-		È		`		~	69850
Cobalt (dissolved) µgL 66 < 0.50 < 0.50 0.056 0.061 < 0.039 0.043 0.043 Chromiun (dissolved) µgL 100 810 <		-	r .	2.7					<u> </u>								-		-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5		<		<		<		<		<		<		<		<		<		<	0.003
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-			<		<		<		-		-		<		-		-				-	0.033
tron (dissolved) µg/L 240 213 228 175 226 216 222 188 244 Patassum (dissolved) µg/L 1500 1575 1520 1570 1550 1670 1480 1460 Magnesum (dissolved) µg/L 21500 22250 22250 22250 22250 22250 22250 22350 22350 22350 22350 22350 22350 22350 20550 0.00 0.04 1.2.40 0.62 0.58 0.74 0.56 0.53 0.68 0.64 Sodum (dissolved) µg/L 490 1.0 1.0 0.1 0.1 0.1 0.1 0.2 0.22 0.1 0.1 0.1 0.2 0.09 0.09 <			4000		<		<		<										<		<			
Potassium (dissolved) µg/L 1500 1575 1525 1540 1570 1550 1670 1480 1460 Magnesum (dissolved) µg/L 21500 22250 22250 22250 22250 22250 22250 22150 21500 21600 21300 20400 Magnese (dissolved) µg/L 9200 0.94 1.24 0.62 0.58 0.74 0.56 0.53 0.68 0.64 Sodium (dissolved) µg/L 8000 9125 9225 10855 9090 8480 9080 8660 7880 Nickel (dissolved) µg/L 1600 302 188 3 5<			1000	8/	<		<		<		-		<		<		<		⊢		<		<	0.2
Magnesium (dissolved) µp/L P 21500 22250 22250 22250 22255 19200 21000 21300 20400 Manganese (dissolved) µp/L 11.3 12.5 11.3 10.5 13.9 11.10 11.71 11.50 12.40 Molybdenum (dissolved) µp/L 9200 0.94 1.24 0.62 0.58 0.74 0.56 0.53 0.68 0.64 Sodum (dissolved) µp/L 490 < 1.0	· · ·						-		┝				-		_		-							218
Manganese (dissolved) $\mu g/L$ Image (lissolved) $\mu g/L$ Signal 11.3 12.5 11.3 10.5 13.9 11.10 11.71 11.50 12.40 Molyberum (dissolved) $\mu g/L$ 9200 0.94 1.24 0.62 0.58 0.74 0.56 0.53 0.68 0.64 Sodium (dissolved) $\mu g/L$ 490 1.0 1.0 0.2 0.2 0.11 0.1 0.1 0.2 Phosphorus (dissolved) $\mu g/L$ 10 25 <0.50							_		┝						_		-		-					1540
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-		⊢		-		-		_		-		⊢					20475
Solum (dissolved) $\mu g L$ $\mu $					⊢		-		┝				-		_		⊢		⊢				-	11.68
Nickel (dissolved) µg/L 490 < 1.0 < 1.0 < 1.0 0.2 0.2 0.1 0.1 0.1 0.1 0.2 Phosphorus (dissolved) µg/L 10 25 <				9200			-		⊢				-		_		-							0.60
Phosphorus (dissolved) $\mu g/L$ 1025<0.50<0.50<0.50<0.020.07<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.004<0.004<0.004<0.004<0.004<0.004<0.0040.014<0.014<0.014<0.0140.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.014<0.0150.005<0.0050.005 </td <td></td> <td></td> <td></td> <td>400</td> <td></td> <td></td> <td>-</td> <td></td> <td>⊢</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>⊢</td> <td></td> <td></td> <td></td> <td></td> <td>8528</td>				400			-		⊢		-						-		⊢					8528
Lead (dissolved) $\mu g/L$ 1025<0.50<0.50<0.020.07<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.09<0.04<0.04<0.04<0.04<0.04<0.04<0.04<0.04<0.04<0.04<0.04<0.060.0050.006<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005< <td></td> <td></td> <td></td> <td>490</td> <td><</td> <td></td> <td><</td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td>				490	<		<		<								-							0.1
Antimony (dissolved) $\mu g/L$ 620000< 0.50 < 0.50 < 0.50 < 0.50 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 0.90 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td><</td> <td></td> <td><</td> <td></td> <td>⊢</td> <td></td> <td></td> <td></td> <td></td> <td>4</td>							-		-		-		-		<		<		⊢					4
Selenium (dissolved) $\mu g/L$ 10 63 < 2.0 < 2.0 0.05 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.06 0.06 0.06 < 0.06 0.06 0.06 0.06 0.06 0.05 0.002					<		<		<		-		-		<		<				<		<	0.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					<		<		<		<		<		<		<							0.90
Strontium (dissolved) $\mu g/L$ 228 245 240 256 257 227 252 236 274 Titanium (dissolved) $\mu g/L$ <			10	63	<		<		<				<		<		<							0.04
Tanium (dissolved) $\mu g/L$ v < 5.0 < 5.0 < 5.0 < 0.11 0.20 0.77 0.09 < 0.05 0.08 Thalium (dissolved) $\mu g/L$ 510 < 0.050					<		<		<		-				<		<		<		<		<	0.06
Thallium (dissolved) $\mu g/L$ 510 < 0.050 < 0.050 < 0.005 0.005 0.005 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 0.001 0.014 0.002 0.021 0.021 0.021 0.021 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02							-		⊢		-						-		⊢					247
Uranium (dissolved) $\mu g/L$ 204200.1400.1830.1430.1990.1490.1470.1720.1830.132Vanadium (dissolved) $\mu g/L$ 250< 0.50	. ,			540	<		<		<						_		-							0.25
Vanadium (dissolved) $\mu g/L$ 250 $<$ 0.50 $<$ 0.50 $<$ 0.68 0.11 0.06 0.05 0.04 0.02 Zinc (dissolved) $\mu g/L$ 1100 $<$ 5 $<$ 5 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$ 0.02 $<$. ,				<		<		<		<				<		<		<		<		<	0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20				_		\vdash								-		⊢					0.159
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<		<		<		-		-		_		⊢						-	0.04
Radium-226 Bq/L 0.49 < 0.03 < 0.04 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <<				1100	<		<		<		<		<		<		<		-		<		<	2
Thorium-230 Bq/L 0.65 < 0.07 < 0.07 < 0.07 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < <th0.02< th=""> 0.02<td></td><td></td><td></td><td></td><td><</td><td></td><td>-</td><td></td><td><</td><td></td><td><</td><td></td><td><</td><td></td><td><</td><td></td><td><</td><td></td><td><</td><td></td><td></td><td></td><td>-</td><td>0.02</td></th0.02<>					<		-		<		<		<		<		<		<				-	0.02
Thorium-232 Bq/L 0.6 < 0.06 < 0.06 < 0.06 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.02 < 0.02 < 0.02 < 0.02 0.02 <td></td> <td>-</td> <td></td> <td></td> <td><</td> <td></td> <td><</td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td><</td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td><</td> <td>0.01</td>		-			<		<		<				-		<		<				<		<	0.01
Field Parameters Image: constraint of the system Image: constrated Image: constraint of the system					<		<		<				<		<		<						-	0.02
ODO % Sat % -1 -1 -1 -1 -1 -2 74.4 53.7 26.2 ORP mV -1 -1 -1 -1 -1 -2 58.6 30.7 4.0 SPC µs/cm -1 -1 -1 -1 -1 -2 51.6 52.0 50.5 Temperature °C -1 -1 -1 -1 -1 -2 10.911 10.415 8.827 Turbidity FNU -1 -1 -1 -1 -1 -2 178.3 41.05 161.28		Bd/L	0.6		<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
ORP mV -1									1								⊢		\vdash		-			
BPC µs/cm -1 -1 -1 -1 -2 516 520 505 Temperature °C -1 -1 -1 -1 -2 10.911 10.415 8.827 Turbidity FNU -1 -1 -1 -1 -1 -2 178.3 41.05 161.28		-					-		1		-						\vdash		\vdash		-		-	
Temperature °C -1 -1 -1 -2 10.911 10.415 8.827 Turbidity FNU -1 -1 -1 -1 -2 10.911 10.415 8.827						-				-		-		-		-			\vdash					
Turbidity FNU -1 -1 -1 -1 -1 -2 178.3 41.05 161.28																-	L		\vdash					
						_ ¹		-		-				-	_				\vdash					
pH Units -1 -1 -1 -1 -2 7.61 7.59 7.58						-1		-		_1				-1		-	L	178.3		41.05		161.28		
	pН	Units			Ĺ	_1		_1		_1		1		_1	Ĺ	2		7.61		7.59		7.58		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 150 of 172

Information Use

Table 59: PG-MW1D-02

													PG-	MW	V1D-02						
		Crit	teria	\vdash	2017	Г	2018		2019		2020	Г	2021						2022		
Parameter	Units	COPC	Table 3	⊢		-		4	verage	-		-		20	022/02/10	20	22/06/20	20	22/09/07	2022/11/25	Average
рН	pH			⊢	7.79	Γ	7.69	Ĺ	7.70		7.71	Г	7.45		7.47		7.47	⊢	7.37	No Sample ²	7.44
Alkalinity	mg/L as CaCO,			⊢	325	+	313		323		366	⊢	472		321		318	+	388		342
Carbonate	mg/L as CaCO ₃			⊢	1.9	+	1.5		1.5	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0		< 1.0
Bicarbonate	mg/L as CaCO ₃			⊢	318	+	310		318		366	+	472		321		318	-	388		342
Total Dissolved Solids	mg/L				454	+	436	+	484		476	t	494		437		406	\vdash	600		481
Fluoride	mg/L	1.5		<	0.10	<	0.10	<	0.10		0.09	<	0.08		0.08		0.07	<	0.06		0.07
Total Organic Carbon	mg/L			-	3.3		2.3		2.7		1.7		2.8		2.0		2.0	-	2.0		2.0
Dissolved Organic Carbon	mg/L			⊢	1.8		1.6	1	1.6		2.0	t	2.0		2.0		2.0	\vdash	3.0		2.3
Ammonia+Ammonium (N)	as N mg/L			<	0.05		0.07	1	0.06		0.05	<	0.04		0.11	<	0.04	<	0.04		0.06
Chloride (dissolved)	mg/L				78	\vdash	85		89		88	+	108		99		87		150		112
Sulphate (dissolved)	mg/L			⊢	14	1	12	-	11		11	┢	18		11		8	\vdash	15		11
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3		< 0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03		< 0.03
Nitrate (as N)	as N mg/L			<	0.14		0.14		0.12		0.06	-	0.10	<	0.06	<	0.06	<	0.06		< 0.06
Nitrate + Nitrite (as N)	as N mg/L			<	0.14	\vdash	0.14		0.12		0.06	┢	0.10	<	0.06	<	0.06	<	0.06		< 0.06
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01		< 0.01
Hardness	mg/Las CaCO,			F	333	\mathbf{T}	315		325		1309	t	859		393		395		435		408
Silver (dissolved)	µg/L		1.5	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05		< 0.05
Aluminum (dissolved)	µg/L			<	5	<	5	<	5	<	1	┢	8		1		5	<	1		2
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	1.0	<	1.0	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2		< 0.2
Barium (dissolved)	µg/L	1000	29000		47		44		46		42	t	47		43		43		51		46
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.50	<	0.50	<	0.007	\vdash	0.008	<	0.007	<	0.007	<	0.007		< 0.007
Boron (dissolved)	μg/L	5000	45000	<	13	<	10	-	11		7	t	7		5		6		6		6
Bismuth (dissolved)	μg/L			<	1.0	<	1.0	<	1.0	<	0.007	+	0.009	<	0.010	<	0.010	<	0.010		< 0.010
Calcium (dissolved)	µg/L				117750	+	115000	+	114000		111800	t	129000		116000		132000	\vdash	131000		126333
Cadmium (dissolved)	μg/L	5	2.7	<	0.10	<	0.10	<	0.10		0.003	t	0.004		0.005		0.004	<	0.003		0.004
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50		0.03	+	0.07		0.019		0.030	\vdash	0.030		0.026
Chromium (dissolved)	μg/L		810	<	5.0	<	5.0	<	5.0		0.18	t	0.46		0.27		0.33	<	0.08		0.23
Copper (dissolved)	µg/L	1000	87	<	1.0	<	1.0	<	1.0		1.0	+	0.7		0.5		0.8	-	0.6		0.6
Iron (dissolved)	μg/L			<	100	<	100	<	100	<	7	+	15	<	7		9	<	7		8
Potassium (dissolved)	µg/L				1200	\vdash	1125		1055		949	+	993		861		988		996		948
Magnesium (dissolved)	µg/L			⊢	9500	+	8675	-	8650		8643	┢	8775		8830		9940	\vdash	9420		9397
Manganese (dissolved)	µg/L			<	2.00	\vdash	4.50		2.25		1.07	+	3.07		0.16		0.48		0.43		0.36
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50	<	0.50		0.20	┢	0.19		0.16		0.18	⊢	0.18		0.17
Sodium (dissolved)	µg/L				49000	+	53000		66000		52367	+	57450		44700		47300	\vdash	81600		57867
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	1.0		0.2	┢	0.3		0.2		0.2	⊢	0.3		0.2
Phosphorus (dissolved)	μg/L			⊢	3	\vdash	780		513	<	3	<	3		3	<	3	<	3		< 3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.09	<	0.09	<	0.09	<	0.09		< 0.09
Antimony (dissolved)	μq/L	6	20000	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90		< 0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0		0.1	\vdash	0.2		0.14		0.10	\vdash	0.10		0.11
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0		0.09	+	0.15		0.06		0.08		0.15		0.10
Strontium (dissolved)	µg/L				220		218		213		219	t	253		225		229		258		237
Titanium (dissolved)	μg/L			<	5.0	<	5.0	<	5.0		0.08	t	0.36		0.11		0.36	\vdash	0.06		0.18
Thallium (dissolved)	µg/L		510	<	0.050	<	0.050	<	0.050	<	0.005	t	0.007	<	0.005	<	0.005	<	0.005		< 0.005
Uranium (dissolved)	µg/L	20	420		0.753	\vdash	0.840		0.765		0.829	t	0.859		0.859		0.675		1.260		0.931
Vanadium (dissolved)	µg/L		250	<	0.50	<	0.50	<	0.50		0.20	t	0.28		0.21		0.24	\vdash	0.22		0.22
Zinc (dissolved)	µg/L		1100	<	5	<	5	<	5	<	2	<	2	<	2	<	2	<	2		< 2
Lead-210	Bq/L	0.2		<	0.02	\mathbf{t}	0.08	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Radium-226	Bq/L	0.49		<	0.03	<	0.04		0.03		0.01	<	0.01	<	0.01		0.01	<	0.01		< 0.01
Tho rium-230	Bq/L	0.65		<	0.07	<	0.07		0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Thorium-232	Bq/L	0.6		<	0.06	<	0.06		0.05	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Field Parameters				F																	
ODO % Sat	%			⊢	_1	+	_1		_1		_1	\vdash	_1		82.6		79.2	\vdash	75.9		
ORP	mV			⊢	_1	+	_1	1	_1		_1	\vdash	_1		126.5		185.1		96.6		
SPC	µs/cm	1	1	⊢	_1	+	_1	-	_1		_1	+	_1		814		790	\vdash	1050		
Temperature	°C	1		⊢	_1	+	_1	-	_1		_1	+	_1		10.984		8.967	\vdash	12.733		
Turbidity	FNU			\vdash	_1	+	_1	\vdash	_1	-	_1	┢	_1		52.4		218.08	\vdash	171.04		
pH	Units	-		⊢	_1	+	-	+	-	-	-	+	_1		7.19		7.19	\vdash	7.17		
ku	Juna	I	1	1	-	1	-	1	-	1	-	1	-		1.13		1.13	_	1.17		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 151 of 172

Information Use

Table 60: PG-MW2B-02

				Г									PG-	MW	1D-02						
		Crit	eria		2017	Γ	2018		2019	2	2020		2021	<u> </u>					2022		
Parameter	Units	COPC	Table 3			-		4	verage			-		20	22/02/10	20	22/06/20	20	22/09/07	2022/11/25	Average
pH	pH				7.79	Г	7.69	ŕ	7.70		7.71	Г	7.45		7.47		7.47		7.37	No Sample ²	7.44
Alkalinity	mg/L as CaCO,			\vdash	325	-	313	\vdash	323	-	366		472		321		318	\vdash	388		342
Carbonate	mg/L as CaCO ₃			\vdash	1.9	-	1.5	\vdash	1.5	2	1.0	<	1.0	<	1.0	<	1.0	<	1.0		< 1.0
Bicarbonate	mg/L as CaCO 3			\vdash	318	+	310	-	318	-	366	-	472	-	321	~	318	-	388		342
Total Dissolved Solids	mg/L as caco ₃			\vdash	454	+	436	-	484		476	\vdash	494		437		406	-	600		481
Fluoride	mg/L	1.5		-	0.10		0.10		0.10	-	0.09		0.08		0.08		0.07	-	0.06		0.07
Total Organic Carbon	mg/L	1.5		È	3.3	È	2.3	È	2.7		1.7	È	2.8		2.0		2.0	-	2.0		2.0
Dissolved Organic Carbon	mg/L			\vdash	1.8	+	1.6	-	1.6		2.0	\vdash	2.0		2.0		2.0	-	3.0		2.0
Ammonia+Ammonium (N)	as N mg/L				0.05	-	0.07	-	0.06		0.05	-	0.04		0.11	<	0.04	<	0.04		0.06
Chloride (dissolved)	mg/L			È	78	-	85	-	89		88	È	108		99	~	87	-	150		112
Sulphate (dissolved)	mg/L			⊢	14	┢	12	-	11	-	11	\vdash	18		11		8	⊢	150		112
Bromide (dissolved)	mg/L				1.0	-	1.0	/	1.0	<	0.3	-	0.3	/	0.3	<	0.3	<	0.3		< 0.3
Nitrite (as N)	as N mg/L			È	0.01	-	0.01	2	0.01	2	0.03	-	0.03	È	0.03	<	0.03	È	0.03		< 0.03
Nitrate (as N)	as N mg/L			È	0.01	È	0.01	È	0.12	<u> </u>	0.05	È	0.03	<	0.05	<	0.05	<	0.05		< 0.05
Nitrate + Nitrite (as N)	as N mg/L			È	0.14	-	0.14	-	0.12		0.06	-	0.10	~	0.06	<	0.06	<	0.06		< 0.06
Mercury (dissolved)	µg/L	1	0.29	È	0.14	-	0.14	-	0.12	<	0.00	-	0.01	È	0.00	<	0.00	<	0.00		< 0.00
Hardness	µg/∟ mg/LasCaCO,	- '	0.23	È	333	È	315	È	325	È	1309	È	859	È	393	<u>`</u>	395	È	435		< 0.01 408
Silver (dissolved)	μq/L as cacO ₃		1.5		0.10	-	0.10	-	0.10	-	0.05	-	0.05	-	0.05	<	0.05	-	435		< 0.05
Aluminum (dissolved)			1.5	~	5	~	5	<	5	<	1	<	8	<	1	~	5	<	1		2
	µg/L	25	1900	È	5	5	5	5	5	<	0.2	6	0.2	-	0.2	<	0.2	< <	0.2		< 0.2
Arsenic (dissolved)	μg/L	1000	29000	<	47	<	44	<	46	<	42	<	47	<	43	<	43	<	0.2 51		< 0.2 46
Barium (dissolved)	µg/L	1000		-	0.50	<	0.50		0.50	<	42	-	4/		4.5	<	0.007	2	0.007		< 0.007
Beryllium (dissolved)	µg/L	5000	67 45000	<		<	10	<		<	0.007	-	0.008	<		<		<	0.007		
Boron (dissolved) Bismuth (dissolved)	µg/L	5000	450.00	<	13	<	1.0	<	11	<	0.007	\vdash	0.009		5 0.010	<	6 0.010	<	0.010		6 < 0.010
	µg/L			<		<		<		-				<		<		<			
Calcium (dissolved)	µg/L	r	0.7	-	117750		115000		114000	_	0.003	-	129000		116000		132000	-	131000		126333
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10			-	0.004				0.004	<	0.003		0.004
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50		0.03		0.07		0.019		0.030	-	0.030		0.026
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0		0.18		0.46		0.27		0.33	<	0.08		0.23
Copper (dissolved)	µg/L	1000	87	<	1.0	<	1.0	<	1.0		1.0	-	0.7		0.5		0.8		0.6		0.6
Iron (dissolved)	µg/L			<	100	<	100	<	100	<	7 949		15 993	<	7		9	<	7		8
Potassium (dissolved)	µg/L			⊢	1200	-	1125		1055					<u> </u>	861		988		996		948
Magnesium (dissolved)	µg/L			⊢	9500	-	8675	-	8650		8643		8775		8830		9940		9420		9397
Manganese (dissolved)	µg/L			<	2.00		4.50		2.25		1.07		3.07		0.16		0.48		0.43		0.36
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50	<	0.50		0.20		0.19	<u> </u>	0.16		0.18		0.18		0.17
Sodium (dissolved)	µg/L			_	49000	-	53000	-	66000	;	52367	-	57450		44700		47300	-	81600		57867
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	1.0 513		0.2		0.3	<u> </u>	0.2		0.2		0.3		0.2
Phosphorus (dissolved)	µg/L	40			3					<		<	-		3	<	3	<	3		< 3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.09	<	0.09	<	0.09	<	0.09		< 0.09
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90		< 0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0		0.1	-	0.2		0.14		0.10	-	0.10		0.11
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0 213		0.09	-	0.15 253		0.06		0.08	-	0.15		0.10
Strontium (dissolved)	µg/L			-			218				219								258		237
Titanium (dissolved)	µg/L		540	<	5.0	<	5.0	<	5.0	<	0.08	-	0.36		0.11		0.36	-	0.06		0.18
Thallium (dissolved)	μg/L	20	510	<	0.050	<	0.050	<	0.050		0.005	-	0.007	<	0.005	<	0.005	<	0.005		< 0.005
Uranium (dissolved)	µg/L	20	420	⊢	0.753	-	0.840	-	0.765	-	0.829	-	0.859	-	0.859		0.675		1.260		0.931
Vanadium (dissolved)	µg/L		250	<	0.50	<	0.50	<	0.50		0.20		0.28		0.21		0.24	-	0.22		0.22
Zinc (dissolved)	µg/L		1100	<	5	<	5	<	5	<	2	<	2	<	2	<	2	<	2		< 2
Lead-210	Bq/L	0.2		<	0.02	-	0.08	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Radium-226	Bq/L	0.49		<	0.03	<	0.04	-	0.03		0.01	<	0.01	<	0.01		0.01	<	0.01		~ 0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.07	-	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Thorium-232	Bq/L	0.6		<	0.06	<	0.06	-	0.05	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		< 0.02
Field Parameters				⊢		-		-		-	4	-		L			-	⊢			
ODO % Sat	%			⊢	_1	-	_1	-	_1	-	_1	-	-1	L	82.6		79.2		75.9		
ORP	mV			⊢	_1	-	-1		_1		_1		-1		126.5		185.1	⊢	96.6		
SPC	µs/cm			⊢	-1	-	-1		_1		_1		_1	 	814		790	⊢	1050		
Temperature	°C			∟	-1		-1		_1		-1		-1	L	10.984		8.967	⊢	12.733		
Turbidity	FNU			∟	_1		_1		_1		_1		_1	L	52.4		218.08	⊢	171.04		
pH	Units				_1		_1		_1		_1		_1		7.19		7.19	1	7.17		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 152 of 172

Information Use

Table 61: PG-MW2C-02

											PG-	-MW2C -02				
		Crit	eria		2017		2018		2019	2020	2021			2022		
Parameter	Units	COPC	Table 3					A	verage			2022/03/29	2022/06/22	2022/08/29	2022/12/01	Averag
рН	pН				7.91		7.82	Γ	7.72	7.49	No Sample	No Sample ²	No Sample ²	No Sample ²	No Sample ²	
Alkalinity	mg/L as CaCO,				230		250	\vdash	310	378						
Carbonate	mg/Las CaCO ₃				1.7	1	1.6	\vdash	1.6	< 1.0						
Bicarbonate	mg/L as CaCO 3				230	-	250	┢	310	377.667						
Total Dissolved Solids	mg/L				284	-	265	\vdash	360	350						
Fluoride	mg/L	1.5		-	0.10		0.10	<	0.10	0.07						
	-	1.5		Ì	3.2	<u>`</u>	2.9	È	3.0	2.0						-
Total Organic Carbon	mg/L			-		+		⊢		2.0						
Dissolved Organic Carbon	mg/L				1.4	-	1.3		1.3							
Ammonia+Ammonium (N)	as N mg/L			<	0.05	-	0.11	<	0.05	< 0.04						
Chloride (dissolved)	mg/L				22		15		37	36						
Sulphate (dissolved)	mg/L				18		11		8	10						
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	1.0	< 0.3						
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.01	< 0.03						
Nitrate (as N)	as N mg/L				0.20		0.18	<	0.10	0.22						
Nitrate + Nitrite (as N)	as N mg/L				0.20		0.18	<	0.10	0.22						
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.10	<	0.10	0.01						
Hardness	mg/L as CaCO ₃				260		250		360	1288						-
Silver (dissolved)	µg/L		1.5	<	0.10	<	0.10	<	0.10	0.05						
Aluminum (dissolved)	μg/L			<	5	<	5	<	5	4						
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	1.0	<	1.0	< 0.2						
Barium (dissolved)	μg/L	1000	29000	È	21	1	1.0	+	27	23						
Beryllium (dissolved)	μg/L	1000	67		0.50	<	0.50	<	0.50	< 0.01						
Boron (dissolved)	µg/L	5000	45000	È	26	~	10	È	18	11						
		5000	40000			<		-								
Bismuth (dissolved)	µg/L			<	1.0	<	1.0	<	1.0							
Calcium (dissolved)	µg/L	-			96000	-	92000	-	140000	107467						-
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10	< 0.00						
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50	0.03						
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0	0.2						
Copper (dissolved)	µg/L	1000	87	<	1.0	<	1.0	<	1.0	0.8						
Iron (dissolved)	µg/L			<	100	<	100	<	100	< 7						
Potassium (dissolved)	μg/L				460		440		610	566						
Magnesium (dissolved)	µg/L				4600		5100		6300	5417						
Manganese (dissolved)	µg/L				28.0	<	2.0	<	2.0	0.2						
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50	<	0.50	0.20						
Sodium (dissolved)	µg/L				12000		9700		24000	16700						
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	1.0	0.3						
Phosphorus (dissolved)	µg/L				130		6	\vdash	14	< 3						
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50	0.02						
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.50	<	0.50	< 0.90						
Selenium (dissolved)	μg/L	10	63	<	2.0	<	2.0	<	2.0	0.2						
Tin (dissolved)	µg/L			2	1.0	~	1.0	<	1.0	0.2						
Strontium (dissolved)	µg/L			È	160	È	170	È	230	201						-
						-		-								
Titanium (dissolved)	μg/L		540	<	5.0	<	5.0	<	5.0	0.10						
Thallium (dissolved)	µg/L		510	<	0.050	<	0.050	<	0.050	< 0.005						
Uranium (dissolved)	µg/L	20	420	-	0.450	-	0.420	1	0.410	0.435						
Vanadium (dissolved)	µg/L		250	<	0.50	<	0.50	<	0.50	0.21						
Zinc (dissolved)	µg/L		1100	<	5	<	5	<	5	5						
Lead-210	Bq/L	0.2		<	0.02	<	0.10	<	0.10	< 0.02						
Radium-226	Bq/L	0.49		<	0.04	<	0.04	<	0.04	< 0.01						
Thorium-230	Bq/L	0.65		<	0.07	<	0.07	<	0.07	< 0.02						
Thorium-232	Bq/L	0.6		<	0.06	<	0.06	<	0.06	< 0.02						
Field Parameters																
	%	1			_1		_1	\square	_1	_1						
ODO % Sat				-		1		1			l	I				
ODO % Sat ORP					_1	1	_1		_1	_1						
ORP	mV			_				┢								
ORP SPC	mV μs/cm				_1		_1		_1	_1						
ORP SPC Temperature	mV µs/cm °C				_1 _1		-1 -1		_1 _1	_1 _1						
ORP SPC	mV μs/cm				_1		_1		_1	_1						

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 153 of 172

Information Use

Table 62: PG-MW3A-02

									PG-MW3A-)2			
		Crit	teria	2016	2017	2018	2019	2020	2021		2022		
Parameter	Units	COPC	Table 3		Ave	age		Well Da	imaged			2022/12/08	Average
pН	pН			7.47	7.58	7.55	7.52			No Sam	ple due to w ell damage	7.35	7.35
Alkalinity	mg/L as CaCO3			257	223	218	215					190	190
Carbonate	mg/L as CaCO3			< 1.0	< 1.0	1.1	< 1.0					< 1.0	< 1.0
Bicarbonate	mg/L as CaCO3			220	223	215	210					190	190
Total Dissolved Solids	mg/L			7013	6668	5588	4850					4440	4440
Fluoride	mg/L	1.5		0.30	0.25	0.29	0.29					0.35	0.35
Total Organic Carbon	mg/L			0.8	1.3	1.4	1.2					< 1.0	< 1.0
Dissolved Organic Carbon	mg/L			1.0	0.4	0.5	0.6					1.0	1.0
Ammonia+Ammonium (N)	as Nmg/L			5.50	5.78	5.20	4.65					4.52	4.52
Chloride (dissolved)	mg/L			3650	3625	3100	2600					2800	2800
Sulphate (dissolved)	mg/L			14	< 1	3	35					< 2	< 2
Bromide (dissolved)	mg/L			48.0	52.8	62.0	< 44.0					30.3	30.3
Nitrite (as N)	as N mg/L			0.23	< 0.01	< 0.01	< 0.01					< 0.30	< 0.30
Nitrate (as N)	as Nmg/L			0.48	< 0.10	< 0.10	< 0.10					< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L			0.48	< 0.10	< 0.10	< 0.10					< 0.30	< 0.30
Mercury (dissolved)	µg/L	1	0.29	0.03	< 0.10	< 0.10	< 0.10					< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			2370	2350	2100	1600					2010	2010
Silver (dissolved)	µg/L		1.5	0.03	0.20	< 0.10	< 0.10					< 0.05	< 0.05
Aluminum (dissolved)	µg/L			19	10	< 5	< 5					1	1
Arsenic (dissolved)	µg/L	25	1900	0.4	2.0	< 1.0	< 1.0					0.6	0.6
Barium (dissolved)	µg/L	1000	29000	5670	5750	4225	4100					4160	4160
Beryllium (dissolved)	µg/L		67	0.13	1.00	< 0.50	< 0.50					< 0.007	< 0.007
Boron (dissolved)	µg/L	5000	45000	591	915	828	750					658	658
Bismuth (dissolved)	µg/L			0.28	2.0	< 1.0	< 1.0					0.010	0.010
Calcium (dissolved)	µg/L			515750	465000	437500	325000					605000	605000
Cadmium (dissolved)	µg/L	5	2.7	0.03	0.20	< 0.10	< 0.10					0.006	0.006
Cobalt (dissolved)	µg/L		66	0.26	1.13	< 0.50	< 0.50					0.035	0.035
Chromium (dissolved)	µg/L		810	1.3	10.0	< 5.0	< 5.0					1.45	1.45
Copper (dissolved)	µg/L	1000	87	1.5	2.0	< 1.0	< 1.0					0.8	0.8
Iron (dissolved)	µg/L			1009	1120	4500	615					4880	4880
Potassium (dissolved)	µg/L			30125	30750	31750	25500					33400	33400
Magnesium (dissolved)	µg/L			264750	287500	252500	190000					238000	238000
Manganese (dissolved)	µg/L			53	46	49	26					54.5	54.5
Molybdenum (dissolved)	µg/L		9200	0.55	1.00	0.53	< 0.50					0.66	0.66
Sodium (dissolved)	µg/L	-		1292500	1200000	1225000	985000					1290000	1290000
Nickel (dissolved)	μg/L		490	0.8	2.3	< 1.0	< 1.0					0.2	0.2
Phosphorus (dissolved)	µg/L	-		173	172	152	18					< 3	< 3
Lead (dissolved)	µg/L	10	25	0.13	1.00	< 0.50	< 0.50					< 0.09	< 0.09
Antimony (dissolved)	µg/L	6	20000	0.55	1.02	< 0.54	< 0.50					1.50	1.50
Selenium (dissolved)	µg/L	10	63	0.6	4.0	< 2.0	< 2.0					0.08	0.08
Tin (dissolved)	µg/L			0.7	2.0	< 1.0	< 1.0					0.22	0.22
Strontium (dissolved)	µg/L			43800	41500	37750	27500					41300	41300
Titanium (dissolved)	µg/L	-		1.38	10.0	< 5.0	< 5.0					< 0.05	< 0.05
Thallium (dissolved)	µg/L		510	0.016	0.100	< 0.050	< 0.050					< 0.005	< 0.005
Uranium (dissolved)	µg/L	20	420	0.112	0.200	0.140	< 0.100					0.042	0.042
Vanadium (dissolved)	µg/L		250	0.78	1.50	< 0.50	< 0.50					0.57	0.57
Zinc (dissolved)	µg/L		1100	9	1.50	< 5	< 5					4	4
Lead-210	Bg/L	0.2		0.04	0.02	0.08	< 0.10					< 0.02	< 0.02
Radium-226	Bq/L	0.49		0.04	0.02	0.05	< 0.10					0.02	0.02
Thorium-230	Bq/L	0.45		0.03	< 0.07	< 0.07	< 0.07					< 0.02	< 0.02
Thorium-232	Bq/L	0.05		0.03	< 0.06	< 0.06	< 0.07					< 0.02	< 0.02
Field Parameters	54rL	0.0		0.02	0.00	0.00	. 0.00					- 0.02	- 0.02
ODO % Sat	%			_1	_1	_1	_1					42.8	
ORP	[%] mV			1	_1	1	1					-14.9	
SPC	mv μs/cm			_1	_1	_1	_1					4813	
	µs/cm ℃		<u> </u>	1	_1	_1	1					7.882	
Temperature	°C FNU		<u> </u>	1	1	_1	1					7.882	
Turbidity pH	FNU Units			1	1	1	1					37.42	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 154 of 172

Information Use

Table 63: PG-MW3B-02

													PG-	MW	/3B-02								
		Crit	teria		2017		2018		2019		2020		2021						2022				
Parameter	Units	COPC	Table 3			-		A	verage			-		20	22/02/21	20)22/06/22	20	022/08/26	20	22/12/01	A	verage
рН	pH				8.20	Г	8.12	<u> </u>	8.23		8.31		8.19		8.31		8.28		8.20		8.31		8.28
Alkalinity	mg/L as CaCO ₃				113	\vdash	128		128		327		189		249		193		165		241		212
Carbonate	mg/L as CaCO ₃				1.7	\vdash	1.6	⊢	2.0	-	2.8	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				110	\vdash	125	⊢	123	-	325		189		249		193		165		241		212
Total Dissolved Solids	mg/L				162	\vdash	154	┢	158		177		147		174		129		154		154		153
Fluoride	mg/L	1.5			0.33	\vdash	0.34	⊢	0.32	-	0.38		0.35		0.37		0.34		0.36		0.35		0.36
Total Organic Carbon	mg/L	1.5			1.4	\vdash	0.8	⊢	2.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.8	2	0.5	┝	0.5	2	1.0	-	1.3	2	1.0	-	1.0	<	1.0	~	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L				0.16	È	0.22	⊢	0.20	<u> </u>	0.09		0.17	`	0.18		0.15	`	0.18	<u>`</u>	0.18	-	0.17
Chloride (dissolved)	mg/L				2	\vdash	2	⊢	3	-	3		3		3		3		3		3		3
Sulphate (dissolved)	mg/L				16	+	15	┝	15	-	16		16		15	-	16		16		15		16
Bromide (dissolved)	mg/L			-	1.0	-	1.0	-	1.0	-	0.3	-	0.3	-	0.3	-	0.3	<	0.3		0.3	-	0.3
Nitrite (as N)	as N mg/L			È	0.01	Ì	0.01	È	0.01	~	0.03	<	0.03	~	0.03	~	0.03	<	0.03	<	0.03	<	0.03
()				<	0.10	~	0.10	<	0.10	~	0.05	<	0.05	~	0.05	Ì	0.05	<	0.05	<	0.05	~	0.05
Nitrate (as N)	as N mg/L			<	0.10	<	0.10	<	0.10		0.06	<	0.06	<	0.06	<	0.06	<	0.06	-	0.06	<	0.06
Nitrate + Nitrite (as N) Mercury (dissolved)	as N mg/L µg/L	1	0.29	<	0.10	<	0.10	< <	0.10	<	0.06	<	0.00	<	0.00	Ì	0.00	<	0.08	<	0.06	<	0.00
Hardness		1	0.29	Ň.	86	È	85	È	87	-	489	ŕ	470	È	844	È	532	~	303	È	310	~	497
	mg/L as CaCO ₃		1.5		0.10	-	0.10	<	0.10	<	489		470		844 0.05		0.05	<	0.05	<	0.05	<	497
Silver (dissolved)	µg/L		1.5	<		<		<		<		<		<		<		<		<		<	
Aluminum (dissolved)	µg/L	25	4000	<	5	-	32	<	5	-	6	-	8	⊢	5	-	13	-	127	-	11	<u> </u>	39
Arsenic (dissolved)	µg/L	25	1900		2.1	-	2.1	-	2.1	<u> </u>	2.1	-	2.3		2.7		2.3		2.2		2.4		2.4
Barium (dissolved)	µg/L	1000	29000		58.3	-	57.0	-	57.5	<u> </u>	54.3	-	52.3		55.0		53.0		56.8		56.7		55.4
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.50	<	0.50	<	0.007	<	0.007	<	0.007	<	0.007		0.022	<	0.007		0.011
Boron (dissolved)	µg/L	5000	45000		65		65		66		63		57		55		64		64		68		63
Bismuth (dissolved)	µg/L			<	1.0	<	1.0	<	1.0	<	0.007		0.009	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L				15000		15750		15500		16125		16250		17000		16800		28800		15700		19575
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10	<	0.003		0.003	<	0.003	<	0.003		0.004	<	0.003		0.003
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50		0.009		0.013	<	0.004		0.014		0.144		0.016		0.045
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0		0.11		0.14		0.10		0.12		0.20	<	0.08		0.13
Copper (dissolved)	µg/L	1000	87	<	1.0	<	1.0	<	1.0	<	0.2		0.2	<	0.2	<	0.2		0.4	<	0.2		0.3
Iron (dissolved)	µg/L			<	100	<	105	<	100		15		17		19		17		253		24		78
Potassium (dissolved)	µg/L				718		750		708		704		696		761		774		756		675		742
Magnesium (dissolved)	µg/L				11500		11250		11250		10983		10825		11700		10900		11400		11200		11300
Manganese (dissolved)	µg/L				2.90		4.50		3.08		4.29		4.49		4.03		5.20		29.00		4.26		10.62
Molybdenum (dissolved)	µg/L		9200		1.55		1.40		1.50		1.41		1.47		1.31		1.39		1.41		1.54		1.41
Sodium (dissolved)	µg/L				16750		16500		17250		16850		16225		17100		16700		16400		16500		16675
Nickel (dissolved)	µg/L		490	<	1.0		3.0	<	1.0	<	0.1	<	0.1	<	0.1	<	0.1		0.2	<	0.1		0.1
Phosphorus (dissolved)	µg/L				5		1		7		4		4	<	3		6		63		3		19
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50		0.02		0.07	<	0.09	<	0.09		0.37	<	0.09		0.16
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0		0.10		0.07	<	0.06	<	0.06		0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L				275		270		265		286		288		286		289		295		294		291
Titanium (dissolved)	µg/L			<	5.0	<	5.0	<	5.0		0.27		0.39		0.25		0.51		8.57		0.56		2.47
Thallium (dissolved)	µg/L		510	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		0.133		0.103	<	0.100		0.110		0.082		0.062		0.080		0.726		0.069		0.234
Van adium (dis solved)	µg/L		250	<	0.63	<	0.50	<	0.50		0.06		0.09		0.05		0.08		0.38		0.04		0.14
Zinc (dissolved)	µg/L		1100		5	<	5	<	5	<	2		2		2	<	2	<	2	<	2	<	2
Lead-210	Bq/L	0.2		<	0.02	1	0.08	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bg/L	0.49		<	0.04	1	0.03		0.03		0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.07	1	0.06		0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.6		<	0.06	1	0.05		0.05	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters			<u> </u>	È		-				<u> </u>		-		F.		Ė		<u> </u>					
ODO % Sat	%				_1	\vdash	_1	\vdash	_1	-	_1	-	_1		_2		27.6		27.4		34.8		
ORP ORP	mV				_1	\vdash	_1	\vdash	_1	-	_1	-	_1		_2		85.1		115.5		134		
SPC	μs/cm				_1	+	_1	\vdash	_1	-	_1	-	_1	-	_2	-	235.8		2528	-	239.9	-	
	°C				_1	+	_1	-	_1	-	_1	-	_1	-	_2	-	11.484		10.906	-	8.656	-	
Temperature				-		+		-		-		-		 		-				-		-	
Turbidity	FNU			-	- ¹	-	_1	-	_1	-	_1	-	_1 1	⊢	_2 2	-	283.69		377.78	-	256.44	-	
pH	Units				_1		_1		_1		_1		_1		_2		8.43		8.43		8.18		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 155 of 172

Information Use

Table 64: PG-MW3C-02

		I						_					PG-	MW	V3C-02								
		Crit	teria		2017		2018		2019		2020		2021						2022				
Parameter	Units	COPC	Table 3					A	verage					20	022/02/21	20	22/06/22	20	22/08/26	20	22/12/01	A	verage
pН	pН				7.92		7.87		7.79		7.66	Γ	7.59		7.7		7.54		7.64		7.53		7.60
Alkalinity	mg/L as CaCO ₃				253		270		265		522	Γ	357		1052		434		324		364		544
Carbonate	mg/L as CaCO ₃				2.0	\vdash	1.9		1.6	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				253	\vdash	270		263		522	\square	357		1050		434		324		364		543
Total Dissolved Solids	mg/L				407	\vdash	423		458		432	\square	405		440		463		457		414		444
Fluoride	mg/L	1.5		<	0.10	⊢	0.11		0.11		0.12	+	0.09		0.10		0.07		0.08		0.07		0.08
Total Organic Carbon	mg/L				2.9	⊢	1.1		1.6		1.0	+	1.3	<	1.0	<	1.0		1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				1.0	+	0.7		0.7		1.0	\vdash	1.3	<	1.0		1.0	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L				0.05	\vdash	0.10		0.15	<	0.04	\vdash	0.05		0.05	<	0.04		0.05		0.04	-	0.05
Chloride (dissolved)	mg/L				22	\vdash	21		21		23	\vdash	25		27		29		31		24		28
Sulphate (dissolved)	mg/L				59	+	57		58		61	┢	61	_	65		57		63		59		61
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			-	0.01	-	0.01	~	0.01	~	0.03	2	0.03	~	0.03	~	0.03	<	0.03	~	0.03	~	0.03
Nitrate (as N)	as N mg/L				5.96	+	5.69	-	5.35	-	4.96	-	4.58	-	4.24	-	4.39	-	3.79	-	3.80	-	4.06
Nitrate + Nitrite (as N)	as N mg/L				5.96	-	5.69		5.35		4.96	┢	4.58		4.24		4.39		3.79		3.80		4.00
Mercury (dissolved)	µg/L	1	0.29	/	0.10	-	0.10	/	0.10	/	0.01	-	0.01	/	0.01	/	0.01	<	0.01	/	0.01	<	0.01
Hardness	mg/L as CaCO ₃	<u> </u>	0.23	È	340	È	343	-	350	-	2444	È	1580	~	381	<u>`</u>	959	`	496	<u> </u>	522	`	590
Silver (dissolved)			1.5		0.10	-	0.10		0.10		0.05		0.05		0.05		0.05	<	0.05		0.05		0.05
Aluminum (dissolved)	µg/L		1.5	[`]	6	2	5	<	5	<u>`</u>	3	1×	0.05	2	0.05	Ì	2	~	6	<	0.05	~	3
	µg/L	25	1900			<	1.0	<	1.0	-	0.3	\vdash	0.3	~	0.2		2		0.3	~	0.3	-	0.3
Arsenic (dissolved)	µg/L	25		<	1.0	<		<		-		\vdash		<						-			
Barium (dissolved)	µg/L	1000	29000 67	6	77	6	81 0.50	-	83 0.50	<	85	-	86	-	79.4 0.007	-	85.8	<	71.8	-	70	-	77
Beryllium (dissolved)	µg/L			<	0.50	<		<		<	0.007	<	0.007	<		<	0.007	<	0.007	<		<	0.007
Boron (dissolved)	µg/L	5000	45000		11	-	15		13		12	-	11		8		14		13		15		13
Bismuth (dissolved)	µg/L			<	1.0	<	1.0	<	1.0	<	0.007	-	0.027	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L				82000	<u> </u>	84750		85250		92350		95400		87100		102000		88100		80900		89525
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50		0.024		0.035	<	0.004		0.026		0.065		0.060		0.039
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0		1.18		1.16		0.83		1.12		0.64		0.43		0.76
Copper (dissolved)	µg/L	1000	87	<	1.0	<	1.0	<	1.0		0.4		0.4	<	0.2		0.3		0.3		0.4		0.3
Iron (dissolved)	µg/L			<	100	<	100	<	100	<	7		20	<	7.0	<	7.0		19.0	<	7		10
Potassium (dissolved)	µg/L				1150		1225		1100		1288		1263		884		1250		785		477		849
Magnesium (dissolved)	µg/L				31750		31500		33500		33725		34025		32100		33600		33100		34200		33250
Manganese (dissolved)	µg/L				2.0	<	2.0		2.63		2.38		2.13		7.49		3.11		10.90		22.88		11.10
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50	<	0.50		0.32		0.42		0.26		0.31		0.46		0.50		0.38
Sodium (dissolved)	µg/L				9675		8900		10000		8918		9495		11400		10400		12800		19300		13475
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	1.0		0.2		0.1		0.1	<	0.1		0.3		0.2		0.2
Phosphorus (dissolved)	µg/L				19		3		3		4		5	۷	3		4	<	3	<	3		3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50		0.02		0.10	۷	0.09	<	0.09	<	0.09	<	0.09	۷	0.09
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90	<	0.90	۷	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0		0.32		0.34		0.33		0.33		0.33		0.19		0.30
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0		0.09		0.06	<	0.06	<	0.06	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L				270		280		293		348		320		320		333		318		386		339
Titanium (dissolved)	µg/L			<	5.0	<	5.0	<	5.0		0.15	T	0.63	<	0.05		0.14		0.49		0.08		0.19
Thallium (dissolved)	µg/L		510	<	0.050	<	0.050	<	0.050		0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		0.845		0.820		0.875		0.936	T	0.792		0.801		0.895		1.660		1.094		1.113
Van adium (dis solved)	μg/L		250		0.75	1	0.75		0.76		0.77	\square	0.91		0.69		0.83		0.78		0.72		0.76
Zinc (dissolved)	μg/L		1100	<	5	<	5	<	5		3	\vdash	6	<	2	<	2	<	2	<	2	<	2
Lead-210	Bq/L	0.2		<	0.02	\vdash	0.08	<	0.10	<	0.02	\vdash	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.04	<	0.04	<	0.04	1	0.01	<	0.01	<	0.01		0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.6		<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				Ė		f-		-				f		-		<u> </u>		-					
ODO % Sat	%				_1	\vdash	_1	-	_1	-	_1	\vdash	_1	-	2		84.9	-	47.4	-	59	-	
ORP	mV				_1	\vdash	_1	-	_1	-	_1	\vdash	_1	-	_2		122.6	-	131.8	-	162.1	-	
SPC					_1	\vdash	_1	-	_1	-	_1	\vdash	_1	-	2	-	732	-	688	-	715	-	
	µs/cm				_1	\vdash	_1	-	_1	-	_1	\vdash	-'	-	_2	-				-		-	
Temperature	°C			-		┝	_1	-	-'	-	-'	\vdash	-'		-*	-	11.523	-	11.22	-	8.246	-	
Turbidity	FNU				-'	-			-'	-	-	-	-'		-		809.96		3773.6	-	2041.4	<u> </u>	
pH	Units				-'		_1		-'		_1		-'		_2		7.56		7.90		7.49		

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 156 of 172

Information Use

Table 65: PG-MW3D-02

				Г									PG-	MW3D-02					
		Crit	eria		2017	Γ	2018	Γ	2019		2020	Γ	2021				2022		
Parameter	Units	COPC	Table 3			-		A	verage			-		2022/02/28	2	2022/06/23	2022/08/31	2022/12/01	Average
pН	pH				7.80	Γ	7.81	Ē	7.74		7.61	Г	7.34	7.43	+	7.32	No Sample ²	No Sample ²	7.38
Alkalinity	mg/Las CaCO ,				278		280	\vdash	265		313	t	294	249	+	339	-		294
Carbonate	mg/L as CaCO ₃				1.6	+	1.7	\vdash	1.4	<	1.0	<	1.0	< 1.0	<	1.0			< 1.0
Bicarbonate	mg/L as CaCO 3			⊢	275	+	280	+	265		313	-	294	249	-	339			294
Total Dissolved Solids	mg/L				388	+	358	\vdash	385		325	⊢	360	303	+	466			385
Fluoride	mg/L	1.5		-	0.10	-	0.11	-	0.10		0.12	┢	0.06	0.09	+	0.08			0.09
Total Organic Carbon	mg/L	1.5		È	3.4	+	2.5	È	3.0		2.0	⊢	3.0	2.0	+	2.0			2.0
Dissolved Organic Carbon	mg/L				2.1	+	1.8	\vdash	1.6		2.0	⊢	2.0	2.0	+	2.0			2.0
Ammonia+Ammonium (N)	as N mg/L			2	0.05	2	0.05	+	0.06		0.12	⊢	0.05	< 0.04	<				< 0.04
Chloride (dissolved)	mg/L			È	38	È	19	+	23		7	⊢	44	27	È	46			37
Sulphate (dissolved)	mg/L			⊢	17	+	17	┝	14		11	⊢	12	7	+	15			11
Bromide (dissolved)	mg/L				1.0		1.0	-	1.0	<	0.3		0.3	< 0.3	<				< 0.3
Nitrite (as N)	as N mg/L			È	0.01	-	0.01	2	0.01	~	0.03	2	0.03	< 0.03		0.03			< 0.03
Nitrate (as N)	as N mg/L			< <u> </u>	1.86	~	1.90	~	1.16	~	1.23	~	1.19	2.26	-	0.89			1.58
	-			-	1.86	+	1.90	\vdash	1.16	-	1.23	⊢	1.19	2.26	+	0.89			1.58
Nitrate + Nitrite (as N)	as N mg/L		0.29			-	0.10	-	0.10	<	0.01	-	0.01	< 0.01	<				< 0.01
Mercury (dissolved) Hardness	µg/L	1	0.29	<	0.10 318	<	0.10	<	0.10 303	<	0.01	<	413	< 0.01 296	<	378			< 0.01 337
	mg/L as CaCO ₃							-				⊢			-				
Silver (dissolved)	µg/L		1.5	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05 29	< 0.05	<	0.05			< 0.05
Aluminum (dissolved)	µg/L			-	12	<		<	5		2	⊢		< 1	<				< 1
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	1.0	<	1.0	<	0.2	┞	0.3	< 0.2	<				< 0.2
Barium (dissolved)	µg/L	1000	29000		38	-	31		32		23	⊢	46	24.8	_	37.0			31
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.50	<	0.50	<	0.007	<	0.007	< 0.007	<				< 0.007
Boron (dissolved)	µg/L	5000	45000		26		19		29		17	⊢	33	10	+	15			13
Bismuth (dissolved)	µg/L			<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	< 0.010	<				< 0.010
Calcium (dissolved)	µg/L				112250		110667		107750		86150	⊢	138500	104000		130000			117000
Cadmium (dissolved)	µg/L	5	2.7	<	0.10	<	0.10	<	0.10		0.005		0.007	< 0.003		0.006			0.005
Cobalt (dissolved)	µg/L		66	<	0.50	<	0.50	<	0.50		0.027		0.174	< 0.004		0.022			0.013
Chromium (dissolved)	µg/L		810	<	5.0	<	5.0	<	5.0		0.18		0.33	0.22		0.41			0.32
Copper (dissolved)	µg/L	1000	87		1.2	<	1.0	<	1.0		1.5		0.7	0.5		0.3			0.4
Iron (dissolved)	µg/L			<	100	<	100	<	100	<	7		19	< 7		16			12
Potassium (dissolved)	µg/L				1800		1767		1550		1605		1330	1340		1010			1175
Magnesium (dissolved)	µg/L				9675		8567		9125		5745		10260	6850		11100			8975
Manganese (dissolved)	µg/L				5.70	<	2.0	<	2.0		0.140		5.485	< 0.01		0.01			0.01
Molybdenum (dissolved)	µg/L		9200	<	0.50	<	0.50	<	0.50		0.18		0.22	0.12		0.08			0.10
Sodium (dissolved)	µg/L				8425		8033		8025		3925		14250	7690		16300			11995
Nickel (dissolved)	µg/L		490	<	1.0	<	1.0	<	1.0		0.3	Γ	1.3	0.1	<	0.1			< 0.1
Phosphorus (dissolved)	µg/L				569		255		768		5	Γ	5	< 3	<	3			< 3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.50	<	0.50		0.02	<	0.09	< 0.09	<	0.09			< 0.09
Antimony (dissolved)	µg/L	6	20000		0.56	<	0.50	<	0.50	<	0.90	<	0.90	< 0.90	<	0.90			< 0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	<	2.0	<	2.0		0.15	T	0.27	0.36		0.12			0.24
Tin (dissolved)	µg/L			<	1.0	<	1.0	<	1.0		0.11	t	0.07	< 0.06	<	0.06			< 0.06
Strontium (dissolved)	µg/L				233		217		208		186	t	263	203	\top	295			249
Titanium (dissolved)	µg/L			<	5.0	<	5.0	<	5.0		0.09	t	0.78	0.06	<	0.05			0.06
Thallium (dissolved)	µg/L		510	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	< 0.005	<				< 0.005
Uranium (dissolved)	μg/L	20	420	\square	0.260	\vdash	0.227	\uparrow	0.210		0.203	t	0.213	0.164	+	0.254			0.209
Vanadium (dissolved)	µg/L		250		0.51	<	0.50	\vdash	0.50		0.35	t	0.49	0.36	+	0.46			0.41
Zinc (dissolved)	μg/L		1100	⊢	5	<	5	<	5		3	t	3	< 2	+	2			2
Lead-210	Bg/L	0.2		<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	< 0.04	<	0.02			0.03
Radium-226	Bq/L	0.49		<	0.02	<	0.04	1	0.03	Ľ.	0.02	<	0.02	< 0.01	<				< 0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.07	\vdash	0.06	<	0.02	-	0.02	< 0.02	Ť	0.02			0.02
Thorium-232	Bq/L Ba/L	0.05		< <	0.07	<	0.07	\vdash	0.05	<	0.02	2	0.02	< 0.02	<				< 0.02
Field Parameters	D di C	010		Ľ.	0.00		0.00	+	0.00		0.02		0.02	. 0.02	-	0.02			. 0.02
ODO % Sat	%			⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	_1	80.3	+	68.1			
ORP ORP	mV			⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	_1	100.9	+	188.8			
SPC	us/cm			⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	_1	549	+	783			
Temperature	μs/cm °C			⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	_1	549 8.508	+	12.795			
	FNU			⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	_1		+				
Turbidity				⊢	_1	\vdash	_1	\vdash	_1	-	_1	+	-'	0.75	+	0.36			
pH	Units			L	-'		- '	1	-'		-'	1	-'	7.35		7.28	1	1	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for full sample collection

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 157 of 172

Information Use

Table 66: PG-MW4A-02

		1		PG-MW4A-02									
		Crit	eria	2017	2018	2019	2020	2021	-14144 4A-02		2022		
Parameter	Units	COPC	Table 3	2011	2010	Average	1010		2022/04/01	2022/06/17	2022/08/25	2022/11/24	Average
pH	pH	COLC	Table 5	8.13	8.05	7.87	8.30	8.06	No Sample ²	8.35	8.24	8.24	8.28
Alkalinity	mq/L as CaCO ₂			76	75	69	123	138	no campio	94	71	83	83
Carbonate	mg/L as CaCO ₃			1.0	1.0	< 1.0	1.5	< 1.0		3.0	< 1.0	< 1.0	1.7
Bicarbonate	mg/L as CaCO ₃			75	74	69	1.5	138		90	71	83	81
Total Dissolved Solids					384		399				331		349
	mg/L	4.5		409		412		376		354		363	
Fluoride	mg/L	1.5		0.60	0.59	0.61	0.72	0.69		0.63	0.70	0.75	0.69
Total Organic Carbon	mg/L			1.9	1.2	1.4	1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Dissolved Organic Carbon	mg/L			0.8	0.6	0.7	1.0	1.0		1.0	1.0	< 1.0	< 1.0
Ammonia+Ammonium (N)	as N mg/L			0.56	0.58	0.55	0.50	0.53		0.46	0.51	0.50	0.49
Chloride (dissolved)	mg/L			200	198	193	188	190		200	190	190	193
Sulphate (dissolved)	mg/L			< 1	1	2	< 0	< 0		< 0	< 0	< 0	< 0
Bromide (dissolved)	mg/L			3.1	2.6	3.2	2.3	2.4		2.3	2.3	2.2	2.3
Nitrite (as N)	as N mg/L			< 0.01	< 0.01	< 0.01	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L			< 0.10	< 0.10	< 0.10	< 0.06	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	< 0.10	< 0.10	< 0.06	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	µg/L	1	0.29	< 0.10	< 0.08	< 0.10	< 0.01	< 0.01		0.10	0.01	< 0.01	0.04
Hardness	mg/L as CaCO ₃			93	91	95	331	409		132	75	131	113
Silver (dissolved)	µg/L		1.5	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	µg/L			< 5	< 5	5	10	3		4	< 1	< 1	2
Arsenic (dissolved)	µg/L	25	1900	< 1.0	< 1.0	< 1.0	< 0.2	0.5		< 0.2	< 0.2	< 0.2	< 0.2
Barium (dissolved)	µg/L	1000	29000	100	98	93	87	103		91.6	108	100	100
Beryllium (dissolved)	µg/L		67	< 0.50	< 0.50	< 0.50	< 0.007	< 0.007		< 0.007	< 0.007	< 0.007	< 0.007
Boron (dissolved)	µg/L	5000	45000	185	170	177	163	182		172	183	167	174
Bismuth (dissolved)	µg/L			< 1.0	< 1.0	< 1.0	< 0.007	0.009		< 0.010	< 0.010	< 0.010	< 0.010
Calcium (dissolved)	µg/L			18750	18750	19333	18475	21150		19100	15900	19400	18133
Cadmium (dissolved)	µg/L	5	2.7	< 0.10	< 0.10	< 0.10	< 0.003	< 0.003		< 0.003	< 0.003	0.004	0.003
Cobalt (dissolved)	µg/L		66	< 0.50	< 0.50	< 0.50	0.028	0.019		0.015	0.024	0.020	0.020
Chromium (dissolved)	µg/L		810	< 5.0	< 5.0	< 5.0	0.16	0.25		< 0.08	0.15	0.08	0.10
Copper (dissolved)	µg/L	1000	87	< 1.0	< 1.0	< 1.0	1.1	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2
Iron (dissolved)	µg/L			< 100	< 100	107	31	40		35	40	47	41
Potassium (dissolved)	µg/L			1875	1825	1833	1713	1858		1710	1590	1920	1740
Magnesium (dissolved)	µg/L			11250	10750	11333	9565	10165		10100	8560	11100	9920
Manganese (dissolved)	μg/L			3.05	2.8	2.5	2.408	3.740		2.05	1.83	1.01	1.63
Molybdenum (dissolved)	µg/L		9200	2.80	2.73	2.53	2.60	2.75		2.65	2.33	2.12	2.37
Sodium (dissolved)	µg/L			112500	110000	116667	104050	109500		108000	102000	106000	105333
Nickel (dissolved)	µg/L		490	< 1.0	< 1.0	< 1.0	< 0.1	0.1		< 0.1	< 0.1	< 0.1	< 0.1
Phosphorus (dissolved)	μg/L			588	296	21	< 3	4		< 3	< 3	3	< 3
Lead (dissolved)	μg/L	10	25	< 0.50	< 0.50	< 0.50	0.02	0.08		< 0.09	< 0.09	< 0.09	< 0.09
Antimony (dissolved)	μg/L	6	20000	< 0.50	< 0.50	< 0.50	< 0.90	< 0.90		< 0.90	< 0.90	< 0.90	< 0.90
Selenium (dissolved)	µg/L	10	63	< 2.0	< 2.0	< 2.0	< 0.04	0.29	<u> </u>	< 0.04	< 0.04	0.30	0.06
Tin (dissolved)	µg/L	10	- 33	< 1.0	< 1.0	< 1.0	0.04	0.29		0.10	< 0.04	0.07	0.08
Strontium (dissolved)	μg/L			1350	1375	1300	1270	1405		1410	1230	1210	1283
Titanium (dissolved)	µg/L			< 5.0	< 5.0	< 5.0	0.13	0.18		0.19	< 0.05	0.25	0.16
Thallium (dissolved)	µg/L		510	< 0.050	< 0.050	< 0.050	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005
. ,	µg/L	20	420	< 0.050	< 0.050	< 0.050	0.005	0.005		< 0.005	0.002	< 0.005	< 0.005
Uranium (dissolved)		20	420 250	< 0.100	< 0.100	< 0.100	0.013	0.025		0.006	0.002	0.005	0.004
Van adium (dissolved)	µg/L												
Zinc (dissolved) Lead-210	µg/L	0.2	1100	< 5	< 5	< 5	3	< 2		< 2	< 2	< 2	< 2
	Bq/L	0.2		< 0.02	< 0.10		< 0.02	< 0.02	l	< 0.02			
Radium-226	Bq/L	0.49		< 0.03	< 0.04	< 0.04	0.02	0.01	l	< 0.01	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L	0.65		< 0.07	< 0.07	< 0.07	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	0.6	ļ	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters									L		ļ	ļ	<u> </u>
ODO % Sat	%			_1	-1	_1	-1	_1	L	23.7	25.3	29	-
ORP	mV			_1	-1	_1	-1	_1		2.4	77.8	14.5	
SPC	µs/cm			_1	-1	_1	-1	_1		724	714	706	
Temperature	°C			_1	_1	_1	_1	_1		11.838	13.202	8.867	
Turbidity	FNU			_1	_1	_1	_1	_1		61.8	16.27	60.5	
pН	Units			_1	_1	_1	_1	_1		8.29	8.53	8.34	

Note:

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 - Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Could not access due to snow conditions

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 158 of 172

Information Use

Table 67: PG-MW4B-02

Parameter pH Alkalinity Carbonate Bicarbonate	Units pH mg/L as CaCO ₃ mg/L as CaCO ₃	Crit COPC	eria Table 3	1	2017	20	18		2019	2020		2021	0000104404				2022			A.,	
pH Alkalinity Carbonate Bicarbonate	pH mg/L as CaCO ₃	COPC	Table 3					A			-		0000104104			-				A.,	
, Alkalinity Carbonate Bicarbonate	mg/L as CaCO₃							- A V	erage				2022/04/01	20	22/06/17	20	22/08/25	202	22/11/24	AV	erage
Carbonate Bicarbonate					8.13	8	3.08		8.13	8.16	Τ	8.04	No Sample ²		8.07		8.15		8.15		8.12
Bicarbonate					155	1	160		163	227	+	182			253		148		165		189
	2				2.0		1.8		2.0	< 1.0	<	1.0		<	1.0	<	1.0	<	1.0	<	1.0
	mg/L as CaCO ₃				153	1	158		160	227		182			253		148		165		189
Total Dissolved Solids	mg/L				207		188		228	236	+	199			226		194		217		212
Fluoride	mg/L	1.5			0.26		0.25		0.23	0.27	+	0.26			0.29		0.25		0.27		0.27
Total Organic Carbon	mg/L				1.2		1.4		1.3	1.0	+	1.0		<	1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.8	<u> </u>	0.7		0.7	1.3	+	1.0			1.0		2.0	<	1.0	<	1.3
Ammonia+Ammonium (N)	as N mg/L				0.09		0.14		0.10	0.08	+	0.09			0.09		0.08		0.11		0.09
Chloride (dissolved)	mg/L				12	<u> </u>	12		12	14	+	14			13		23		11		16
Sulphate (dissolved)	mg/L				22	<u> </u>	22		22	23	+	23			24		26		23		24
Bromide (dissolved)	mg/L			<	1.0		1.0	<	1.0	< 0.3	<	0.3		<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.01		0.01	<	0.01	< 0.03	<	0.03		<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L			<	0.10	_	0.10	<	0.10	0.07	<	0.06		<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			<	0.10	-	0.10	<	0.10	0.07	<	0.06		<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	<	0.10		0.10	<	0.10	< 0.01	<	0.00			0.04		0.01	<	0.00		0.02
Hardness	mg/L as CaCO ₃	<u> </u>		<u> </u>	153		165		160	423	1	367			566		151	-	299		339
Silver (dissolved)	µg/L		1.5	<	0.10		0.10	<	0.10	< 0.05	<	0.05		<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L				5		36	<	5	91		1			9	<	1	<	1		4
Arsenic (dissolved)	μg/L	25	1900		1.7	<u> </u>	1.8	-	1.9	2.2	+	2.3			2.1	Ĺ	2.2	-	2.4		2.2
Barium (dissolved)	μg/L	1000	29000		65		68		65	66	+	75			72		90		70		78
Beryllium (dissolved)	μ g/L		67	<	0.50	<u> </u>	0.50	<	0.50	0.014	<	0.007		<	0.007	<	0.007		0.010		0.008
Boron (dissolved)	μg/L	5000	45000	-	35	<u> </u>	31	-	29	30	-	32		-	38	-	37		29		35
Bismuth (dissolved)	μg/L			<	1.0		1.0	<	1.0	< 0.007	+	0.009		<	0.010	<	0.010	<	0.010	~	0.010
Calcium (dissolved)	μg/L			~	24250		8000		26000	35425	+	27800		-	26800	-	25800	-	27800		26800
Cadmium (dissolved)	μg/L	5	2.7	<	0.10		0.10	<	0.10	0.005	+	0.004		<	0.003	<	0.003	-	0.004		0.003
Cobalt (dissolved)	μg/L		66	<	0.50	-	0.50	~	0.50	0.118	+	0.018		-	0.024	-	0.036		0.030		0.030
Chromium (dissolved)	μg/L		810	<	5.0	-	5.0	~	5.0	0.26	+	0.23		<	0.024		0.19	-	0.21		0.16
Copper (dissolved)	μg/L	1000	87	<	1.0		1.0	~	1.0	0.20	<	0.23		-	0.4	<	0.13	<	0.21		0.10
Iron (dissolved)	μg/L	1000	07	<	100		150	<	100	229	È	36			51	-	10	-	13		25
Potassium (dissolved)	μg/L			~	1075		075	~	1067	1030	+	1133			1040		1010	-	1160		1070
Magnesium (dissolved)	µg/L				22500		3250		23333	23250	+	24425		-	23900	-	21100	-	27100		24033
Manganese (dissolved)	μg/L				8.35	<u> </u>	15.0	-	8.3	252.843	+	8.635			9.14	-	8.03	-	9.28		8.82
Molybdenum (dissolved)	μg/L		9200		0.98	<u> </u>	0.95		0.97	0.91	+	1.01		-	1.07		0.96	-	0.84		0.96
Sodium (dissolved)	μg/L		5200		14500	<u> </u>	4000		14333	13050	+	14100		<u> </u>	15000		12600		12500		13367
Nickel (dissolved)	μg/L		490	<	1.0		1.0	<	1.0	0.2	<	0.1		<	0.1	<	0.1	<	0.1	<	0.1
Phosphorus (dissolved)	μg/L		430	<u>`</u>	3	`	2	-	1.0	61	È	5		<	3	<	3	-	7	`	4
Lead (dissolved)	μg/L μg/L	10	25	<	0.50	< (0.50	/	0.50	0.18	+	0.07		<	0.09	<	0.09	<	0.09	/	0.09
Antimony (dissolved)	μg/L	6	20000	<	0.50		0.50	2	0.50	< 0.90	-	0.90		<	0.90	<	0.90	<	0.90	~	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		2.0	~	2.0	< 0.04	È	0.29		<	0.04	<	0.04	-	0.13	`	0.07
Tin (dissolved)	μg/L	10	05	<	1.0	-	1.0	<	1.0	0.18	+	0.09		-	0.04	-	0.04	-	0.06		0.07
Strontium (dissolved)	μg/L			È	365		380	-	370	404	+	421		-	418		377	-	383	-	393
Titanium (dissolved)	μg/L			<	5.0		6.2	<	5.0	5.66	+	0.10		-	0.57		0.06	-	0.14	-	0.26
Thallium (dissolved)	μg/L		510	2	0.050	<u> </u>	.050	~	0.050	< 0.005	<	0.005		<	0.005	<	0.005	<	0.005	<	0.20
Uranium (dissolved)	μg/L	20	420	È	0.205		.030	<u> </u>	0.030	0.295	È	0.005		-	0.126	-	0.383	<u> </u>	0.223		0.005
Vanadium (dissolved)	μg/L	20	250	<	0.205		0.50	<	0.50	0.295	+	0.04		-	0.120	-	0.363	-	0.225	-	0.244
Zinc (dissolved)	μg/L		1100	<	5	· (5	~	5	0.55	-	2		<	2	<	2	<	2	<	2
Lead-210	Bg/L	0.2	1100	<	0.02	< 1	5 0.10	~	0.10	< 0.02	<	0.02		<	0.02	<	0.02	È	0.03	`	0.02
Radium-226	Bq/L Bq/L	0.49		È	0.02		0.04	-	0.03	0.02	<	0.02		<	0.02	<	0.02	<	0.03	/	0.02
Thorium-230	Bq/L Bq/L	0.49		<	0.03		0.04		0.05	< 0.02	<	0.01		<	0.01	<	0.01	<	0.01	<	0.01
Thorium-232	Bq/L Bq/L	0.65		<	0.07		0.07		0.05	< 0.02	<	0.02		<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	DAIL	0.0		È	0.00	<u> </u>	00.00		0.04	~ U.UZ	<	v.UZ		È	0.02	<u>`</u>	0.02	È	0.02	`	0.02
ODO % Sat	%			-	_1		_1		_1	_1	+	_1		-	35.6		46	-	82.3		
ORP	⁷⁶ mV			-	_1		_1		_1	_1	+	_1		-	3.7	-	40	-	93.1		-
				-	_1	<u> </u>	_1		_1	_1	+	_1		-		-		-			-
SPC	µs/cm			<u> </u>	_1		_1		_1	_1	+	_1		-	363.9		368.7	-	359.3		
Temperature	°C			<u> </u>	_1		-'		-'	_1	+	-' _1		<u> </u>	12.016		11.226	-	9.233		
Turbidity	FNU			-	_1				_1		+				1630.3		238.29	-	152.58		
pH	Units			2.0			-1		-'	_1		-1			8.04		7.91		8.00		

Note:

² Could not access due to snow conditions

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Could not access due to snow conditions

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 159 of 172

Information Use

Table 68: PG-MW4C-02

												PG-	MW4C-02								
		Crit	eria		2017	1	2018		2019	2020	Τ	2021					2022				
Parameter	Units	COPC	Table 3					A	verage				2022/04/01	20	22/06/17	20	22/08/25	20	22/11/24	A٧	erage
рН	pН				8.06		7.98		7.98	7.90	Т	7.86	No Sample ²		7.79		7.91		7.84		7.85
Alkalinity	mg/L as CaCO ₃				195		203		253	363	+	324			242		194		228		221
Carbonate	mg/L as CaCO ₃				2.1		1.8		2.2	< 1.0	<	: 1.0		<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				195		200		250	363	+	324			242		194		228		221
Total Dissolved Solids	mg/L				289		280		325	314	+	275			269		297		254		273
Fluoride	mg/L	1.5			0.12		0.11		0.11	0.13	+	0.12			0.10		0.10		0.13		0.11
Total Organic Carbon	mg/L				0.8		2.0	\vdash	1.9	< 1.0	+	1.0		<	1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.7		0.6	\vdash	0.6	1.0	<	: 1.0		-	1.0	-	2.0	<	1.0	<	1.3
Ammonia+Ammonium (N)	as N mg/L			<	0.05		0.11		0.20	0.06	+	0.05		<	0.04	<	0.04		0.06		0.05
Chloride (dissolved)	mg/L			È	4		4	\vdash	4	4	+	4		<u> </u>	3	<u> </u>	3	\vdash	3		3
Sulphate (dissolved)	mg/L				53		47	\vdash	47	51	+	51		\vdash	49		53	\vdash	46		49
Bromide (dissolved)	mg/L			<	1.0	-	1.0	-	1.0	< 0.3	<			<	0.3	<	0.3	<	0.3	-	0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.01	< 0.03	<			<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)				<	0.10	<	0.10	<	0.10	< 0.05	<			<u>`</u>	0.09	<	0.05	<	0.05	`	0.03
. ,	as N mg/L			_	0.10	<	0.10	< <	0.10	< 0.06	<			-	0.09	<	0.06	-	0.06		0.07
Nitrate + Nitrite (as N)	as N mg/L	1	0.20	<	0.10	<	0.10	~	0.10	< 0.06	-			<	0.09	<	0.06	<	0.06	<	
Mercury (dissolved)	μg/L	1	0.29	<		<		<			+	0.01		<		<		<		<	0.01
Hardness Silves (discelused)	mg/L as CaCO ₃		4.5		235	-	233	-	243	2612	-	776		<	8040	-	239	-	371		2883
Silver (dissolved)	μg/L		1.5	<	0.10	<	0.10	<	0.10	< 0.05	<	0.05		<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5	<	5		6	19	+	63			28		4	<	1		11
Arsenic (dissolved)	μg/L	25	1900	<u> </u>	2.1	-	2.2		2.0	1.9	+	2.2			2.1	-	2.0	-	2.0		2.0
Barium (dissolved)	μg/L	1000	29000		118		140		163	160	_	177			165		179		165		170
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.50	<	0.50	< 0.007	_	0.008		<	0.007	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		13	<	10	<	10	11	\perp	12			11		38		22		24
Bismuth (dissolved)	μg/L			<	1.0	<	1.0	<	1.0	< 0.007	+	0.009		<	0.010	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L				53000		51750		55667	53575	\perp	62975			59300		54500		54500		56100
Cadmium (dissolved)	μg/L	5	2.7	<	0.10	<	0.10	<	0.10	< 0.003		0.005		<	0.003	<	0.003		0.006		0.004
Cobalt (dissolved)	μg/L		66		1.58		0.91		0.67	0.583		0.667			0.406		0.267		0.203		0.292
Chromium (dissolved)	μg/L		810	<	5.0	<	5.0	<	5.0	0.08		0.31		<	0.08		0.15		0.16		0.13
Copper (dissolved)	μg/L	1000	87	<	1.0	<	1.0		1.1	0.5		0.3			0.6	<	0.2	<	0.2		0.3
Iron (dissolved)	μg/L			<	100	<	100		110	119		296			245		210		217		224
Potassium (dissolved)	μg/L				1325		1275		1433	1358		1468			1410		1390		1450		1417
Magnesium (dissolved)	μg/L				25000		25000		25667	24375		26675			26100		24900		27600		26200
Manganese (dissolved)	μg/L				11.0		9.5		8.9	9.2		17.1			12.10		10.70		9.27		10.69
Molybdenum (dissolved)	μg/L		9200		0.78		0.79		0.76	0.73		0.72			0.69		0.70		0.57		0.65
Sodium (dissolved)	μg/L				6200		6100		6033	5475		5970			5800		5600		4770		5390
Nickel (dissolved)	μg/L		490	<	1.0	<	1.0	<	1.0	0.1		0.2		<	0.1	<	0.1	<	0.1	<	0.1
Phosphorus (dissolved)	μg/L				132		3		8	< 3		13			29	<	3		4		12
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.50	<	0.50	0.02	Т	0.11		<	0.09	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.50	<	0.50	< 0.90	<	0.90		<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	<	2.0	<	2.0	< 0.04		0.32		<	0.04	<	0.04		0.09		0.06
Tin (dissolved)	μg/L			<	1.0	<	1.0	<	1.0	1.57	<	0.06			0.07		0.07	<	0.06		0.07
Strontium (dissolved)	μg/L				223	1	233		233	232	1	248			249	1	245	1	229		241
Titanium (dissolved)	μg/L			<	5.0	<	5.0	<	5.0	0.09	1	5.02			1.76	1	0.16	1	0.09		0.67
Thallium (dissolved)	μg/L		510	<	0.050	<	0.050	<	0.050	< 0.005	+	0.006		<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		0.198		0.205		0.153	0.175	+	0.143			0.160		0.162		0.108		0.143
Vanadium (dissolved)	μg/L		250	<	0.50	<	0.50	<	0.50	0.10	+	0.19			0.11		0.04		0.03		0.06
Zinc (dissolved)	μg/L		1100	<	5	<	5	<	5	4	<	2		<	2	<	2	<	2	<	2
Lead-210	Bq/L	0.2		<	0.02	<	0.10	<	0.10	< 0.02	+	0.03		<	0.02	<	0.02		0.02		0.02
Radium-226	Bq/L	0.49			0.03	<	0.04	<	0.04	0.01	+	0.01			0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.07	<		<		< 0.02	<			<	0.02	<		<	0.02	<	0.02
Thorium-232	Bq/L	0.6		<	0.06	<	0.06	<	0.06	< 0.02	<			<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	Dyre	0.0		È	0.00	<u> </u>	0.00	-	0.00	~ 0.02	Ť	. v.VZ		-	0.02	<u>`</u>	0.02	<u> </u>	0.02	<u> </u>	0.02
ODO % Sat	%			-	_1	-	_1	\vdash	_1	_1	+	_1		-	35.2	-	36.8	-	46.2	-	
	⁷⁰ mV				_1	-	_1	-	_1	_1	+	_1		-		-		-		-	
ORP	_			-	_1	-	_1		_1	_1	+	_1		-	-62	-	88.5	-	18.9	-	
SPC	µs/cm			—		-		-			+			-	477.3	-	466.9	-	456.4		
Temperature	°C			-	_1 1	-	-1		_1 _1	_1 _1	+	_1 1		-	11.179	-	10.38	-	9.009		
Turbidity	FNU			<u> </u>	_1	-	_1	-	-1	_1	+	_1		<u> </u>	8013.4	-	848.87	-	235.07		
pH	Units				_1		_1		-1	-1		-1			7.68		7.82		7.74		

Note:

² Could not access due to snow conditions

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Table A2.3 – Water Quality Criteria for

Potable Groundwater Conditions from the Screening Report - Port Granby Project

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

² Could not access due to snow conditions

Appendix D Environmental Assessment Follow-Up Program Summary Table

Table 69: EA Follow-Up Monitoring Plan Summary, 2022

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
Atmospheric Environment						
Air Quality: For PM _{2.5} particulate emissions, there will be occasional and slight exceedances along the edge of the existing WMF site. Development Phase of the LTWMF.	Implementation of a high level of dust control measures at waste site.	No residual adverse effects.	The Dust Management and Requirements Plan [41] was followed during construction activities. This included not working above certain wind thresholds. Water was used for dust suppression. During hot conditions when water was evaporating quickly, the contractor used pre- approved, commercially- available products specifically intended for dust suppression. Hydro seeding and tree planning were undertaken on areas where work was completed.	Dust monitoring (TSP and PM _{2.5}) at sites adjacent to construction activities during the Construction and Development Phase. The proponent should use recent/up-to-date data to establish baseline conditions.	There were two exceedances of the Canadian Council of Ministers of the Environment (CCME) Air Quality Criteria for PM _{2.5} in 2022 May and July at the Northwest Mini- Vol location. The 2022 May exceedance was attributed construction work on the railways just north of the PG Northwest station. The 2022 July exceedance was attributed to off-site activities. This exceedance is believed to be from an off- site source based on the wind direction and the absence of real-time dust exceedances from contractor and independent real-time dust monitoring. A confirmed source could not be identified.	High volume (Hi-Vol) air samplers were installed and operated at two (2) location in Port Granby in 2022 (Port Granby South and Port Granby East), to measure both TSP and PM _{2.5} . Mini-Vo portable air samplers (both TSP and PM _{2.5}) were deployed at the Port Granby Northwest location as an alternate to high volume air samplers due to the lack of a power source at that location. Three exceedances of the overriding limit of 120 micrograms per cubic metre (µg/m ³) as defined in the <i>Dust Management and Requirements Plan</i> [41] at the Port Granby East locatio was noted in 2022. These exceedances, 2022 January, May, and June were attributed to off-site activities. These exceedance are believed to be from an off-site source based on the wind direction and the absence of real time dust exceedances from contracto and independent real-time

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 160 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
						dust monitoring. A confirmed source could not be identified. The exceedance represents approximately 1.5 % of total samples collected at Port Granby East and Port Granby Northwest. The sample containing the highest net weight of TSP collected each week at each
						of the high-volume air sampling monitoring stations was sent for additional analysis to determine the concentration of contaminants of potential concern in suspended dust. There were no exceedances
						of the Ambient Air Quality Criteria [43] at Port Granby East or Port Granby South in 2022. Radionuclide analysis results are discussed under <i>Radiological, Particulate</i> <i>Radioactivity</i> .
Noise: Levels will increase by 6 dBA to 56 dBA at both the LTWMF and the existing facility in predicted zones of maximum influence as worst-case scenarios. There will be nuisance noise impacts on local receptors.	 Construction equipment will comply with emission standards as outlined in NPC- 115 of the Ontario Model Municipal Noise Control By- law. Trucks and other equipment will be equipped with mufflers. Tailgate banging will be avoided. 	No likely residual adverse effects.	 Construction equipment complied with emission standards outlined in NPC- 115 of the Ontario Model Municipal Noise Control By- law and had operable mufflers. Construction activities were limited to specified hours in accordance with the 	Verify implementation of mitigation measures. Periodically measure noise levels at receptor locations near the Site Study Area during the Construction and Development Phase. Incorporate additional post-	The 2022 monitoring results during daytime hours, when compared to the baseline noise levels measured in 2015, revealed a slight increase or similar noise levels. Readings above 56 dBA were observed, however this	Continuous sound level data was collected at a total of nine locations in Port Granby during the 2022 monitoring period. The 2022 monitoring results during daytime hours were compared to average 2015 daytime results. Outdoor construction was not occurring in 2015, and

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 161 of 172

Infor	mation	l Ise
111101	mation	USE

		Residual Effects after	Status of Mitigation	EA Follow-Up Monitoring	Predicted Environmental	Status of EA Commitments -
Predicted Effects	Mitigation Measures	Mitigation	Measures - 2022	Requirements	Effect – 2022	2022
	required to reduce speed at construction sites and on local roads to avoid excessive cargo box and tray noise. 4. Construction hoarding will be erected where practicable. 5. All construction activities would be limited to daylight hours.		Noise By-law 2007-071. 3. Tailgate banging was avoided, and tailgates were secured as required. 4. Contractors complied with posted speed limits on local public roads and avoided generating excessive cargo box or tray noise.	and use to verify EA predictions.	2004 data. Elevated levels may be influenced by an increase in local road traffic and trains since the initial environmental assessment. It was predicted that there will be nuisance noise impacts on local receptors. There were no noise complaints in 2022.	more representative of baseline conditions than those results from 2004 (Section 9.4.2.3).
Radiological Effects: Radon The highest predicted annual average radon concentration is 5.1 Bq/m ³ during construction and development.	 Working areas containing contaminated materials will be minimized. Application of dust suppressants including water and possibly chemical suppressants. Covering of stockpiles and exposed areas overnight and on weekends using foam agents, geotextiles, or other appropriate materials. Placing wind fencing around exposed stockpiles. Possible cessation of activities under high wind conditions. Mulching or re-vegetating completed cells and excavation areas as soon as possible. 	No residual adverse effects.	Mitigation measures were executed as outlined in the ' <i>Mitigation Measures</i> ' column.	Verify implementation of mitigation measures at time appropriate to the measure. Radon and long-lived alpha (LLA) monitoring during the Construction and Development Phase and monitoring during Early Life.	LLA and radon monitoring were being performed by the contractor, on a routine basis under their approved Dust Plan and Radiation Protection Plan. In 2022, CNL continued to perform monthly radon monitoring, and increased the total number of monitoring locations at the PG LTWMF and PG WMF to 13, 6 to monitor the capped mound. The average annual radon concentration measured at these locations was 40 Bq/m ³ . The trigger level for radon monitoring is 150 Bq/m ³ .	Radon gas was monitored on a routine monthly basis at the PG WMF and LTMWF during the 2022 calendar year.
Radiological Effects: Particulate Radioactivity The maximum predicted annual concentrations for the radionuclides are below the Health Canada reference	No additional mitigation measures. (See mitigation measures for Atmospheric Environment – Radiological Effects, Radon).	No likely residual adverse effects.	The Dust Management and Requirements Plan [41] was followed during construction activities. This included not working above certain wind thresholds.	Measure levels of radionuclides to verify modelling predictions.	No residual adverse effects. TSP high volume air filters were sent for additional laboratory analysis in 2022. Uranium, radium-226,	The sample containing the highest net weight of TSP collected each week at each of the monitoring stations was sent for additional analysis to determine the

Predicted Effects	Mitigation Measures	Residual Effects after	Status of Mitigation	EA Follow-Up Monitoring	Predicted Environmental	Status of EA Commitments -
		Mitigation	Measures - 2022	Requirements	Effect – 2022	2022
values.					thorium-230 and thorium-	concentration of
			Water was used for dust		232 remained well below the	contaminants of potential
			suppression. During hot		Health Canada reference	concern in suspended dust
			conditions when water was		values [44]. It should be	(Section 9.4.2.1).
			evaporating quickly, the		noted that the predicted	
			contractor used pre-		values were based on	
			approved, commercially-		modelling PM ₁₀	
			available products		concentrations. Comparing	
			specifically intended for dust		particulate radioactivity on	
			suppression.		TSP filters to the modelled	
					predictions is taking a	
			Hydro seeding and tree		conservative approach.	
			planting were undertaken on			
			areas where work was			
			completed.			
Aquatic Environment						
Sediment Quality:	Prompt removal of	No likely residual adverse	In 2022, there were no fuel	In case of a sedimentation	No residual adverse effects.	There was no sedimentation
Non-Radiological Effects:	excavation water after	effects.	spills or sedimentation	event or spill to Port Granby		event that entered Port
Improvement to sediment	rainfall along Lake Ontario		events that took place.	Creek – in which case, a		Granby Creek in 2022.
quality by a decreasing	shoreline, if remediation			post-cleanup monitoring		
contaminant transport.	necessary.			plan is to be established		Sediment monitoring along
	Fuel oil spilled to the Port			during the Construction and		the Lake Ontario shoreline is
Environmental media	Granby Creek will be cleaned			Development Phase and the		performed twice per year
sampling will be collected	by high pressure washing of			Maintenance and Monitoring		(Section 9.3.3).
along the Lake Ontario	cobble and gravel.			Phase.		
shoreline to evaluate efficacy				Environmental media		
of mitigation measures				sampling will be collected		
intended to control offsite				along the Lake Ontario		
mitigation of contaminated				shoreline to evaluate efficacy		
wastes during excavation.				of mitigation measures		
				intended to control offsite		
				migration of contaminated		
<u> </u>				wastes during excavation.		
Surface Water Quality:	Groundwater, stormwater	Beneficial long-term effects.	Construction of the PG	Conduct additional	No residual adverse effects.	Preferred treatment
Non-Radiological and	and drainage water		LTWMF for the treatment	background data collection,		technology was evaluated in
Radiological	collection and treatment		and control of groundwater	field data collection and	Based on the predicted	2011 through the Water
Effects:	systems, including flow		is complete. Active	analysis and benchtop	effluent concentrations from	Treatment Definition – Port
Long-term improvement to	control and quality control,		commissioning commenced	testing necessary to finalize	the pilot scale work, effluent	Granby Project [53]

Predicted Effects	Mitigation Measures	Residual Effects after	Status of Mitigation	EA Follow-Up Monitoring	Predicted Environmental	Status of EA Commitments -
		Mitigation	Measures - 2022	Requirements	Effect – 2022	2022
down-gradient surface water	will be in place.		in 2016 April.	the preferred treatment	parameters at the new	
quality; reduced				technology.	WWTP are less than what	Toxicity testing was
contaminant loading to				Verify predicted	was predicted during the	conducted monthly.
down-gradient lake; and no				improvements in surface	pilot scale test work.	(Appendix B, Table 16).
measurable change to Port				water at existing and new	However, influent	
Granby Creek.				water treatment system	concentrations are also	Effluent quality at the WWTP
				once the preferred	currently less than what was	was measured in 2016 April
				treatment technology has	predicted.	once the plant was
				been established.		commissioned, based on the
				Compare the effluent quality	Actual removal efficiencies	design objectives in the PGP
				performance with the	(comparing influent to	LCH [3]. As of 2018 April 4,
				predicted performance for	effluent numbers), for	approved release limits [53]
				the preferred technology.	elements where there is a	have been implemented at
				Proponent must ensure that	reasonable detectable	the
				discharge is not deleterious	quantity, indicate that	PG WWTP and updated in
				to the aquatic environment	removal efficiencies are	the PGP Quarterly Effluent
				at the point of discharge.	>99% for most licensed	Reports.
				This must be confirmed	parameters or design	
				through appropriate	objectives. This is as	Groundwater seepage
				monitoring and toxicity	expected from the pilot scale	samples from the bluffs are
				testing.	test work.	collected on a quarterly basis
						(Section 9.3.2).
				Verify reduction of		
				contaminant loadings due to		
				leachate discharging to Lake		
				Ontario via site groundwater		
				seepage sampling program		
				and, in cases where seep		
				locations are adjacent to		
				Lake Ontario, an		
				accompanying mixing zone		
				surface water sampling		
				program.		
Geology and Groundwater En	vironment					
Soil Quality:	(See mitigation measures	No likely residual adverse	The Dust Management and	Monitor soil quality in all	No residual adverse effects.	Soil samples are collected at
Radiological Effects:	included in the Atmospheric	effects.	Requirements Plan [41] as	project phases as described		perimeter locations on an
The mean incremental	and Terrestrial Environment		followed during construction	for the Terrestrial		annual basis (Section 9.4.3).
concentrations of	components of the EASR).		activities. This included not	Environment component.		,

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
radiological contaminants are expected to be less than 20% of background. The exception is thorium- 230, with an expected 38% increase in concentration over baseline, during Construction and Development Phase of the LTWMF.			 working above certain wind thresholds. Water was used for dust suppression. During hot conditions when water was evaporating quickly, the contractor used preapproved, commercially-available products specifically intended for dust suppression. Polymer spray was used to cover stockpiles and excavations at end of day. Hydro seeding and tree planting were undertaken on 		Thorium-230 soil concentration in 2022 have remained consistent with baseline data and monitoring data from previous years.	
Groundwater Quality: Non-Radiological and Radiological Effects: Volume of groundwater collected for treatment in the LTWMF site groundwater and drainage water collection system would decrease by approximately 75%; contaminant concentration expected to decline over time.	Collected groundwater will be treated to requirements set by the CNSC during licensing of the LTWMF.	No residual adverse effects.	areas where work was completed. Construction of WWTP for the treatment and control of groundwater is complete. Active commissioning occurred in 2016 April.	Measurement of volume and concentrations of contaminants in groundwater samples at selected monitoring wells; additional wells near the LTWMF may be required. Groundwater flow model to be revised by incorporating additional post-EA data collection results and used to verify EA predictions.	No residual adverse effects. Contaminant concentrations in groundwater at the PG WMF are expected to decline as remediation progresses and natural attenuation occurs.	Groundwater was sampled and analyzed quarterly in 2022. The monitoring data for each well is presented in Appendix C. On the site of the LTWMF, changes to groundwater quality are expected to be minimal due to the presence of a containment system made from several barriers and water collection system. Sentinel monitoring will be used at the site perimeter locations to confirm effectiveness of containment system (Section 9.4.3).

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 165 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
Groundwater Flow: Groundwater discharge to Port Granby Creek is predicted to decrease by 1.6% due to operation of the mound leachate containment system.	No mitigation measures necessary.	No residual adverse effects.	No mitigation measures necessary.	Measure groundwater levels at an expanded network of groundwater monitoring wells, to ensure that there are sufficient monitors distributed in each hydro stratigraphic unit, both vertically and horizontally, to properly define groundwater flow. Measure groundwater levels at monitoring wells four times yearly during Construction and Development Phase, and annually during Early, Mid and Late Life Phases. Prior to the beginning of the construction a number of monitoring wells will require proper abandonment in accordance with Ontario Regulation 903 [61].	No residual adverse effects.	Groundwater levels are measured quarterly at the current groundwater network (Section 9.4.3). Wells that were decommissioned in 2016 were completed as per <i>Ontario Regulation 903</i> [61].
<i>Groundwater:</i> No measurable changes in quality or quantity of groundwater and drainage water during LTWMF construction.	No mitigation measures necessary.	No residual adverse effects.	No mitigation measures necessary.	Monitor quantity and quality of groundwater and drainage water intercepted during construction to confirm predictions of no measurable change. Monitoring of the existing PG WMF will continue as long as required based on evaluated contaminant concentrations, including bluff seepage. Monitoring is to be undertaken downgradient of		Groundwater samples are collected on a quarterly basis at perimeter locations of the LTWMF (Section 9.3.1). Operational groundwater monitoring was not conducted in 2022. The wells were decommissioned in 2016 as they were located within or adjacent to the PG WMF excavation areas. All wells were decommissioned as per Ontario Regulation

	1					
Predicted Effects	Mitigation Measures	Residual Effects after	Status of Mitigation	EA Follow-Up Monitoring	Predicted Environmental	Status of EA Commitments -
		Mitigation	Measures - 2022	Requirements	Effect – 2022	2022
				the current PG WMF and in		<i>903</i> [61].
				the East and West Gorges.		Sampling of the bluff
						seepage is performed on a
						quarterly basis
						(Section 9.3.2).
Design of LTWMF, including	No mitigation measures	No residual adverse effects.	No mitigation measures	Monitor leakage through the	No residual adverse effects.	Monitoring of volume of
liner and	necessary.		necessary.	liner system to verify		excavated waste was
cover:				hydraulic conductivity of the		performed when active
Clay Liner Unit would have				liner unit.		waste removal commenced
maximum hydraulic						in 2016 November.
conductivity of 1x10 ⁻⁷ cm/s.				Monitor settlement of the		Radioactivity levels were
Cover would have a				LTWMF cover, to confirm the		monitored through the
maximum hydraulic				assumption that there will		vehicle portal monitor before
conductivity of 1x10 ⁻⁷ cm/s.				not be excessive settlements		emplacement in the LTWMF.
Volume of leachate				of the waste under the cover		
generated within the LTWMF				that would compromise the		Leakage monitoring is in
is predicted to be 100 m ³				cover performance.		progress and is performed
/year based on the						on a monthly basis using the
assumption of 1 mm/a				Monitor rate of infiltration		SuperSting EC Measurement
leakage through the cover.				through the LTWMF cover to		Device. This monitoring is
Volumes of excavated				verify the hydraulic		performed by the PG WWTP.
wastes to be stored in the				conductivity of the cover and		
LTWMF are predicted to be				to confirm the assumed		Settlement monitoring to be
as follows: 204,400 m ³ of				leakage rate through the		performed in the
low-level radioactive waste				cover system.		maintenance and monitoring
(LLRW), 101,000 m ³ of						phase.
marginally contaminated				Verify the volume and		Rate of infiltration
soils (MCS).				concentration of excavated		monitoring to be performed
				waste prior to emplacement		in the maintenance and
				in the LTWMF, to confirm		monitoring phase.
				the source term volumes and		
				contaminant concentrations		
				used to predict long-term environmental effects.		
Terrestrial Environment				Marife mala anti-		
Preparation of the LTWMF	Relocation of the LTWMF	No residual adverse effects.	The existing pond located to	Verify relocation of	No residual adverse effects.	The existing stormwater
site will result in temporary	stormwater management		the east of the LTWMF was	stormwater management		management pond was
loss of vegetation of 2.2% in	pond out of the cultural		removed in 2016 as part of	pond.		relocated in 2016.
the Local Study Area and 6%	thicket and into an		the site preparation work	Verify development of		

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 167 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted I Effec
in the Site Study Area, with	agricultural field.		and has been replaced with	protection and rehabilitation	
permanent conversion of	Development of site-specific		the new north stormwater	plans for the fen vegetation	
vegetation communities in	Landscape Plan by a qualified		management pond.	near the East Gorge.	
6.1% of Local Study Area and	landscape architect or			Verify implementation of	
15.3% of Site Study Area.	biologist for terrestrial		Development of a site-	erosion and sediment	
	environment at each work		specific Landscape plan is	control structures;	
	site.		completed and vegetation	application of dust	
	Development of new		planting commenced in	suppression techniques, and	
	vegetation communities at		2022.	rehabilitation of sites.	
	the LTWMF site rather than			Monitor radiological and	
	simply re-creating pre-		Development of new	non-radiological COPC in	
	construction conditions.		vegetation communities at	surficial soil during	
	Development of a Protection		the LTWMF site will take	Construction and	
	and Rehabilitation Plan for		place after the completion of	Development Phase and	
	the fen vegetation near the		the LTWMF construction.	Early Life Maintenance and	
	East Gorge.			Monitoring Phase.	
			The development of a		
			protection and rehabilitation	Verify extent and duration of	
			plan for the fen vegetation	temporary and permanent	
			near the East Gorge was	vegetation loss/change.	
			completed		
			(4500-03710-REPT-004).		
Human Health and Safety - W	orkers: Non-Radiological Effects				
Particulate matter is not	Use of personal protection	No residual adverse effects.	Construction contractors will	Monitor compliance with	For construct
predicted to have a	equipment such as dust		be required to adhere to	federal legislation related to	there were n
measurable effect on	masks and respirators to		federal and provincial	protection of health and	accidents in 2
workers' health.	reduce the exposure to		legislation related to the	safety.	lost time. Fu
	arsenic.		protection of health and		provided in (
For construction activities –			safety. Compliance	Monitor accident rate.	
estimations	Personal protection		monitoring by CNL will occur		
predict a total of 4.6 lost	equipment to mitigate noise,		during the active		
time accidents	if necessary.		construction period.		
and 15.3 recordable					
accidents.	Adopt a policy that all		Accident rate is being		
	occupational illnesses and		monitored (Section 8).		
Noise level would reach 93	injuries are preventable and				
to 95 dBA within 15 m of the	the formal establishment of		CNL reviewed and approved		
LTWMF and existing PG	the objective of zero-time		contractor plans for the		

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 168 of 172

redicted Environmental Effect – 2022	Status of EA Commitments - 2022
	The development of a protection and rehabilitation plan for the fen vegetation near the East Gorge was completed [62].
	Verification of erosion and sediment control structures are performed as part of compliance monitoring during the period of active construction.
	Soil samples are collected at perimeter locations on an annual basis (Section 9.4.3).
	The extent of vegetation/loss change will be evaluated upon completion of the Construction and Development Phase.
construction activities re were no recordable idents in 2022, and no time. Further details are vided in (Section 8).	Construction contractors will be required to adhere to federal and provincial legislation related to the protection of health and safety. Compliance monitoring by CNL will occur during the active construction period.
	If they occur, accident reports and causes are reviewed with the contractors to ensure that appropriate measures are in

Desidual Effects often Ctatus of Militartian EA Follow Up Menitoring Desided Environmental Ctatus of EA Commitments						
Predicted Effects	Mitigation Measures	Residual Effects after	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
WMF.	occupational illnesses and	Mitigation	Health and Safety Program.	Requirements	Effect – 2022	place to reduce the
	injuries.		Health and Salety Program.			possibility of recurrence.
	injunes.					possibility of recurrence.
	Develop and implement a					Continuous sound level data
	formal Health and Safety					was collected at a total of
	Program.					nine locations in Port Granby
						during the 2022 monitoring
						period. The 2022 monitoring
						results during daytime hours
						were compared to average
						2015 daytime results.
						Outdoor construction was
						not occurring in 2015, and
						therefore 2015 results are
						more representative of
						baseline conditions than
						those results from 2004
						(Section 9.4.2.3).
Human Health and Safety - M	embers of the Public: Non-Radio	ological Effects				
1. Air Quality and Noise:	(See Atmospheric	No likely residual adverse	Effluent sampling takes place	Monitor communication	No residual adverse effects.	Surveys are performed
	Environment Component)	effects.	on a weekly schedule from	protocols.		routinely. Consult the Port
	Evaluation of the		the PG WWTP. These results	Survey members of the		Granby Socio-Economic
	appropriateness of		are presented in Section 9.2.	public to confirm the level of		Effects Monitoring Report for
2. Non-radiological	mitigation measures to		No exceedance of these	satisfaction within the		more information.
contaminants:	prevent or minimize the		specified limits occurred	community.		Complaints Resolution
Risk assessment on non-	potential public exposure to		during the reporting period.	(See Aquatic Environment		Program is being regularly
radiological contaminants	the effluents in the portion			Components)		monitored (See Section
predicted that any	of Lake Ontario that may be		Bluff seepage sampling takes	Monitor complaints		15.2).
incremental risks associated	affected by treated effluent		place on a quarterly basis.	resolution process.		
with the Project would not	or bluff seepage if needed.		The results are presented in			
pose an unreasonable risk to	Continued and consistent		Section 9.3.2. It is noted that			
human health.	Continued and consistent	Como residual advarsa	there are elevated levels			
	protocols for delivering information and receiving	Some residual adverse effects predicted. However,	fluoride, arsenic and uranium in the seepage			
3. General health and well-	input to/from residents in	these are considered to be	water that are above			
being:	the Local and Regional Study	minor.	Ontario's Provincial Water			
Reduced feelings of health	Areas.		Quality Objectives (PWQO)			
and sense of wellbeing;	, ii Cu5.		[32] and the Canadian			
	1	1		1		

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 169 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
feelings of personal security;		Witigation	Council of the Ministers of	Requirements		2022
and feelings of satisfaction			the Environment (CCME)			
with living in the community.			Canadian Water Quality			
with hving in the community.			Guidelines for the Protection			
			of Aquatic Life (CWQG) [34]			
			however, the total			
			contaminant plume to Lake			
			Ontario remains small. The			
			majority of the plume is			
			estimated to have			
			contaminant concentrations			
			equivalent to 1% of the			
			original concentration			
			observed in the bluff			
			seepage samples.			
			Continuous engagement			
			with the Port Granby			
			community continued in			
			2022. A summary of the			
			communications and			
			outreach activities related to			
			the PGP are presented in			
			Section 15. The Complaints			
			Resolution Program was			
			regularly monitored in 2022			
			results are presented in			
			Section 15.2.			
Human Health and Safety - W	orkers: Radiological Effects					
Annual radiation doses are	Application of the ALARA	No residual adverse effects.	The Radiation Protection	Monitor radiation doses to	For the Port Granby Site,	Upon comparison between
predicted to range between	principle.		program was implemented	confirm accuracy of	individual annual doses	the actual and predicted
2.1 and 7.1 mSv/a.	No additional proposed		effectively to ensure doses	predictions.	ranged from 0.01 mSv to	doses, the doses exposed to
	mitigation.		to the public are ALARA and		0.42 mSv. The collective	the workers are generally
During the Maintenance and			are below the limited		radiation dose was 16.85	below the predicted levels.
Monitoring Phase, doses are			predicted effects.		person-mSv. The average	These dose levels prove that
predicted to be around 0.1					annual dose was 0.02 mSv.	the mitigation measures
mSv/a.						were effectively executed;
						and reflect the fact that the

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 170 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022 mound has been capped.
Human Health and Safety - M	l embers of Public: Radiological E	l ffects				mound has been capped.
During construction and development, the only measurable radiation doses predicted are to adjacent resident child and infant; 0.12 to 0.14 mSv/a for median dietary intakes and 0.12 to 0.15 mSv/a for upper bound dietary intakes. However, all predicted doses are within 15% of the CNSC public dose limit of 1 mSv/a, and would occur for only a relatively short duration for the infant and child.	Application of the ALARA principle. Radiation Protection Program No additional proposed mitigation.	No residual adverse effects.	Excavation and transfer of waste commenced in 2016 November. The Radiation Protection program was implemented effectively to ensure doses to the public are ALARA and are below the limited predicted effects.	Monitor radiation doses to confirm accuracy of predictions.	The radiation dose to public was estimated to be 0.3% of the annual dose limit of 1 mSv for exposures for members of the public. Total effective dose to the public was assessed with the inclusion of radon exposure at the fence-line. A total effective dose was estimated to be around 3.3% for occupational exposures for members of the public.	Upon comparison of the actual and predicted public doses, the doses exposed to the public are below the predicted levels. This has proven the mitigation measures were effectively executed.
Cumulative Effects						
Radiological: The combined predicted incremental annual average radon concentration associated with both the Port Hope and PGPs would be indistinguishable from background at a distance of approximately 2 km.	 Working areas containing contaminated materials will be minimized. Application of dust suppressants including water and possibly chemical suppressants. Covering of stockpiles and exposed areas overnight and on weekends using foam agents, geotextiles, or other appropriate materials. Placing wind fencing around exposed stockpiles. Possible cessation of activities under high wind conditions. Mulching or re-vegetating completed cells and excavation areas as soon as 	No likely residual adverse effects.	Mitigation measures are implemented as outlined.	Verify radon concentrations and radiological constituents of resuspended dust at a distance of 2 km.	Radon monitoring commenced at 3 locations around the PG LTWMF in 2017 December. These locations were less than 2 km distance from the LTWMF Controlled Area fenced boundary. The average radon concentration for 2022 at these locations read 11.5 Bq/m ³ . The highest noted radon concentration level was 30 Bq/m ³ which is below the environmental trigger level for radon 150 Bq/m ³ .	Assessment of average radon concentrations at 2 km will be performed on a quarterly basis.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 171 of 172

Predicted Effects	Mitigation Measures	Residual Effects after Mitigation	Status of Mitigation Measures - 2022	EA Follow-Up Monitoring Requirements	Predicted Environmental Effect – 2022	Status of EA Commitments - 2022
	possible.					
The radiological constituents of re-suspended dust would not be measurable beyond approximately 2 km from the sites.	1. Working areas containing contaminated materials will be minimized.	No likely residual adverse effects.	The Dust Management and Requirements Plan [41] was followed during construction activities. This included not working above certain wind thresholds. Water was used for dust suppression. During hot conditions when water was evaporating quickly, the contractor used pre- approved, commercially- available products specifically intended for dust suppression. Hydro seeding and tree planting were undertaken on areas where work was completed.	Verify radiological constituents of resuspended dust at a distance of 2 km.	No residual adverse effect.	Radiological constituents in dust was measured at the perimeter of the Site at the locations of CNL's high volume air samplers as further discussed in Section 9.4.2.1. A yearly soil (dust deposition) monitoring program at a residential property located approximately 1 km east of the Site commenced in 2016 June. The soil results are compared yearly to verify radiological constituents in soil as a result of dust deposition.

UNRESTRICTED

Port Granby Project (WNSL-W1-2311.00/2022) Annual Compliance Monitoring Report for 2022 4502 -508760-ACMR-001223 Rev.0.1 Page 172 of 172