

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Annual Compliance Monitoring Report

Port Hope Project Annual Compliance Monitoring Report for 2021

4501-508760-ACMR-004

Revision 1

Prepared by:		_	2023-01-09
	C. O'Neill Regulatory Integration		Date
	Lead		
Reviewed by:			2023/01/09
	C. O'Neill	_	Date
	Regulatory Integration Lead		
Approved by:			<mark>2023/01/09</mark>
	S. Morris	_	Date
	Manager, Programs and Compliance		

This page is for Content Controls that apply to this document. If no Content Controls apply, none will be listed.

Revision History

Rev. No.	Date	Details of Rev.	Prepared	Input/Reviewed By	Approved By
R1	2023-01-09	Revised to address Canadian Nuclear Safety Commission and Environment Canada and Climate Change staff comments as specified in 4500-CNNO-22-0018-L.	C. O'Neill	C. O'Neill	S. Morris
RO	2022-04-29	Issued as "Approved for Use."	C. O'Neill	S. Morris	M. Conan
D1	2022-04-07	Issued for "Review, Input and Comment."	C. O'Neill	M. Conan	
DO	2022-01-06	Issued for "Review, Input and Comment."	M. Healy	S. Anderson C. Staff S. D. Beauchamp Manager C. Bobzener P. Estrada- Evans K. Fraser M. Galanter A. Golbabai A. Ghuman B. Gummow M. Jones P. LeBel A. McMurray S. Morris C. O'Neill M. Owen L. Reed B. Smith D. Snowden D. Thiru N. van Dijk S. Weeks S. Whillier	

EXECUTIVE SUMMARY

This annual compliance monitoring report for the 2021 calendar year has been prepared as per licence condition 2.3 of the *Port Hope Long-Term Low-Level Radioactive Waste Management Project Licence WNSL-W1-2310.02/2022* (PHP Licence) [1] and of the *Port Hope Long-Term Low-Level Radioactive Waste Management Project Licence Conditions Handbook* (PHP LCH) [2] as a summary report of annual compliance monitoring and operational performance.

CNL's Historic Waste Program Management Office and the Port Hope Area Initiative projects are situated on the treaty lands of the Williams Treaties First Nations, specifically the treaty signed with the Mississauga First Nations of Alderville, Curve Lake, Hiawatha and Scugog Island.

The Mississauga First Nations are also signatories to various 18th and 19th century treaties that covered lands in different parts of south-central Ontario. In 1923, the Mississauga First Nations and the Chippewa First Nations consisting of Rama, Beausoleil and Georgina Island signed the Williams Treaties and together, over 90 years later in June 2018, joined to ensure that their rights to and the relationship with these lands is respected through a renewed agreement with Canada and the Province of Ontario.

The area in which we are situated is also home to Indigenous Peoples from across the region and Canada. CNL is grateful to have the opportunity to work on these traditionally and culturally significant lands and waterways.

The Port Hope Long-Term Low-Level Radioactive Waste Management Project (PHP) is part of the larger Port Hope Area Initiative (PHAI). The PHAI is a community-based project designed to develop and implement a safe, local, long-term management solution for historic low-level radioactive waste (LLRW) within the Port Hope and Clarington municipalities. The PHAI is defined by *An Agreement for the Cleanup and Long-Term Safe Management of Low-Level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope and the Municipality of Clarington* (Legal Agreement) [**3**], which took effect on 2001 March 29, between the Government of Canada and the municipalities of Port Hope and Clarington for the management of the Low-Level Radioactive Waste (LLRW) within each of the communities. CNL is responsible for the direction and execution of the PHAI in compliance with the Legal Agreement [**3**], licences and Environmental Assessment decisions. CNL has overall responsibility for managing the PHAI on behalf of Atomic Energy of Canada Limited (AECL), a federal Crown corporation.

This report provides site-specific information to supplement information in the corporate *Annual Compliance Monitoring Report for Canadian Nuclear Laboratories* (ACMR for CNL) [4], which provides corporate updates to 14 Safety and Control Areas as they are applied across all CNL. Performance highlights for 2021 activities are outlined below.

PHAI Communications and Engagement

- Indigenous community relations, public consultation, and public stakeholder and activities continued to be conducted in accordance with the Port Hope Area Initiative Public Information Program.
- In 2021, twenty-two Tier 1 complaints were received and resolved at the CNL level. Five Tier 2 complaints were received and two were resolved at the CNL level. The remaining three complaints are on hold until spring of 2022 to be re-assessed at that time.

Management System

- CNL completed all required reporting as outlined in section 3.2.3, PHP LCH [2].
- In 2020, an annual Self-Assessment Plan for FY 2020/2021 stemming from the CNL Integrated Assessment Plan, was developed, and implemented for all HWP MO sites.
- There was one external audit conducted by SAI Global for the maintenance of CNL's ISO 9001:2015 certification specific to the PHP in 2021.

Human Performance Management

- A wide range of mandatory and other job-specific training activities were carried out in 2021 to ensure that all PHP employees and contractors acquired mandated training (including refresher training) as appropriate for their duties to ensure the safe operation of the PHP facility and to conduct work under the PHP Licence [1].
- The Curriculum Review Committee continued to meet throughout 2021 to support the PHAI's Systematic Approach to Training program.

Facility and Equipment

- Port Hope Long Term Waste Management Facility (PH LTWMF): In 2021 work continued with waste being placed within the mound.
- Small-Scale Sites: characterization and design of properties and roads continued throughout 2021; progress included work to confirm 4,609 properties with external lots have been characterized and 1,098 have been identified with LLRW.
 - 4,075 properties with interior spaces have been characterized and 218 have been identified with LLRW.
 - In 2021 a new contract was awarded (Road Allowance Contract 3) to characterize
 56 high priority road allowance sites. Fieldwork began in 2012 October and 13 Road
 Allowance (RA) Sites under this contract were drilled in 2021.
 - Characterization of internal properties continued to be on hold during 2021 due to COVID-19 Pandemic restrictions.
 - 49 exterior property designs and five RA designs were completed with 127 exterior property designs and 11 RA designs in progress resulting in significant design production.
 - Excavations of exterior historic LLRW and backfilling to existing grades was completed at 29 properties.
 - Interior remediation was completed at one property.

- Temporary Storage Sites: No Temporary Storage Site (TSS) remediation activities were completed in 2021 as all TSS have proceeded through the remediation phase.
- Waterfront Area:
 - An enhanced delineation project was completed at the Viaducts site in spring 2021.
 - Remediation was completed on the 95 Mill Street site in summer 2021.
 - Remediation commenced at the Viaducts in 2021 October.
 - Remediation commenced at Strachan Street Consolidation site in summer 2021 and waste removal was completed in 2022 March.
 - Mechanical dredging of sediments from the Port Hope Harbour commenced in 2021 June.
 - Upgrades to the Harbour site water treatment system were commenced in spring
 2021 and were nearing completion for commissioning in at the end of 2022 March.
 - The tender for the Waterworks West and Alexander Street ravine sites was posted to Merx in 2022 January.
- Highland Drive Area:
 - Finalized remediation design, technical specifications, and a statement of work for the remediation of the Highland Drive Landfill.
 - New conceptual plan was developed for the Highland Drive South Ravine remediation and Permeable Reactive Barrier installation.
 - A Designated Substance Survey (DSS) was conducted on the boathouse in the Highland Drive South Ravine.
 - The Highland Drive South Ravine property was approved by Municipality of Port Hope Council for severance to separate the house at 28 Bedford Street from the ravine lot associated with the Highland Drive South Ravine remediation.
- Industrial Sites:
 - Centre Pier: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed.
 - Lions Park: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed.
 - Coal Gasification Plant: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed.
 - Chemetron Lagoon: Design for the remediation was updated in 2021 based on 2020 water and sediment sampling.
- Port Hope Waste Water Treatment Plant (PH WWTP) water treatment systems had an operational uptime of greater than 98%.
- 291,100 m³ of influent was collected by the PH WWTP in 2021. This represents a decrease of 2% in volume from 2020 recorded volumes.

Physical Design

- The PHP adheres to the Corporate Design Program and utilizes CRL Design Engineering to implement modifications and upgrades to existing equipment following CNL's Engineering Change Control (ECC) process.
- Changes and planned upgrades included the following in 2021:
 - Optimization of the evaporator mechanical and process control systems in order to maximize operational efficiency.
 - Completed minor modifications to service water circulation process to improve performance of dependent sub-systems and to increase conservation of treated water usage.
 - Finalized planning and completed the installation of a supplemental Reverse Osmosis unit to increase water treatment capacity.
 - Continued planning for installation of larger storage tanks to hold an increased volume of soda-ash, sodium hydroxide, and sulphuric acid on site.
 - Implemented additional concentrate (brine) process modifications to further enhance salt removal and balance in pond return.
 - Completed installation and optimized the function of enhanced heat recovery processes. These changes have demonstrated very good results with respect to primary treatment efficiency and reduced fouling of the system in general.

Radiation Protection

- As Low As Reasonably Achievable (ALARA) initiatives and activities continued to be at the forefront of the PHP Radiation Protection Program (RPP).
- Radiation Protection doses for workers remained ALARA and doses for the public remain well below regulatory limits.
- Provided refresher training on the efficacy of the radiation work planning process with inclusion of the Radiation Work Permitting process as applied under the Integrated Work Control (IWC) program.
- There were no exceedances of regulatory limits and action levels in the dose monitoring program.

Conventional Health and Safety

- All licensed activities continued to be carried out safely and securely.
- The Historic Waste Program Management Office Site Safety and Health Committee increased its focus on the importance of the COVID-19 Pandemic and the shift to remote work for a significant number of the workers at PHAI project sites.
- There was a project safety pause due to a series of heavy equipment near misses and rising trend of personal injury events. The pause involved a project-wide assessment and subsequent verification of equipment related hazards and controls.
- There were 310 site health and safety inspections completed in 2021.

Environmental Protection

• Environmental protection and mitigation continues to be effective; changes from the baseline are minimal and generally within the EA predictions. EA follow-up and operational monitoring continued in 2021.

Emergency Management and Fire Protection

- All required annual fire response drills, were completed as per program and regulatory requirements.
- Site emergency plans were updated in conjunction with changed personnel and processes impacted by COVID-19 Pandemic restrictions.
- A PHAI five-year Exercise and Drill Plan was developed to support improved planning and monitoring of annual drill expectations.
- Comprehensive retraining for CNL Emergency Stewards and Officer in Charge Personnel was completed in conjunction with updated emergency plans.
- Staff training on emergency procedures was completed in parallel to improved emergency notification infrastructure upgrades.
- Fire screening assessments were completed in support of CNL's ECC process for capital and maintenance/repair projects.

Waste Management

- The PH LTWMF and PH WWTP continued to operate in conformance with the PHP LCH [**2**].
- On-site waste movement occurred from 2021 January 01 to 2021 December 31. Off-site waste deliveries to the PH LTWMF originated from various sites including Cameco, Waterfront Sites, Small-Scale Sites (SSS), the Harbour sediment, and other waste sources such as on-site waste transfers.
- 22 tonnes of process residual waste was received from the Port Granby Waste Water Treatment Plant (PG WWTP) for long term management.
- 4,446 tonnes of evaporator concentrate was received for treatment from PG WWTP at the PH WWTP.

Security

- Contractors conducting work at the PHP site continued to be in compliance with CNL's corporate security policies and programs including those requirements mandated in the Port Hope Area Initiative Security Plan, as confirmed through CNL's oversight program.
- No reportable security events occurred at the PHP in 2021.

Safeguards and Non-Proliferation

- The PHP continued to adhere to the Corporate Nuclear Materials and Safeguards Management (NM&SM) Program.
- The PH LTWMF (material balance area CNWF) received and placed approximately 25,428 kgU from Cameco.
- The inventory of nuclear materials in material balance area CN-2 decreased by three items in 2021 (two sources and one souvenir vial). Items were sent to Chalk River for long-term management/repurposing.
- The International Atomic Energy Agency (IAEA) conducted routine seal replacement on the IAEA Portal Monitor in 2021 August.

Packaging and Transport

- The PHAI Transportation of Dangerous Goods Program continued to operate the safe off-site transport and shipment of dangerous goods by conforming to all applicable laws and regulations, including company policies and procedures.
- Shipments of dangerous goods continued to be received at the PHP site from offsite vendors (consumable chemicals, diesel fuel, and propane).
- There were no reportable events related to the Transportation of Dangerous Goods Program in 2021.

CNL is committed to achieving high standards of operational safety and security. The information and data presented in this report support the conclusion that safe and secure performance was achieved at the Port Hope Project PHP) site in 2021, while enhancements were implemented to further improve results.

For a detailed description of CNL's robust mitigation initiatives and controls to protect its employees, contractors, visitors, and Site operations from the COVID Pandemic, see the Executive Summary in Reference [4].

Table of Contents

SECTION		PAGE
Land Ackn	owledgement	20
Introductio	on	24
1 PHAI	27	
1.1 (General Communications Approach	28
1.1.1	Public Information Office	28
1.1.2	Website	28
1.1.3	Social Media	29
1.1.4	Media Releases	29
1.1.5	Project Newsletters	29
1.2 F	Reporting and Disclosure	30
1.2.1	Performance Reports	30
1.2.2	Public Disclosures	30
1.3 I	Indigenous Relations	30
1.3.1	Indigenous Communities and Organizations	
1.3.2	Engagements	
1.3.3	Site Tours	32
1.3.4	Direct Notifications	32
1.4 F	Public Information Program	33
1.4.1	Presentations	33
1.4.2	Public Site Tours	
1.4.3	Dedicated Engagement Campaigns	35
1.4.4	Small-Scale Sites Communications	35
1.5 H	Key Stakeholder Relations	
1.5.1	Municipal Liaison	
1.5.2	Agreement Monitoring Group	
1.5.3	Business Community Liaison	
1.5.4	Internal Communications	
1.5.5	Atomic Energy of Canada Limited (AECL)	

	1.5.	6	Canadian Nuclear Safety Commission (CNSC) 3	7
	1.6	ls	sues Management	8
2	Mar	าลยู	gement System	9
	2.1	N	1anagement System Program	9
	2.2	A	udits, Inspections and Self-Assessments	9
	2.2.	1	Audits	9
	2.2.2	2	Inspections	0
	2.2.	3	Self-Assessments	1
	2.3	С	ompliance Oversight4	1
3	Hun	nar	n Performance Management 4	2
	3.1	Н	uman Performance Program4	2
	3.2	T	raining program4	2
	3.2.	1	Required Training4	2
	3.2.	2	Contractor Training 4	5
	3.2.	3	Training Evaluations Summary4	5
4	Ope	rat	ting Performance 4	6
	4.1	0	perating Program	6
	4.1.	1	Environmental Remediation Operations 4	6
	4.1.	2	Enabling Infrastructure 4	6
	4.1.	3	Small-Scale Sites 4	.7
	4.1.4	4	Major Sites 4	.9
	4.1.	5	Continued Operation of New Port Hope Waste Water Treatment Plant	2
	4.1.	6	Port Hope Waste Water Treatment Plant5	4
	4.1.	7	Facility Staffing5	8
	4.2	R	eporting Requirements5	8
	4.2.	1	Reportable Events to CNSC	8
	4.2.2	2	Reportable Events to Other Regulators5	9
	4.2.	3	Trending of Events Related to Operational Activities5	9
	4.2.4	4	Notification of Conflicts or Inconsistencies 6	0
5	Safe	ety	Analysis 6	1

[5.1	Safety Analysis Program	61
6	Phys	ical Design	62
(5.1	Design Program	62
	6.1.2	Old Welcome Treatment Building	62
	6.1.2	2 Port Hope Waste Water Treatment Plant (PH WWTP)	62
	6.1.3	3 PH WWTP Action Levels	62
	6.1.4	1 Engineering Upgrades	63
7	Fitne	ess for Service	64
-	7.1	Fitness for Service Program	64
8	Radi	ation Protection	65
8	3.1	Radiation Protection Program	65
	8.1.2	L ALARA Initiatives and Activities	65
	8.1.2	2 Contamination Control	66
	8.1.3	3 Sealed Sources	67
	8.1.4	1 Interpretation of Reported Dose Quantities	68
8	3.2	Dosimetry	68
	8.2.2	Discussion of Dose Data	73
	8.2.2 8.2.2	Discussion of Dose DataRadiation Dose Changes or Trends	73 73
	8.2.2 8.2.2 8.2.3	 Discussion of Dose Data Radiation Dose Changes or Trends Program Exceedances 	73 73 73
9	8.2.2 8.2.2 8.2.3 Conv	 Discussion of Dose Data Radiation Dose Changes or Trends Program Exceedances ventional Health and Safety 	73 73 73 74
9	8.2.2 8.2.2 8.2.3 Conv 9.1	 Discussion of Dose Data Radiation Dose Changes or Trends Program Exceedances ventional Health and Safety Conventional Health and Safety Program 	73 73 73 74 74
9	8.2.2 8.2.2 8.2.2 Conv 9.1 9.1.2	 Discussion of Dose Data Radiation Dose Changes or Trends Program Exceedances ventional Health and Safety Conventional Health and Safety Program Site Safety and Health Committee 	73 73 73 74 74 74
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.:	 Discussion of Dose Data	73 73 74 74 74 74
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: 9.1.:	 Discussion of Dose Data	 73 73 74 74 74 75 75
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: 9.1.: Envi	 Discussion of Dose Data	 73 73 74 74 74 75 75 76
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: 5.1 9.1.: 10.1	 Discussion of Dose Data	 73 73 74 74 74 75 76 76 76
9 9 10	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: Envi 10.1	 Discussion of Dose Data	 73 73 74 74 75 76 76 76 76 76
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: 10.1 10.2 10.2	 Discussion of Dose Data	 73 73 74 74 74 75 76 76 76 76 76 76 76 76
9	8.2.: 8.2.: 8.2.: Conv 9.1 9.1.: 9.1.: 9.1.: 10.1 10.2 10.2 10.3	 Discussion of Dose Data Radiation Dose Changes or Trends Program Exceedances ventional Health and Safety Conventional Health and Safety Program Conventional Health and Safety Program Site Safety and Health Committee Inspections HOIRs and Lost-Time Injuries ronmental Protection Environmental Protection Program Environmental Monitoring and Environmental Assessment Follow-Up Monitoring EA Follow-Up and Environmental Monitoring 	 73 73 74 74 74 75 76 76 76 76 76 76 76 76 77

	10.3	.2	Atmospheric Environmental Monitoring	
	10.3	.3	Geology and Groundwater Monitoring	83
	10.3	.4	Aquatic Environmental Monitoring	86
11	Eme	rgen	cy Management and Fire Protection	
1	1.1	Eme	ergency Preparedness Program	
	11.1.	.1	Drills and Exercises	
	11.1.	.2	Training	
	11.1.	.3	External Collaborations	
	11.1.	.4	Unplanned Emergency Events	
1	1.2	Fire	Protection Program	
	11.2	.1	Fire Response Drills	
	11.2	.2	External Collaborations	
	11.2	.3	Third Party Audits & Inspections	
	11.2	.4	Fire Hazard Analysis	
12	Wast	te M	anagement	
1	2.1	Was	te Management Program	
	12.1	.1	Waste Management Operations	
	12.1	.2	Waste Inventory	
13	Secu	rity .		
1	3.1	Secu	urity Program	
	13.1.	.1	Security Events	
14	Safe	guar	ds and Non-Proliferation	100
1	4.1	Safe	guards Program	100
	14.1.	.1	Nuclear Materials Inventory	100
	14.1.	.2	International Atomic Energy Agency (IAEA) Activities	101
15	Pack	agin	g and Transport	102
1	5.1	Pack	kaging and Transport Program	102
	15.1.	.1	Shipments	102
16	Acro	nym	S	103
17	Refe	renc	es	105

Appendix A	EA MONITORING LOCATIONS	108
Appendix B	PORT HOPE ENVIRONMENTAL MONITORING RESULTS	126
Appendix C	PORT HOPE GROUNDWATER MONITORING RESULTS	178
Appendix D	HIGHLAND DRIVE GROUNDWATER RESULTS	204
Appendix E	EA FOLLOW-UP PROGRAM SUMMARY TABLE	229

FIGURES

Figure 1: 2021 PHAI Engagements
Figure 2: 2020 to 2021 PH WWTP Final Effluent Monthly Averages (TSS, pH and Radium-226) Histogram
Figure 3: 2020 to 2021 PH WWTP Final Effluent Monthly Averages (Lead, Uranium and Zinc) Histogram
Figure 4: 2020 to 2021 PH WWTP Final Effluent Monthly Averages (Aluminum, Arsenic and Copper) Histogram
Figure 5: PHP LTWMF high-volume air sampler locations108
Figure 6: Pine Street Extension Consolidation Site air monitoring locations
Figure 7: PH LTWMF noise monitoring locations
Figure 8: Central Transportation Route noise monitoring locations
Figure 9: Northern Transportation Route noise monitoring locations 112
Figure 10: Southern Transportation Route noise monitoring locations 113
Figure 11: Highland Drive Noise Monitoring Locations114
Figure 12: PH LTWMF groundwater monitoring locations115
Figure 13: Highland Drive groundwater monitoring locations116
Figure 14: PH LTWMF soil sampling locations
Figure 15: Highland Drive Landfill soil sampling locations 118
Figure 16: Brand Creek and Lake Ontario surface water sampling locations 119
Figure 17: PH LTWMF drainage water sampling locations120
Figure 18: Brewery Creek aquatic sampling locations121
Figure 19: Highland Drive South Creek aquatic sampling locations122
Figure 20: Alexander Creek aquatic sampling locations 123
Figure 21: Port Hope Harbour surface water sampling locations

TABLES

Table 1: PHAI 2021 Online Communications Outreach Activities 29
Table 2: PHAI 2021 Indigenous Communications and Engagement Activities
Table 3: PHAI 2021 Public Communications and Engagement Activity
Table 4: External Audits 39
Table 5: PHAI Operating Staff Training in 2021 44
Table 6: Reportable Events to the CNSC at PHP in 2021 58
Table 7: Number of ImpActs raised at PHP
Table 8: Contamination Events
Table 9: Effective Radiation Doses to PHAI Personnel, Current 5 Year Dosimetry Period (2021-2025)69
Table 10: Effective Dose for PHP 70
Table 11: Distribution of Equivalent Dose to the Skin for PHP 71
Table 12: Summary of Dose Components Received as a Result of Licensed Activities for 2021 a 72
Table 13: Summary of PHP Injury Rate Data 75
Table 14: Waste Transferred to the PH LTWMF 98
Table 15: 2021 Nuclear Materials Inventory 100
Table 10: 2021 DULTMANT expertises I observation well seven line results 120
Table 16: 2021 PH LTWINF operational observation well sampling results
Table 16: 2021 PH LTWMF Operational observation well sampling results
 Table 16: 2021 PH LTWMF Operational observation well sampling results
 Table 16: 2021 PH LTWINF Operational observation well sampling results
 Table 16: 2021 PH LTWMP Operational observation well sampling results
 Table 16: 2021 PH LTWMP Operational observation well sampling results
Table 16: 2021 PH LTWMF Operational observation well sampling results126Table 17: 2019 to 2021 Port Hope Waste Water Treatment Plant – Results of water sampling analysis (effluent)127Table 18: 2019 to 2021 Port Hope Waste Water Treatment Plant – Results of water sampling analysis (influent)128Table 19: 2019-2021 Port Hope Waste Water Treatment Plant and Old Water Treatment Building Operations - Results of water sampling analysis (effluent toxicity)129Table 20: 2019 to 2021 PHWWTP Operations - Results of Brand Creek surface water sampling130Table 21: Air quality monitoring – PH LTWMF Weather Station131Table 22: Air quality monitoring – PH LTWMF Northwest131
 Table 18: 2021 PH LTWMP Operational observation well sampling results

Table 25: Metals and radionuclides concentrations in total suspended particulates – PH LTWMFWeather Station
Table 26: Metals and radionuclides concentrations in total suspended particulates – PH LTWMFNorthwest133
Table 27: Metals and radionuclides concentrations in total suspended particulates – PH LTWMFSouth134
Table 28: Metals and radionuclides concentrations in total suspended particulates – 192Toronto Road134
Table 29: Air quality monitoring – Pine Street Extension Consolidation Site, Cavan Candies 135
Table 30: Air quality monitoring – Pine Street Extension Consolidation Site, Jack Burger Sports Complex
Table 31: Air quality monitoring – Pine Street Extension Consolidation Site, Port Hope High School
Table 32: Metals and radionuclides concentrations in total suspended particulates – Pine StreetExtension Consolidation Site, Cavan Candies136
Table 33: Metals and radionuclides concentrations in total suspended particulates – Pine StreetExtension Consolidation Site, Jack Burger Sports Complex
Table 34: Metals and radionuclides concentrations in total suspended particulates – Pine StreetExtension Consolidation Site, Port Hope High School
Table 35: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (June and July 2021)
Table 36: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (August and September 2021)140
Table 37: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (October 2021)
Table 38: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (November 2021)
Table 39: Noise monitoring levels – PH LTWMF143
Table 40: Noise monitoring levels – Port Hope Central, North and South transportationroutes144
Table 41: Noise monitoring levels – Highland Drive and Vicinity Sites – PSE CS 144
Table 42: PH LTWMF groundwater levels145
Table 43: Highland Drive groundwater levels
Table 44: PH LTWMF sentinel well monitoring program

Table 45: Soil monitoring- PH LTWMF – Location 1 (PH-WWMF-SS-01)148
Table 46: Soil monitoring- PH LTWMF – Location 2 (PH-WWMF-SS-02)148
Table 47: Soil monitoring- PH LTWMF – Location 3 (PH-WWMF-SS-03)149
Table 48: Soil monitoring- PH LTWMF – Location 4 (PH-WWMF-SS-04)
Table 49: Soil monitoring- PH LTWMF – Location 5 (PH-WWMF-SS-05)150
Table 50: Soil monitoring- Highland Drive – Location 1 (PH-H-SS-01)
Table 51: Soil monitoring- Highland Drive – Location 2 (PH-H-SS-02)
Table 52: Surface water quality – Brand Creek – downstream of PH LTWMF (BC-D) 152
Table 53: Surface water quality – Brand Creek – upstream of PH LTWMF (BC-U)
Table 54: Surface water quality – Brand Creek – Marsh Road (BC-M)
Table 55: Surface Water Quality – Brand Creek – tributary of Brand Creek (BC-T) 155
Table 56: Storm event sampling – Brand Creek Watershed (BC-M)
Table 57: Surface water – Lake Ontario diffuser (BC-LO-D) 157
Table 58: Surface water – Lake Ontario diffuser – outside eastern edge of mixing zone (BC-LO- E)
Table 59: Surface water – Lake Ontario diffuser – outside western edge of mixing zone (BC-LO- W)
Table 60: Drainage water quality – PH LTWMF – Location 1 (WC-SW3-02)
Table 61: Drainage water quality – PH LTWMF – Location 2 (WC-SW4-02)
Table 62: Drainage water quality – PH LTWMF – Location 3 (WC-SW5-02)
Table 63: Drainage water quality – PH LTWMF – Location 4 (WC-SW6-02)
Table 64: Surface water quality – Brewery Creek – upstream – (GRT-3)
Table 65: Surface water quality – Brewery Creek – downstream – (GRT-3B) 165
Table 66: Surface water quality – Highland Drive South Creek – downstream – (HC-D) 166
Table 67: Surface water quality – Highland Drive South Creek – upstream – (HC-U) 167
Table 68: Sediment quality – Highland Drive South Creek (HC-D)
Table 69: Sediment quality – Highland Drive South Creek (HC-U)
Table 70: 2021 Storm event sampling – Highland Drive South Creek watershed
Table 71: Surface water quality – Alexander Creek – upstream (AC-1)
Table 72: Surface Water Quality – Alexander Creek – downstream (AC-3)
Table 73: Surface water quality – Lake Ontario Port Hope Harbour – Location 1 (PHH-1) 173

Table 74: Surface water quality – Lake Ontario Port Hope Harbour – Location 2	(PHH-2) 174
Table 75: Surface water quality – Lake Ontario Port Hope Harbour – Location 3	(PHH-4) 175
Table 76: Surface water quality – Lake Ontario Port Hope Harbour – During Dree (PHH-1a)	dging Activities 176
Table 77: Surface water quality – Lake Ontario Port Hope Harbour – During Dree (PHH-2a)	dging Activities 177
Table 78: WC-IW93-22	178
Table 79: WC-MW1-02	179
Table 80: WC-MW1-03	180
Table 81: WC-MW2-02	
Table 82: WC-MW3A-11R	182
Table 83: WC-MW3B-02	
Table 84: WC-MW3C-02	
Table 85: WC-MW3D-02	185
Table 86: WC-MW4A-02	186
Table 87: WC-MW4B-02	
Table 88: WC-OW1-87	
Table 89: WC-OW2-75	189
Table 90: WC-OW2A-75 and WC-OW2A-19	190
Table 91: WC-OW2-87 and WC-OW2-19	191
Table 92: WC-OW3-79	192
Table 93: WC-OW3-87	193
Table 94: WC-OW4-79	194
Table 95: WC-OW5-79 and WC-OW5-19	195
Table 96: WC-OW9-75 and WC-LTWMF-MW-06	196
Table 97: WC-OW10-75	197
Table 98: WC-OW12-75	198
Table 99: WC-OW18-76	199
Table 100: WC-OW25-76	200
Table 101: WC-OW27-76	201
Table 102: WC-OW28-76	202

Table 103: WC-OW33-76	203
Table 104: PH-02-01	204
Table 105: PH-02-02	205
Table 106: PH-02-03	206
Table 107: PH-90-3-I	207
Table 108: PH-90-4-III	208
Table 109: PH-90-6-I	209
Table 110: PH-90-6-II	210
Table 111: PH-90-6-III	211
Table 112: PH-90-7-III	212
Table 113: PH-90-8-I	213
Table 114: PH-90-8-II	214
Table 115: PH-90-9-III	215
Table 116: PH-93-3-III	216
Table 117: PH-93-6-I	217
Table 118: PH-93-6-II	218
Table 119: PH-93-9-I	219
Table 120: PH-93-9-II	220
Table 121: PH-93-10-I	221
Table 122: PH-93-10-II	222
Table 123: PH-93-12-II	223
Table 124: PH-95-I	224
Table 125: PH-95-17-I	225
Table 126: PH-95-17-II	226
Table 127: PH-95-18	227
Table 128: PH-M-19	228
Table 129: Scope of biophysical effects EA Follow-Up Monitoring Plan, 2021	229

Land Acknowledgement

CNL's Historic Waste Program Management Office and the Port Hope Area Initiative projects are situated on the traditional and treaty lands of the Williams Treaties First Nations, specifically the treaty signed with the Mississauga First Nations of Alderville, Curve Lake, Hiawatha and Scugog Island.

The Mississauga First Nations are also signatories to various 18th and 19th century treaties that covered lands in different parts of south-central Ontario. In 1923, the Mississauga First Nations and the Chippewa First Nations consisting of Rama, Beausoleil and Georgina Island signed the Williams Treaties and together, over 90 years later in 2018 June, joined to ensure that their rights to and the relationship with these lands is respected through a renewed agreement with Canada and the Province of Ontario.

The area in which we are situated is also home to Indigenous Peoples from across the region and Canada. CNL is grateful to have the opportunity to work on these traditionally and culturally significant lands and waterways.

The PHAI represents the federal government's response to the community-requested solution for the cleanup and local, long-term, safe management of historic low-level radioactive waste in the municipalities of Port Hope and Clarington. The waste is the result of the refining practices of the former Crown Corporation, Eldorado Nuclear Ltd., and its private sector predecessors. The original Eldorado refining operation and plant were established in the 1930s without consultation with Indigenous peoples of the area.

A legal agreement, finalized in 2001 March, between the Government of Canada and the two municipalities, launched the PHAI by defining the framework and setting out the responsibilities for the Port Hope Project and the Port Granby Project.

Through its Historic Waste Program Management Office, Canadian Nuclear Laboratories is implementing the PHAI on behalf of Atomic Energy of Canada Limited, a federal Crown corporation.

Indigenous History of the Port Hope Area

This Indigenous history has been generously provided by Curve Lake First Nation - publication reference: *Gitiga Migizi and Julie Kapyrka, 2015 Before, During, and After: Mississauga Presence in the Kawarthas*. In Peterborough, Archaeology, Dirk Verhulst, editor, pp. 127-136. Peterborough, Ontario: Peterborough Chapter of the Ontario Archaeological Society

The traditional homelands of the Michi Saagiig (Mississauga Anishinaabeg) encompass a vast area of what is now known as southern Ontario. The Michi Saagiig are known as "the people of the big river mouths" and were also known as the "Salmon People" who occupied and fished the north shore of Lake Ontario where the various tributaries emptied into the lake. Their territories extended north into and beyond the Kawarthas as winter hunting grounds on which they would break off into smaller social groups for the season, hunting and trapping on these lands, then returning to the lakeshore in spring for the summer months. The Michi Saagiig were a highly mobile people, travelling vast distances to procure subsistence for their people. They were also known as the "Peacekeepers" among Indigenous nations. The Michi Saagiig homelands were located directly between two very powerful Confederacies: The Three Fires Confederacy to the north and the Haudenosaunee Confederacy to the south. The Michi Saagiig were the negotiators, the messengers, the diplomats, and they successfully mediated peace throughout this area of Ontario for countless generations.

Michi Saagiig oral histories speak to their people being in this area of Ontario for thousands of years. These stories recount the "Old Ones" who spoke an ancient Algonquian dialect. The histories explain that the current Ojibwa phonology is the 5th transformation of this language, demonstrating a linguistic connection that spans back into deep time. The Michi Saagiig of today are the descendants of the ancient peoples who lived in Ontario during the Archaic and Paleo-Indian periods. They are the original inhabitants of southern Ontario, and they are still here today.

The traditional territories of the Michi Saagiig span from Gananoque in the east, all along the north shore of Lake Ontario, west to the north shore of Lake Erie at Long Point. The territory spreads as far north as the tributaries that flow into these lakes, from Bancroft and north of the Haliburton highlands. This also includes all the tributaries that flow from the height of land north of Toronto like the Oak Ridges Moraine, and all the rivers that flow into Lake Ontario (the Rideau, the Salmon, the Ganaraska, the Moira, the Trent, the Don, the Rouge, the Etobicoke, the Humber, and the Credit, as well as Wilmot and 16 Mile Creeks) through Burlington Bay and the Niagara region including the Welland and Niagara Rivers, and beyond. The western side of the Michi Saagiig Nation was located around the Grand River which was used as a portage route as the Niagara portage was too dangerous. The Michi Saagiig would portage from present-day Burlington to the Grand River and travel south to the open water on Lake Erie.

Michi Saagiig oral histories also speak to the occurrence of people coming into their territories sometime between 500-1000 A.D. seeking to establish villages and a corn growing economy – these newcomers included peoples that would later be known as the Huron-Wendat, Neutral, Petun/Tobacco Nations. The Michi Saagiig made Treaties with these newcomers and granted them permission to stay with the understanding that they were visitors in these lands. Wampum was made to record these contracts, ceremonies would have bound each nation to their respective responsibilities within the political relationship, and these contracts would have been renewed annually (see Gitiga Migizi and Kapyrka 2015). These visitors were extremely successful as their corn economy grew as well as their populations. However, it was understood by all nations involved that this area of Ontario were the homeland territories of the Michi Saagiig.

The Odawa Nation worked with the Michi Saagiig to meet with the Huron-Wendat, the Petun, and Neutral Nations to continue the amicable political and economic relationship that existed – a symbiotic relationship that was mainly policed and enforced by the Odawa people. Problems arose for the Michi Saagiig in the 1600s when the European way of life was introduced into southern Ontario. Also, around the same time, the Haudenosaunee were given firearms by the colonial governments in New York and Albany which ultimately made an expansion possible for them into Michi Saagiig territories. There began skirmishes with the various nations living in Ontario at the time. The Haudenosaunee engaged in fighting with the Huron-Wendat and between that and the onslaught of European diseases, the Iroquoian speaking peoples in Ontario were decimated. The onset of colonial settlement and missionary involvement severely disrupted the original relationships between these Indigenous nations. Disease and warfare had a devastating impact upon the Indigenous peoples of Ontario, especially the large sedentary villages, which mostly included Iroquoian speaking peoples. The Michi Saagiig were largely able to avoid the devastation caused by these processes by retreating to their wintering grounds to the north, essentially waiting for the smoke to clear.

Michi Saagiig Elder Gitiga Migizi (2017) recounts¹:

"We weren't affected as much as the larger villages because we learned to paddle away for several years until everything settled down. And we came back and tried to bury the bones of the Huron but it was overwhelming, it was all over, there were bones all over – that is our story.

There is a misnomer here, that this area of Ontario is not our traditional territory and that we came in here after the Huron-Wendat left or were defeated, but that is not true. That is a big misconception of our history that needs to be corrected. We are the traditional people, we are the ones that signed treaties with the Crown. We are recognized as the ones who signed these treaties and we are the ones to be dealt with officially in any matters concerning territory in southern Ontario.

We had peacemakers go to the Haudenosaunee and live amongst them in order to change their ways. We had also diplomatically dealt with some of the strong chiefs to the north and tried to make peace as much as possible. So we are very important in terms of keeping the balance of relationships in harmony.

Some of the old leaders recognized that it became increasingly difficult to keep the peace after the Europeans introduced guns. But we still continued to meet, and we still continued to have some wampum, which doesn't mean we negated our territory or gave up our territory – we did not do that. We still consider ourselves a sovereign nation despite legal challenges against that. We still view ourselves as a nation and the government must negotiate from that basis."

¹ This historical context was prepared by Gitiga Migizi, a respected Elder and Knowledge Keeper of the Michi Saagiig Nation.

Often times, southern Ontario is described as being "vacant" after the dispersal of the Huron-Wendat peoples in 1649 (who fled east to Quebec and south to the United States). This is misleading as these territories remained the homelands of the Michi Saagiig Nation.

The Michi Saagiig participated in eighteen treaties from 1781 to 1923 to allow the growing number of European settlers to establish in Ontario. Pressures from increased settlement forced the Michi Saagiig to slowly move into small family groups around the present day communities: Curve Lake First Nation, Hiawatha First Nation, Alderville First Nation, Scugog Island First Nation, New Credit First Nation, and Mississauga First Nation.

The Michi Saagiig have been in Ontario for thousands of years, and they remain here to this day.

Introduction

Name:Port Hope Long-term Waste Management FacilityLocation:Plan 9R-734, Lots 13 and 14, Concession 2
Port Hope, Municipality of Hope, Northumberland County, Ontario
L1A 3V7

Licence Information and Reporting Period

This annual compliance monitoring report is produced to comply with licence condition 2.3 of the *Port Hope Long Term Low Level Radioactive Waste Management Project Waste Nuclear Substance Licence* (WNSL-W1-2310.02/2022) [1], hereinafter referred to as the Port Hope Project (PHP) licence [1] e, in accordance with the compliance verification criteria listed in the *Port Hope Long-Term Low-Level Radioactive Waste Management Project Licence Conditions Handbook* [2], hereinafter referred to as the PHP LCH [2]. Information included in this report is for the period of 2021 January 01 to 2021 December 31.

This report provides site-specific information to supplement information in the *Annual Compliance Monitoring Report for Canadian Nuclear Laboratories* (ACMR for CNL) [4], which provides corporate updates to 14 Safety and Control Areas as they are applied across all CNL.

The intent of this report is to provide sufficient detail to demonstrate how PHP programs are meeting the regulatory requirements as specified in the PHP licence [1] and the PHP LCH [2].

Changes to Organizational Structure

In 2021 February, CNL's Environmental Remediation Management and Stewardship Renewal Group announced a change in Site Licence Holder position for the Port Hope and Port Granby waste management projects [5].

Facilities Included in this Report

Facilities discussed in this report include the Port Hope Long-term Waste Management Facility (PH LTWMF) and the Port Hope Waste Water Treatment Plant (PH WWTP).

Summary of Licensed Activities

The PHAI is defined by *An Agreement for the Cleanup and Long-Term Safe Management of -Low-level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope and the Municipality of Clarington* [**3**], herein referred to as the Legal Agreement [**3**], which took effect on 2001 March 29, between the Government of Canada and the municipalities of Port Hope and Clarington for the management of Low-Level Radioactive Waste (LLRW) as prescribed under the PHP, and the Port Granby Long-Term Low-Level Radioactive Waste Management Project (PGP). The Port Hope Area Initiative (PHAI) includes two distinct and separate projects:

- The Port Hope Long-Term Low-Level Radioactive Waste Management Project (PHP) that comprises the long-term management of the Low Level Radioactive Waste (LLRW) currently located at the existing Welcome Waste Management Facility (WWMF), the construction of a new Port Hope Long-Term Waste Management Facility (PH LTWMF), the remediation of LLRW and specified industrial waste at various sites within the Municipality of Port Hope (MPH) and the safe transportation of the waste to the new PH LTWMF for long-term storage.
- Port Granby Long-Term Low-Level Radioactive Waste Management Project (PGP).

The PHP will:

- Remediate sites containing historic LLRW and other specified industrial waste located in the Municipality of Port Hope (MPH). These sites are described in the Legal Agreement [**3**].
- Consolidate and manage this waste in a new long-term waste management facility at Port Hope (PH LTWMF), developed on lands comprised of and adjacent to the former WWMF. The contents of the former WWMF have been incorporated into the new PH LTWMF.

The historic LLRW within the community currently exists within licensed temporary storage and management facilities and miscellaneous unlicensed remediation sites (including the Port Hope Harbour and the former municipal landfill site).

The PHP comprises:

- Phase 1 (complete):
 - Securing regulatory approvals.
 - The management of the waste in the WWMF, currently owned by the Government of Canada and operated by CNL on behalf of Atomic Energy of Canada Limited (AECL), a federal Crown corporation.
- Phase 2 (2012-2025):
 - Development of a new LTWMF on and adjacent to the present site of the WWMF.
 - Incorporation of the current inventory of waste from the WWMF into the new LTWMF.
 - Remediation of sites within the MPH that are contaminated with historic LLRW.
- Phase 3 (2025-2120):
 - Long-term maintenance and monitoring of the PH LTWMF.

Additional Licenced Activities

A number of remediation sites in Port Hope are subjects of existing licences issued to CNL under the *Nuclear Safety and Control Act* (NSCA) [**6**], each of which submit independent annual compliance reports to the Canadian Nuclear Safety Commission (CNSC) as per the *Pine Street Extension Temporary Storage Site WNSL-W1-182.1/2022* [**7**] and the *Port Hope Radioactive Waste Management Facility WNSL-W1-344-1.8/ind.* [**8**] licence requirements.

As with all the PHAI remediation sites, those subject to these licences will be remediated to the project specific Cleanup criteria as part of the PHP Licence [1].

1 PHAI Communications and Engagement

CNL is committed to providing effective access to timely information about the PHAI. Aimed at strengthening understanding of and confidence in the projects, information is provided to ensure the public, Indigenous communities and organizations and key stakeholders are knowledgeable about upcoming work and project activities. Reports are also available on programs, schedules, environmental protection and mitigation measures, long-term benefits and economic opportunities.

CNL responds to the diverse needs of a wide range of audiences to increase project awareness and enhance relationship building through a variety of approaches, as depicted in Figure 1.

Figure 1: 2021 PHAI Engagements

As a result of COVID-19 restrictions in 2021, CNL's communications and engagement initiatives were adapted wherever possible to interactions regarding the Port Hope Project (PHP) by phone, email and online through virtual meetings, presentations, community updates and information sessions.

1.1 General Communications Approach

1.1.1 Public Information Office

CNL's Public Information Office is open Monday to Friday, 8:30 a.m. to 4:30 p.m. Printed material provides information on the planning, design, implementation, environmental assessment, monitoring and mitigation of the projects, and on the Complaints Resolution and the Property Value Protection (PVP) programs. Three-dimensional models of the Port Hope and Port Granby long-term waste management facilities are also on display.

As a result of COVID-19 restrictions, the office was closed to the public. Staff members were available to provide information and answer questions through email, telephone and social media. After-hours calls are received by an external agency and routed to a single-point of contact for follow-up.

1.1.1.1 Complaints Resolution Program

While CNL focuses on the prevention of complaints as a result of the PHAI, through proactively addressing public concerns, the Complaints Resolution Program (CRP) provides a mechanism for the raising, investigation and resolution of formal complaints which are identified as Tier 1 or Tier 2.

Tier 1 complaints focus on quick resolution through dialogue, where parties jointly identify the problem and agree on an acceptable resolution. Tier 2 complaints address complex complaints where there is no consensus regarding responsibility, cause, impact or an acceptable resolution. Tier 2 complaints often require a subject matter expert or consultation.

In 2021, twenty-two Tier 1 complaints were received and resolved at the CNL level. Five Tier 2 complaints were received and two were resolved at the CNL level. The remaining three complaints are on hold until spring of 2022 to be re-assessed at that time.

1.1.2 Website

The PHAI website – <u>PHAI.ca</u> – provides information on the Port Hope and Port Granby projects, including descriptions of current and upcoming work, environmental monitoring reports, public disclosures, the Complaints Resolution Program and the PVP Program. The website also provides telephone and email points of contact for enquiries.

In 2021, the PHAI website received 33,519 visits and 86,879 page views.

1.1.3 Social Media

The PHAI Facebook, Twitter, LinkedIn and Instagram social media accounts are used to engage the community and drive users to the PHAI website for more detailed information about current construction progress or events. CNL responds to questions or comments posted by members of the public on PHAI social media accounts as expeditiously as possible, to reflect the rapid response of internet communications. Dialogue of relevance to the PHAI on other social media accounts is monitored and consideration given to posting timely corrections to inaccurate information about the PHAI.

In 2021, 33 inquiries were received via Facebook. CNL circulated 351 Facebook/Twitter posts and 23 Instagram posts covering subjects from project updates to interesting facts about project work with an audience reach of more than 19,000.

PHAI online communications conducted during 2021 are summarized in Table 1.

Online Comm	nunications		Total
Visits to website		33,519	
website – Phai.ca	Pages Viewed		86,879
Social Media	Facebook	Posts	User Reach
		351	20,303
	Twitter	Tweets	Profile Visits
		351	2649
	Instagram	Total	Posts
		23	3

Table 1: PHAI 2021 Online Communications Outreach Activities

1.1.4 Media Releases

CNL issued one media release in 2021 to announce the appointment of a new General Manager for the Historic Waste Program. Port Hope-area media outlets including Northumberland News, and Classic Rock 107.9 were engaged.

1.1.5 Project Newsletters

Port Hope Project newsletters update the community on the status of the projects, upcoming work and changes to planned work or programs. Newsletters are distributed to every household in the Municipality of Port Hope and to an extensive list of federal, provincial, regional and municipal stakeholders; newsletters are also available online at <u>PHALca</u>.

The 2021 fall newsletter was distributed by mail to approximately 8,000 homes, businesses and farms in the Municipality of Port Hope and to approximately 400 contacts via email.

The newsletter covered a range of topics including updates on CNL's ongoing commitment to safety, work underway at the waterfront, CNL's application to the CNSC for a change to the PHAI cleanup criteria, an update on remediation of privately owned properties in Port Hope and the sustainable use of felled trees as a donation for woodwork projects at Port Hope High School.

1.2 Reporting and Disclosure

1.2.1 Performance Reports

Information is posted on <u>PHAI.ca</u> regarding environmental performance including environmental monitoring program results and PHAI Annual Compliance Reports to the CNSC.

1.2.2 Public Disclosures

CNL is committed to providing open and transparent public disclosure, in alignment with CNSC regulatory document REGDOC-3.2.1 *Public Information and Disclosure* [**9**], about unplanned project activities and non-routine events that have off-site effects or could result in public interest and concern and/or media attention. Disclosure about unplanned project activities and events with little or no impact on people and the environment are posted, typically within four business days, while key stakeholders may be notified through direct contact.

Consistent with REGDOC-3.2.1 [9], CNL informs the CNSC of disclosures made under this protocol at the time of or before the disclosure.

In 2021, CNL issued two public disclosures related to the Port Hope Project, one related to slight exceedances of the Provincial Water Quality Objectives in the inner Port Hope Harbour and the other pertaining to a dump truck coming into contact with an overhead utility cable at a PHAI construction site.

Public Disclosures are posted on the <u>PHALca</u> website and circulated via email to Indigenous communities and organizations who have asked to receive them.

In 2021, there were 518 visits to the Public Disclosures website page.

1.3 Indigenous Relations

CNL is committed to recognizing constitutional rights and interests as we continue to build relationships with Indigenous communities through ongoing learning about values and interests. CNL's objective is to advance reconciliation through meaningful actions, and we are moving toward increased inclusion and participation with an approach to project planning that is focused on environmental protection and sustainability, inclusive of Indigenous knowledge systems. In addition, CNL is enhancing all communications, plans and reporting with balanced language and acknowledgement of constitutional rights and perspectives.

Recognizing Indigenous engagement as a critical component of the Port Hope Area Initiative, CNL acknowledges the continued need for open, honest and transparent communication with rights holders and Indigenous interest holders. Historically, the *PHAI Phase 2 Public Information Program* (PIP) [**10**] has included Indigenous communities and organizations as a target audience. In support of CNL's objective to advance Reconciliation through meaningful actions and movement toward increased inclusion and participation, CNL is developing a PHAI Indigenous Communications & Engagement Program (ICEP) to be implemented in 2022 in tandem with forthcoming revisions to the PHAI PIP [**10**]. The PHAI ICEP will reflect CNL's commitment to recognizing constitutional rights and interests as we continue to build relationships with local Indigenous communities through ongoing learning about their values and interests.

As part the commitment to undertake meaningful actions toward Truth and Reconciliation, corporately CNL is enhancing its overall Indigenous Relations program. In 2021, CNL created a new position hiring a Director of Indigenous Relations. This position will focus on developing a fulsome Indigenous Relations program by creating new policies, procedures and integration of Indigenous considerations into all aspect of CNL's business and operations, while supporting ongoing relationship building and Indigenous opportunities through engagement with First Nations and Métis communities. Looking ahead to 2022, the PHAI will expand its resources with the addition of a Senior Advisor, Indigenous Relations.

1.3.1 Indigenous Communities and Organizations

When the PHAI moved to the implementation phase in 2012, the Mississaugas of the Williams Treaties First Nations asked to receive regular updates about the projects. CNL staff met at least annually with representatives from Hiawatha First Nation, Curve Lake First Nation, Mississaugas of Scugog Island and Alderville First Nations to provide project updates and engage in discussions. Topics included environmental protection, economic opportunity and heritage resource protection. In recent years CNL has also shared PHAI project updates with representatives from the Anishinabek Nation and Métis Nation of Ontario.

Other Indigenous communities including Mohawks of the Bay of Quinte and local Métis Councils have been identified as potentially having interest in the project based on their proximity and interest in other projects in the area. Over the years, CNL has provided these communities with project information mailings to keep them up to date and circulates invitations to special events including Industry Day, career fairs and information sessions.

1.3.2 Engagements

In 2012 March CNL provided a presentation and virtual tour of PHAI project sites for Métis Nation of Ontario representatives, staff and Region 5 and 6 Councillors. In 2021 June, a more focused session was provided to MNO representatives regarding the remediation of the Port Hope harbor and waterfront area sites as well as PHAI's environmental assessment follow-up and environmental monitoring program.

At the request of Curve Lake First Nation, beginning in 2021 March monthly CNL Indigenous engagement sessions and project updates were provided to consultation staff representatives of Curve Lake, Hiawatha, Mississaugas of Scugog Island, and Alderville First Nations as well as representatives from the Chippewa Nations. Each meeting was coordinated, and the agenda planned in consultation with community representatives and included round-table information sharing from each Nation and a focused topic/project theme as the featured discussion.

PHAI updates were also provided to staff, consultants and Grand Council representatives from Anishinabek Nation, including a general PHAI overview and then focus sessions on radiation protection and environmental monitoring.

CNL held additional meetings to focus on the CNSC licence application to amend the PHAI cleanup criteria.

1.3.2.1 Williams Treaties First Nations Monthly Meetings

At the request of Curve Lake First Nation, CNL's Indigenous Engagement team established monthly meetings in 2021 with representatives from the Mississauga First Nations as well as the Chippewa communities (Beausoleil, Georgina Island and Rama First Nations). These meetings are organized with input from the community representatives and each meeting is focused on CNL environmental remediation projects and/or the interests identified by these Nations. In 2021, nine meetings were held with two of those meetings focusing on CNL's application to amend the PHAI Cleanup Criteria.

1.3.3 Site Tours

Guided tours of project remediation sites and construction areas, led by expert CNL staff, provide a first-hand look at PHAI work, promoting an in-depth understanding and appreciation for the complexity and importance of the projects. Tours illustrate the scope of project planning and implementation including environmental protection, compliance with occupational health and safety requirements, and conformance with Environmental Assessment monitoring obligations and adaptive management practices.

Tours are provided, on request, to Indigenous communities and organizations to supplement information provided in meetings and presentations. As a result of COVID-19 restrictions in 2021, CNL's communications were adapted, and virtual tours were provided through detailed photographs, diagrams and video.

1.3.4 Direct Notifications

CNL routinely distributes PHAI newsletters, media releases, public disclosures and invitations to special events to these Indigenous communities and organizations. In 2021 invitations to CNL's Industry Day and Career Fair were also circulated to Indigenous contacts who have expressed interest in business opportunities and CNL contracting processes.

PHAI and PHP Indigenous communications and engagement activities conducted during 2021 are summarized in Table 2.

Indigenous Engagement			
Presentations	12		
Tours	1		
Williams Treaties First Nations monthly meetings	9		
Direct Notifications			
Media releases, event invitations, job opportunities, public disclosures, media releases, project newsletters, etc.	16		

Table 2: PHAI 2021 Indigenous Communications and Engagement Activities

1.4 Public Information Program

Strategic relationships are developed and maintained through information exchange and feedback, to increase support and cooperation as the PHP advances.

1.4.1 Presentations

Presentations are provided on current and planned project activities, and the PVP Program, to varied audiences including Indigenous groups and organizations, elected officials and staff at all levels of government, community groups, service clubs, and local/national/international education, scientific, technical and business communities.

During the reporting period, 16 presentations were provided to the public on the PHAI and Port Hope Project.

1.4.1.1 Education and Science Technology Communities

Presentations, site tours and program-specific information and demonstrations are provided on request to students at the elementary, high school, college and university level; and CNL participates on program advisory committees to provide industry perspective on the development of new programs and courses.

CNL participates in the annual Take Our Kids to Work Day event and other education initiatives including the Junior Achievement World of Opportunity program and judging local science fairs. National and international education institutions, industry and professional groups also participate in PHAI presentations and site tours and CNL continues to develop outreach activities related to Science, Technology, Engineering, and Math (STEM) education.

Although these activities were limited due to COVID-19 restrictions, CNL provided an overview of the PHAI update and a virtual tour to four groups: Port Hope High School environmental science students, Ontario Tech University Nuclear Engineering students and two Fleming College Monitoring in Waste Management classes.

As a member of the Fleming College Sustainable Waste Management Program Advisory Committee, CNL staff participated in in the committee's annual meeting in 2021 November. During the reporting period, 17 presentations were provided to education and science and technology audiences on the PHAI.

1.4.2 Public Site Tours

As a result of COVID-19 restrictions in 2021, CNL's communications were adapted, and virtual tours were provided through detailed photographs, diagrams and video.

One tour was provided for MP Cheryl Gallant in 2021 November. The tour was facilitated according to COVID-19 guidelines in place at the time.

1.4.2.1 Public Information Sessions

Information sessions are held as required to inform the community about upcoming PHAI work, provide updates on planned or changed project activity and programs, and receive feedback from the public. As remediation continues, information sessions are held for targeted, smaller groups to convey information and discuss concerns specific to the neighbourhood in proximity to the PHAI work.

A virtual Public Information Session was held in 2021 October as part of the public engagement campaign in support of CNL's application to amend the PHAI Cleanup Criteria; 75 attendees participated. The session was recorded and posted on <u>PHAI.ca</u> and received 95 views in 2021.

1.4.2.2 Participation in External Events

As project ambassadors, CNL staff participates in external events to provide information about PHAI activities to a broader audience and increase awareness and understanding of the projects.

With COVID-19 restrictions in place over the year, CNL staff did not participate in external events in 2021.

1.4.2.3 Community Notifications

Residents and business owners in close proximity to PHAI-related activity are notified in advance of planned work and of notable changes to the schedule or nature of the work. Notification can occur through website postings, phone calls, emails or door-to-door visits/information drop-offs, depending on the timeframe and the capacity to receive the notification.

During the reporting period, CNL staff delivered 14 notifications to Port Hope homes and business.

PHAI public information activities conducted during 2021 are summarized in Table 3.

Communication Approach	Total
Presentations	23
Tours	1
Community Notifications	14

Table 3: PHAI 2021 Public Communications and Engagement Activity

1.4.3 Dedicated Engagement Campaigns

1.4.3.1 Application to Amend Cleanup Criteria

In 2021 January, CNL submitted a Stakeholder and Indigenous Engagement Report to the CNSC detailing the engagement initiatives undertaken from 2021 September to 2021 December in support of CNL's application for an amendment (Amendment application) of the Port Hope Long-Term Low-Level Radioactive Waste Management Project Waste Nuclear Substance Licence (WNSL-W1-2310.02/2022) [1]. The application resulted, in part, from community feedback on the impacts of the PHAI. Property owners and other residents expressed strong frustration with timelines and the extent of cleanups in their neighborhoods. Many shared concern that PHAI work will result in significant undesirable changes to the urban tree canopy, the preservation of which is important to many citizens.

CNL is committed to continuing engagement on the proposed change to the PHAI Cleanup Criteria to ensure identified audiences receive up-to-date information on the proposal have an opportunity to ask questions and provide feedback.

Part of the engagement process involves incorporating feedback from regulators and stakeholders into communications material. In the fall of 2021, CNL undertook a second engagement campaign to provide specific information on the risk management approach to the proposed licence amendment, the potential impacts of arsenic, and more details on the type of arsenic found in Port Hope soils.

Outreach included updates on the dedicated web page, engagement activities, print and social media advertising, community presentations and a virtual information session.

1.4.4 Small-Scale Sites Communications

All property owners in the urban Port Hope area receive a Consent and Scheduling Package explaining the Property Radiological Survey (PRS) process and requesting written confirmation of their participation. Individual phone calls are made to schedule survey appointments and provide testing results for those properties with LLRW requiring remediation. Dedicated design meetings are then held with owners to review remediation and restoration plans for each property, explain the process and review the Remedial Action Plan. Prior to the start of work, a Neighbourhood Information Session is held for property owners and adjacent residents where CNL and contractor staff explain work plans, answer questions and address concerns.

Communications staff is available by phone, email and in person to respond to property owner inquiries and concerns, and communications field staff are on site to address emerging issues.

More than 5,181 interactions related to Small-Scale Sites took place in 2021 including 3,359 phone calls and emails; 243 property owner meetings and 458 site visits.

On request by a property owner, CNL provides a Radiological Status Letter (RSL) confirming available results of any radiological investigation and remediation activities on the property to date. In 2021, CNL issued 349 RSLs for Port Hope properties.

1.4.4.1 Decline to Participate Letter Campaigns

In an ongoing effort to encourage participation in the PRS, CNL issued a total of 94 letters to Port Hope property owners who had not provided consent to participate in or continue the PRS. Letters were sent through four separate campaigns in an effort to confirm if the property owner wished to be included in the PRS process.

By the end of 2021, CNL had received confirmation of participation from 57 of the 94 property owners.

1.4.4.2 Port Hope Project-Related Participation Opportunities

CNL provides opportunities for property owners and community members directly impacted by project-related construction and remediation activities to provide feedback related to the PHAI PIP through targeted focus groups, neighbourhood information sessions and opportunities to observe remediation activities. CNL provides ongoing communication updates to these groups.

As part of the Amendment Application in 2021, CNL hosted an information session with approximately 75 participants.

1.5 Key Stakeholder Relations

1.5.1 Municipal Liaison

CNL regularly liaises with elected officials and staff of the host municipalities. As part of an agreed-upon framework for dialogue to keep municipalities informed of PHAI plans and progress, CNL provides regular project and communications updates to municipal councils, committees and staff through a variety of media, as well as topical presentations upon request.

In 2021, CNL provided quarterly updates to the Municipality of Port Hope on PHAI progress and provided updates on the Amendment Application as stakeholder engagement progressed.

1.5.2 Agreement Monitoring Group

Quarterly meetings of the Agreement Monitoring Group (AMG) bring together representatives of both municipalities, as signatories to the Legal Agreement, and representatives of Atomic Energy of Canada Limited (AECL) and CNL to provide updates on project activities, budget and schedule. The meetings also ensure project commitments outlined in the agreement are reviewed and actioned. Four meetings were held in 2021.
1.5.3 Business Community Liaison

CNL is a member of the Port Hope and District Chamber of Commerce, and staff provide monthly updates related to project progress, communications, and Port Hope project-related economic opportunities.

To provide access to CNL supply chain opportunities the PHAI website includes links to a; Contractor Portal, Supply Chain Registration, and Vendor Portal. These portals connect potential or current suppliers with information on procurement opportunities for goods, services, equipment, decommissioning and construction.

PHAI communications staff participated in CNL's annual Industry Day and annual Career Fair, providing a project overview and participating in two Q & A sessions during the day. Event information was posted on the <u>PHAI.ca</u> website and invitations were circulated to the Port Hope Chamber of Commerce.

1.5.4 Internal Communications

As representatives of the PHAI, CNL employees must be aware of PHAI project activities on an ongoing basis. A wide variety of opportunities are provided to update employees on a weekly, monthly and quarterly basis.

In 2021, 37 internal communications occurred including weekly project updates, all-staff emails, virtual coffee chats with the General Manager, quarterly all-staff meetings and regular project update emails. A 'General Manager's Corner' was added in the fall to highlight monthly messages and safety tips.

1.5.5 Atomic Energy of Canada Limited (AECL)

CNL's client, AECL, is kept apprised of CNL communications activities through ongoing engagement and weekly and monthly updates. AECL is informed of relevant communications issues and public disclosures as they arise.

In 2021, 47 notifications were provided to AECL staff on matters related to the Port Hope Project and CNL provided a tour of project sites for AECL staff.

1.5.6 Canadian Nuclear Safety Commission (CNSC)

CNL keeps the CNSC apprised of activities through quarterly and annual reporting and ongoing engagement on relevant regulatory issues. CNSC and CNL interactions are supplemented by regular meetings with regulatory, licensing, project and program staff.

In 2021, CNL provided quarterly reports on PHP communications activities.

1.6 Issues Management

Historically, the PHAI's PVP and Complaints Resolution programs have been administered and reported on through the Communications & Stakeholder Relations division.

In 2021, to streamline internal processes and provide dedicated staff to address issues management, CNL established a Public Programs division to focus on these two programs. Communications and stakeholder relations staff will work closely with Public Programs staff to ensure all issues are addressed quickly and efficiently. From 2021 onward, quarterly and annual information on these two programs will be reported through Public Programs.

2 Management System

2.1 Management System Program

The PHP adheres to the Corporate Management System. See Section 1 of the Annual Compliance Monitoring Report for Canadian Nuclear Laboratories (ACMR for CNL) [4] for details.

The Canadian Nuclear Safety Commission (CNSC) has previously been notified of revisions to the Historic Waste Program (HWP MO) Quality Assurance Plan [**11**]. There were no revisions to the Quality Plan [**11**] in 2021.

2.2 Audits, Inspections and Self-Assessments

As per the requirements of the Corporate Management System, both Safety Control Areas and Facilities conduct various audits, inspections, and self-assessments to ensure that the management system is functioning according to expectations; and, that any policy, programmatic, or procedural deficiencies are identified, and appropriate actions taken to resolve any deficiencies.

2.2.1 Audits

See Section 1.2 of the ACMR for CNL [4] for a list of all CNL-wide Audits for the reporting year 2021.

2.2.1.1 External Audits

The annual ISO 9001:2015 external audit was held by third party registrar SAI Global for the recertification of the Historic Waste Program Management Office. The audit identified one opportunity for improvement managed through ImpAct CTA-21-1634-9 and has been closed.

The external audit conducted at the PHP in 2021 is summarized in Table 4.

Title	Type of Audit	No. of Actions Raised ^a	No. of Actions Closed
ISO 9001:2015	ISO 9001:2015 Recertification Audit	1	1

Table 4: External Audits

a The Action raised is the result of the Opportunity for Improvement, no Non-Compliances were raised.

2.2.1.2 Internal Quality Audits

The tri-annual HWP MO internal audit was completed this year in two parts due to resource restrictions with COVID-19. The first part was a desk top audit performed in 2020 September. The second part involved direct field observations of material conditions and/or activities at the HWPMO. The actions stemming from the audit were tracked through CNL's ImpAct² system. The audit identified one non-conformance and one opportunity for improvement which have been addressed and are considered closed.

2.2.2 Inspections

CNSC Inspections

There were five CNSC compliance inspections associated with the Port Hope Project in 2021.

An inspection of both Port Hope and Port Granby projects Management Systems was conducted between 2021 January 12 and 15. The focus of the inspection was the PHAI Management System, including topics such as change control, contractor oversight, follow-up from previous inspections, and overall safety culture.

A remote compliance inspection of the Port Hope Project was conducted on 2021 March 29 and 31 that focused on the Radiation Protection Safety and Control Area. The inspection covered CNL's application of the As Low As Reasonably Achievable (ALARA) principle, worker dose control, the performance of the radiation protection program, and radiological hazard control.

A compliance inspection of select Major Sites was conducted on 2021 August 25 and 26. The inspection reviewed several work sites for compliance including Pine Street Extension, Viaducts, and Strachan Street Ravine. The inspection focused on Radiation Protection, Environmental Protection, and Conventional Health and Safety.

A compliance inspection of the Harbour and Centre Pier remediation areas was conducted 2021 October 21 and 22. The scope of the inspection focused on activities taking place at the Port Hope Harbour including the Centre Pier staging area for the harbour remediation and the surrounding harbour walls.

An inspection of both Port Hope and Port Granby projects Emergency Management and Fire Protection programs was conducted between 2021 December 10 to 17. The inspection was mainly on the Emergency Management and Fire Protection safety and control area with a focus on Fire Protection.

Inspections by Other Regulatory Bodies

No inspections from other regulatory bodies took place at the PHP in 2021.

² ImpAct – Abbreviation for Improvement and Action. It is an internal process used to identify events, problems, non-conformities, opportunities for improvements, and personnel injuries. The process also identifies and tracks actions to correct or remediate problems.

2.2.3 Self-Assessments

In 2020, six self-assessments were scheduled for the 2020/2021 period across all Historic Waste Program Management Office sites. The self-assessments covered various aspects of the management system, and included safety and control areas. The ERM HWP Self-Assessment 2020/2021 was being tracked through the corporate Improvement Action (ImpAct) system. Two self-assessments were cancelled due to already ongoing and overlapping program initiatives, and four were completed on schedule. The ERM HWP Self-Assessment 2021/2022 Plan is currently in progress. Nine self-assessments have been initiated for this period that will be resolved in 2022.

2.3 Compliance Oversight

An integrated approach to oversight, where all SCAs are streamlined into one process, is used by CNL to confirm the suitability, implementation, and effectiveness of processes applied to PHAI project activities. Compliance objectives for contractual obligations, licensing requirements, Acts and Regulations, environmental management and protection plans, compliance plans, and technical specifications are outlined in the Historic Waste Program Management Office Field Oversight Activities (HWP MO Field Oversight Activities) procedure [**12**].

Activities performed by CNL and by PHAI consultants, contractors, and service providers are subject to CNL's oversight. Recommendations for improvement raised from CNL's compliance oversight activities were dispositioned and implemented.

3 Human Performance Management

3.1 Human Performance Program

The PHP adheres to the Corporate Human Performance (HU) Program. See Section 2 of the ACMR for CNL [4] for details.

All CNL employees receive mandatory Human Performance Training. A dedicated CNL Human Performance Branch provides programs and support that help reduce human error and, as a result, the frequency and severity of unplanned events at CNL.

The effectiveness of the HU program at the PHP has been enhanced through a Systematic Approach to Training (SAT) for the following positions:

- CNL Safety Specialist,
- Environmental Technologist,
- Health Physicist, and
- Transportation of Dangerous Goods (TDG) Shipper

Further, there was increased vigilance around ensuring compliance to work practices that involve hoisting and rigging, working alone, hand safety, and confined spaces. There was a project safety pause due to a series of heavy equipment near misses and rising trend of personal injury events. The pause involved a project-wide assessment and subsequent verification of equipment related hazards and controls. A pedestrian machine interface assessment was implemented for high-risk project sites.

3.2 Training program

The PHP adheres to the Corporate Training Program. See Section 2 of the ACMR for CNL [4] for details. The *Port Hope Area Initiative Training Plan* (PHAI Training Plan) [14] is consistent with CNL's corporate training policies and programs and satisfies the conditions of the LCH [2].

3.2.1 Required Training

All PHP personnel, both employees and contractors, are adequately trained (and refreshed) to ensure safe operation of their facilities and to conduct work under the licence [1]. Section 2 of the ACMR for CNL [4] details the 2021 CNL Employee and Manager/Supervisor required training. Table 5 lists federally/provincially legislated training courses that appear in positionspecific training plans at PHP, along with the number of attendees for 2021. CNL maintained a sufficient number of qualified workers in 2021 to carry out licenced activities safely.

The PHAI Training Plan [14] defines the training processes applied to the work performed at the PHP and promotes safe and effective workplaces through the cooperation of management, employees, contractors, and visitors. Compliance with the plan ensures that all project staff (including CNL employees and contractors) are qualified to perform their duties effectively and safely, using established processes and standards.

All workers assigned to the PHP are required to attend a PHAI Awareness session to gain general understanding of the project. Contractors are responsible to qualify staff as well as maintain and control their training. Records are inspected regularly by CNL staff during oversights and audits.

The PHAI has a SAT-based training program for the PH WWTP Operations Supervisor position and the PH WWTP Operations Technician position. The SAT-based training includes a specific Training Analysis using the Task Analysis method and Training Plans. Continued progress was made in developing SAT-based training initiatives.

A Curriculum Review Committee, which includes PH WWTP management and training support, has been established and meets regularly. Their mandate includes performance review, system changes and training compliance. The committee met four times during this reporting period. Updates and improvements are monitored in the ongoing action list.

No revisions were made to the PHAI Training Plan [14] in 2021.

Table 5 provides a list of federally/provincially legislated training courses that appear in PHAI position-specific training plans.

Course Code	Course Title	No. of Attendees
OSH-1004-Online	Lock Out Tag Out Exam	3
PHAI-2001	LOTO, WAH, and Pre-Job Brief Refresher	1
OSH-1005-Online	Working at Heights Theory	15
OSH-3005	Working at Heights Practical	4
OSH-1007	Asbestos Module 6E	3
OSH-1019-Online	Orientation on Health and Safety for New and Young Workers	2
OSH-1020	Standard First Aid	34
OSH-1001-Online	Crane (Safe Indoor Hoist) – Theory	12
OSH-1002-Online	Lift Truck Operation – Theory	10
OSH-3002	Pallet Jack – WWTP's	-
OSH-1003-Online	Aerial Work Platform – Theory	6
OSH-9011-Online	Canada Labour Code	-
OSH-1047	Spotter Safety	9
OSH-9070-Online	Arc Flash Safety for Canada	3
OSH-9071-Online	Electrical Safety Introduction for Canada	2
OSH-9076-Online	Electrical Shock	3
OSH-3017	Electrical Safety Watcher	-
TDG-1007	TDG Handler	-
TDG-9003	Transportation of Dangerous Goods by Ground All Classes for Shippers (Initial)	2
OSH-1004	Lock Out Tag Out	3
OSH-1005	Working at Heights	-
OSH-1006	Confined Space Entry	-

Table 5: PHAI Operating Staff Training in 2021

3.2.2 Contractor Training

Training records for all contractors are verified prior to work commencement and are verified regularly through our Compliance Oversight activities.

Before accessing the PHP, contractors are required to complete the minimum following training:

- Contractor Safety Orientation
- Radiation Protection Group 4 (if required)
- CNL Contractor Code of Conduct
- CNL COVID Awareness

3.2.3 Training Evaluations Summary

Contractors self-evaluate their training records and systems.

4 Operating Performance

4.1 Operating Program

The PHP adheres to the Corporate Operating and Decommissioning Programs. See Section 3.1 and Section 11.2 of the ACMR for CNL [4] for details.

4.1.1 Environmental Remediation Operations

This section provides a brief summary of the 2021 project activities. More detailed updates on the PHP activities, as well as a three-month prediction are provided to CNSC on a quarterly basis as required by section 2.3 of the PHP Licence [1] and section 3.2.3 (g) of the PHP LCH [2].

4.1.2 Enabling Infrastructure

The Phase 2 enabling infrastructure activities described in this section must be undertaken for the respective projects before waste transfer can begin for the described projects.

CNL continued to manage PHP licenced sites during remediation activities in accordance with approved procedures, as outlined in the PHP LCH [2].

4.1.2.1 Port Hope Long-Term Waste Management Facility (PH LTWMF)

Phase 2 project activities associated with the PH LTWMF, located at the site of the former Welcome WWMF and adjacent lands, include construction of an engineered above ground mound and associated infrastructure and support facilities. The following updates to this work include:

- Construct temporary on-site infrastructure and support facilities, as part of PH LTWMF operations (in progress)
 - Leachate transfer system installation (e.g., pump houses) was delayed due to COVID-19 Pandemic restrictions. Procurement and installation activities commenced in 2021.
- Construction of the base liner system for mound.
 - Construction of the Cell 2B base liner system was completed and deemed functionally ready for the intended use of waste containment in the fall of 2021.
 Placement of the select waste layer into Cell 2B was achieved to the prescribed thickness, and the cell became opened to accept bulk waste at the end of 2021.
- Placement of waste from the WWMF site into the PH LTWMF (complete).
 - Continued with excavation of residual contaminated lands (plumes) from the lowlying swamp area west of the mound, area also known as the 'Future Brush Area to be Cleared' (FBAC). Excavation activities are scheduled for completion in 2022.

- Placement of waste from other PHP clean-up sites into the PH LTWMF (in progress).
 - Continued with the receipt and long-term storage of historic LLRW from various PHP remediation sites. Maintenance of the PH LTWMF facility was conducted in accordance with maintenance and operational procedures established by CNL and as outlined in Section 3.2 Operations Licence Conditions of the PHP LCH [2].
- Preparation of cover liner system and closure of mound (in progress)
 - Continued to monitor design profile and shaping of cells 1, 3, and 2A; capping is scheduled to commence 2023.

4.1.3 Small-Scale Sites

The PHAI Small-Scale Sites (SSS) project involves the radiological survey of Urban Area (formerly Ward 1) properties and a select number of Rural Area (formerly Ward 2) properties in Port Hope (approximately 5,512 properties and 409 roads in total) for the presence of historic LLRW. Activities included remediation of LLRW and/or radiological artifacts on properties where identified by the survey; the restoration of remediated properties; and the safe transportation of the waste to the PH LTWMF for storage. Properties identified with high levels of radon continued to be evaluated. When COVID-19 Pandemic restrictions are lifted to permit access to residences, interior tasks to perform survey work and installation of radon mitigation systems will continue.

4.1.3.1 Characterization of External Properties

Of the 5,512 properties with external lots, 4,817 have been characterized and 1,098 have been identified with LLRW based on our current clean-up criteria. Of the remainder of the 695 exterior properties that have not been characterized, 156 are in some stage of characterization field work planning/execution or are waiting for analytical results; 413 have refused to participate, or CNL has not been granted access by property owners; and 126 represent properties awaiting access determination (e.g., railway lands and laneway properties). The current estimated total number of external properties with LLRW and requiring remediation is 1,181 properties.

4.1.3.2 Characterization of Internal Properties

Of the 4,422 properties with interior spaces, 4,075 have been characterized and 218 have been identified with LLRW. Of the remaining 347 interiors that have not been characterized, one is in-progress and 30 property owners have not granted CNL access, and 11 have recently granted access. There are an additional 305 properties awaiting characterization when COVID-19 Pandemic restrictions allow. The estimated total number of interior properties with LLRW is 237 properties.

4.1.3.3 Characterization of Roads

CNL reviewed boundaries of all Road Allowance (RA) sites and performed a Site ID remapping to align RA sites with the Site ID system that is used to describe site limits and locations for sites under the Properties Characterization scope. In doing so, the number of RA sites has changed since last reporting. Of the 465 (previously 409) RA sites in Port Hope, 132 RA sites (previously 163) were found to have areas of elevated gamma and were included in the Road Allowance Contract 2 (RAC2) for subsurface investigation. 132 RAs were characterized with 91 (previously 98) identified as having LLRW. RAC2 concluded in 2020.

Characterization of Properties work has revealed additional areas within Port Hope RAs that require further testing to confirm status in relation to PHAI Cleanup Criteria. In 2021 May a new contract was awarded (Road Allowance Contract 3 (RAC3)) to characterize 56 high priority sites which are suspected to contain LLRW based on adjacent property results. Fieldwork began in 2021 October and 13 RA Sites under this contract have been drilled in 2021. Also in 2021, development began on another RFP to characterize all remaining RA sites (277 sites) which are suspected to contain LLRW based on adjacent property results within Ward 1 of Port Hope. This Contract will be awarded in 2022.

4.1.3.4 Design of Exterior Properties

To date, 212 property designs have been completed and 240 are actively in the design queue (pre-design survey, 60 % design, 80 % design, etc.). Pre-design activities were maximized in the summer and fall months to prepare for the upcoming Characterization, Engineering Design, Remediation, and Restoration (CEDRR) contract, while design production intentionally decreased in the latter part of 2021 to prepare the CEDRR Task Order documentation and handover.

4.1.3.5 Remediation Design for Road Allowances

A total of five Road Allowance (RA) designs were completed in 2021 and 11 RA designs are in progress. RA designs have been strategically planned to align with the remediation of adjacent neighbourhoods.

4.1.3.6 Remediation of Small-Scale Sites

In 2021, excavations of exterior historic LLRW and backfilling to existing grades was completed at 29 properties.

Interior remediation was completed at one property. Interior remediation was put on hold due to restricted access to interiors of homes associated with COVID-19 Pandemic restrictions.

4.1.4 Major Sites

4.1.4.1 Temporary Storage Sites

No Temporary Storage Site remediation activities were completed in 2021 as all Temporary Storage Sites have proceeded through the remediation phase.

4.1.4.2 Waterfront Area

The Waterfront Area consists of the following sites: West Beach (former Waterworks), Alexander Street Ravine, Centre Pier, Port Hope Harbour, 95 Mill Street South, Canadian National/Canadian Pacific (CN/CP) Viaducts area and Strachan Street. Strachan Street is part of the Waterfront Area - Waterfront Package B.

The long-term contract for the remaining work at the Port Hope Harbour and Centre Pier was awarded. Production mechanical dredging commenced in 2021 June and is continuing. Production hydraulic dredging is scheduled to start and replace mechanical dredging in 2022 spring once the Portable Water Treatment System is commissioned and operational. Replacement/reinforcement of the harbour walls in the inner harbour is also scheduled to begin in 2022 spring.

Delays to the remediation of the former Waterworks (Waterworks East) site which occurred in 2019 as a result of ground water and the influx of lake water due to record levels of Lake Ontario were not recoverable. The COVID-19 Pandemic restrictions put the site into a min-safe state from 2020 March to 2020 June. At the end of FY 2019/2020, the Waterworks East site had all contaminated soils removed and by late 2020 summer, CNL and the contractor had removed as much contaminated sediment from the buried tanks as was feasibly safe. CNL has prepared two special circumstance applications, one for each property parcel owned by Cameco and MPH, respectively, for the sediments remaining in the tanks and for the tank walls. Site restoration was completed in 2021.

In 2020 October, remediation work began at the 95 Mill Street site. CNL worked with the contractor to develop systems to mitigate groundwater issues without shoring. Site remediation and restoration was completed in fall 2021; with minor grading rework to be performed in spring 2022.

A re-characterization on the CN/CP Viaducts was developed to provide more accurate site data before remediation occurred. This characterization was completed prior to the remediation starting in 2021 October. Remediation work is to be completed in late fall 2022, with restoration completion in spring/summer 2023.

In 2019/2020, an updated characterization program was executed at the Strachan Street Ravine site. This data was incorporated into an updated design package. The contract was awarded in 2020 November. Critical plan review progressed through 2020/2021 winter with mobilization expected in 2021 March. However, issues with the contractor delayed mobilization until summer 2021. The Strachan Street site contained approximately 3500 m³ of LLRW and required a significant effort in the form of sheet piling to support the nearby road. Remediation was

completed in 2022 March but identified the need to apply for a Special Circumstance at depth within the road allowance. Restoration of the site will occur in summer 2022.

In 2019, Package B work included additional characterization drilling for Waterworks West and completion of a preliminary design package for constructability review. The preliminary design package identified a need for further delineation to the west of the creek which bisects the property. Trees were removed from the west of the creek in 2021 winter to accommodate further delineation works and additional characterization. A Special Circumstance has been applied to a very small, targeted area of elevated arsenic, at depth within the beach area. This package is currently out for tender, with mobilization scheduled to take place in summer 2022.

Due to various environmental constraints, CNL will apply a Special Circumstance to a large portion of the original Alexander Street site and to residentially-owned woodlot packages. CNL has begun socializing these applications with the landowners and the municipality. The Special Circumstance Decision Package for the largest portion of the ravine property (privately owned) has been finalized and the property owner has approved the decision. There will be a targeted remediation performed on the municipality owned parcels. The design work and corresponding Special Circumstance is in process. This work will be awarded as part of the new CEDRR task order.

4.1.4.3 Highland Drive Area

The Highland Drive Landfill Area (HDLA) is comprised of three (3) separate and unique sites: Highland Drive Landfill (HDLF) Site, Pine Street Consolidation (PSNE CS) Site and the Highland Drive South Ravine (HDSR).

In 2020 the Highland Drive Landfill Area project team paused the remediation design temporarily while they conducted a Remediation Options Assessment to ensure that the current designs were not only constructible but offered CNL/AECL the best remediation solution possible. These options were presented to AECL for their consideration and formed the basis for the remediation design going forward.

The HDLF achieved some major milestones during the year, the one of most concern to the project schedule was the ECA amendment. The team also finalized the 100% remediation design drawings and the technical specifications and the Statement of Work (SOW). The remediation work in the HDLF is unique in that it involves the removal of Low-Level Radioactive Waste (LLRW) in a Municipal Solid Waste (MSW) Landfill. As such, a site specific Remedial Verification Approach was developed.

The HDSR also realized some milestones. The project team had suspended the remediation design work in 2020 to evaluate the design. In 2021 with careful consideration for the desired outcome and in discussions with CRL and AECL, the project team developed a new conceptual plan that would better address the concerns of working in the ravine. The conceptual plan includes the installation of a Permeable Reactive Barrier (PRB), the remediation of the pond sediment and limited LLRW impacted soil removal. The plan also includes realignment of the creek, the infilling of one pond and the removal of the boathouse and related structures. In

order to validate this conceptual plan, a ground water study and risk evaluation for the application of a special circumstance was completed, and as the plan involved the removal of a building, a Designated Substance Survey (DSS) was conducted on the boathouse. 2021 also saw the development of legal plans and documents by an outside consultant to sever the home located at 28 Bedford Street from the ravine lot. This severance will maintain the ravine in CNL's control throughout the remediation and future monitoring requirements. Through the sale of the house (and large property) CNL intends to recoup some of the cost of the initial purchase. The severance was approved by the Committee of Adjustment dependent upon completion of a revised by-law and associated Cultural Heritage Impact Report, as the property is municipally designated as having Heritage Significance. This final activity will be completed in 2022.

The new CEDRR contract and Task Order 1 for Major sites was initiated in 2021. For the HDLA HDLF, HDSR and Pine Street North Extension roadbed this involved compiling all the necessary documentation (drawings, technical specifications, SOW, historic reports, etc.) as well as creating a technical scoring table and technical question sets for the selected proponents. The project team was required to review proponent questions and provide answers in a timely fashion to accommodate award of the contract.

Throughout the 2021 construction year, site upgrades continued on PSNE CS. The project team finalized the tree removal report and made a donation of several loads of tree trunks to the local high school for their wood working programs. Working with two contractors on site, infrastructure consisting of storm water management ponds, surface water diversion ditching, and contamination control buildings were constructed by one contractor while the other completed the asphalt on the Cavan Street entrance and the first 100m of the access road. The major milestone of starting the excavation of the LLRW was achieved on 2021 May 27 with a brief slowdown in work during the CNL Safety pause in 2021 August.

CNL continues to maintain, monitor, and inspect the PSNE CS and Strachan Street Ravine Consolidation Site as per the PHP Licence [1].

4.1.4.4 Industrial Sites

In accordance with the Legal Agreement [**3**], the MPH and the Government of Canada have agreed that CNL will remediate a total volume of 51,250 m³ of waste at specified industrial (non-radioactive) sites within the MPH. These sites are: Centre Pier, Lions Recreation Centre Park, Former Coal Gasification Plant, Chemetron Lagoon, and the Sewage Treatment Plant Storage Cell (STPSC). The work also calls for the filing of a Record of Site Condition (RSC) per Ontario Regulation 153/04, which entails a Risk Assessment of the contamination identified and installation of Risk Management Measures (RMMs).

Characterization fieldwork was completed in 2019 and 2020. The first RSC submittal called the Pre-Submission Form (PSF) was submitted to the MPH in 2020. CNL then submitted the PSFs for the Industrial Sites to the Ministry of Environment, Climate and Parks (MECP) in 2021. The finalization of the total 51,250 m³ volume allocation to the Industrial sites has been completed.

Remediation activities are planned to start in 2022.

The following activities were completed at the Industrial Sites in 2021:

- Centre Pier: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed to develop the dataset. The PSF was submitted to the MECP. Remediation will be done after 2024 as part of the Harbour-Centre Pier works.
- Lions Park: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed to develop the dataset. The PSF was submitted to the MECP. CNL conducted additional species at risk (SAR) assessments of the Lions Park property and a woodlot assessment based on the MPH Official Plan designating the site as a Natural Heritage Feature (Woodlot). The Risk Assessment (the next stage of the RSC process) was initiated.
- Coal Gasification Plant: Additional Phase Two Environmental Site Assessment (ESA) sampling was completed to develop the dataset. Some of the work was a direct result of MECP comments on the PSF submission. The Risk Assessment (the next stage of the RSC process) was initiated.
- Chemetron Lagoon: In late 2020 CNL conducted additional sludge and water sampling in the lagoon to better determine its contamination composition and distribution. As a result of this, the design for the remediation was updated in 2021, which was shared with MPH for review. CNL expects to start the remediation of this site in 2022 and then complete the RSC process in subsequent years.
- Sculthorpe Marsh: In 2021 CNL continued to discuss the potential remediation in and around the Marsh with MPH and provincial regulatory agencies. Advice was provided by the MECP and the Ministry of Northern Development, Mines, Resources and Forestry (MNDMNRF) as the Marsh is listed as a Provincially Significant Wetland. MPH is considering the advice provided, and additional discussions will occur in 2022 to determine the preferred path forward
- STPSC: The Industrial Site portion of the work was completed on this site in previous years.

4.1.5 Continued Operation of New Port Hope Waste Water Treatment Plant

The new PH WWTP operated on a fulltime basis throughout the 2021 period, other than the scheduled downtime associated with periodic maintenance. These activities required a full stop of the influent treatment system for a cumulative total of 4 days in August. In general, the PH WWTP water treatment systems had an operational uptime of greater than 98%.

4.1.5.1 Water Collection and Treatment System

The waste water collection system consists of interceptor ditches, a main collection pond and three settling ponds. The water treatment systems include a former treatment building (Old WTB) the new PH WWTP and twin discharge pipelines. The purpose of the former treatment building was to capture groundwater and surface water that came in contact with impacted materials deposited at the historic Welcome Waste Management Facility. The purpose of this system was treating the water to reduce arsenic, radium-226 and uranium concentrations, and discharge the treated water to Lake Ontario.

The new PH WWTP operated normally in 2021 and process interruptions were related only to maintenance related activities, intermittent disruptions to the electrical power grid and operational restrictions of the PH LTWMF (as noted in the preceding section).

A summary of analytical data of influent sampling is provided in Appendix B, Table 17.

A total of 291,100m³ of influent was collected by the PH WWTP in 2021. This represents a decrease of 2% in volume from 2020 recorded volumes.

4.1.5.2 Operations of Residuals Management Systems

Regular operations of the residual management systems occurred in conjunction with normal water treatment activities throughout 2021. The residuals management equipment includes the clarifiers, evaporators, slurry dryers, and belt press systems. Both sludge and slurry processing streams continue to be optimized.

4.1.5.3 Off-Site Sampling

Water samples were taken monthly from an off-site stream (Brand Creek) within the same watershed as the facility. Samples from this location are intended to detect any migration of contaminants via leachate or runoff from the PH LTWMF. Brand Creek is the main stream in the watershed and is located west of the PH LTWMF. Brand Creek is sampled at the location where the creek crosses Marsh Road. Water samples were analysed for the same parameters as the PH WWTP design objectives. In 2021, results were generally found to be below the Provincial Water Quality Objectives (PWQO) [15] and Canada Water Quality Guidelines (CWQG) [16], with the exception of Aluminum which exceeded both the PWQO [15] and the CWQG [16] from 2021 January to 2021 December. Minor exceedances of CWQG [16] guidelines for Copper and Lead were reported in the 2021 June sample, for Copper reported in the 2021 February sample, and for Arsenic in the 2021 October sample. Additional details are provided in Appendix B, Table 20.

4.1.6 Port Hope Waste Water Treatment Plant

4.1.6.1 Waste Processing

The production and handling of residual wastes that were generated from the water treatment process was initiated upon final commissioning of the waste handling equipment (2017 December). Further testing and optimization of these and associated processes took place once commissioning activities were complete. Processing of the solids generated from operations began in 2018 April and has continued on a full-time basis since then. A total of approximately 2,710 tonnes of residual waste solids have been produced and transferred to the PH LTWMF holding cells to date.

4.1.6.2 Water Treatment

Ditches around the perimeter of the waste storage area collect surface runoff and direct it overland toward the northwest quadrant of the facility, where the surface water and groundwater are intercepted by a large ditch that leads to the collection pond. Formerly, water was pumped from the collection pond to the treatment building where ferric chloride was added, creating a ferric hydroxide precipitate. The treated water flowed by gravity to treatment ponds (south, centre and north) where the ferric hydroxide precipitate settles and removes arsenic and radium from solution/suspension. The clarified water in the north treatment pond was fed to the treatment building and pumped through twin 4-inch (100 mm) diameter pipelines that extend three kilometres underground from the PH LTWMF to Lake Ontario.

The new PH WWTP employs state of the art technologies including reverse osmosis, sand filtration, mechanical vapor recompression evaporators, slurry dryers and inclined plate clarifiers, but utilizes the same collection ditches and collection pond as its predecessor. The system utilizes these technologies to remove over 99 % of the arsenic, uranium, and other heavy metals in the influent water. The system discharges liquid effluent via the same twin four-inch pipelines that were used from the former WTB.

4.1.6.3 Water Treatment and Monitoring

Influent and effluent samples were collected from the PH WWTP from fixed locations on weekly intervals throughout 2021. Grab samples were taken from a sample point on the pipeline feeding the treatment system and represented the treatment inflow. The treated effluent from the facility was sampled continuously by means of an interval sampler. A composite sample was collected to provide data on the effluent discharge.

The samples of treatment inflow and treated effluent water were submitted to a laboratory on a weekly basis to determine concentrations of the following parameters:

- Aluminum
- Arsenic
- Copper
- Lead
- Uranium
- Zinc
- pH
- Total Suspended Solids
- Radium-226

For the reporting period, the monthly arithmetic mean values of the treatment inflow weekly analyses of the parameters listed above were calculated and are reported in Appendix B, Table 17.

The Effluent Discharge Limits for the PH WWTP, as listed in Appendix B of the PHP Licence [1], specifies the monthly arithmetic mean concentration (total) of the contaminants of concern in the effluent discharge water shall not exceed the stated release limits. Additionally, effluent should not be acutely toxic as determined by monthly testing of the effluent. During the reporting period, none of the release limits were exceeded and the effluent was found not to be toxic. A summary of these analyses is provided in Appendix B, Table 16 (final effluent) and Table 19 (effluent toxicity). Histogram charts (Figure 2, Figure 3, and Figure 4) have been prepared for the purposes of comparing year over year results of final effluent results from 2020 and 2021.

2020 - 2021 Port Hope WWTP Final Effluent Monthly Averages (TSS, pH, and Radium-226)

Figure 2: 2020 to 2021 PH WWTP Final Effluent Monthly Averages (TSS, pH and Radium-226) Histogram

Figure 3: 2020 to 2021 PH WWTP Final Effluent Monthly Averages (Lead, Uranium and Zinc) Histogram

gure 4: 2020 to 2021 PH WWTP Final Effluent Monthly Average (Aluminum, Arsenic and Copper) Histogram

A total of 125,000m³ of effluent was discharged by the WWTP in 2021. This represents a decrease of approximately 11% in volume from 2020 recorded volumes.

4.1.6.4 Residual Solids Treatment and Disposal

The two solid waste streams operated as designed in 2021. As noted above, several key optimizations were made to improve the efficiency and throughput of these processes. The evaporators treat concentrate produced by the reverse osmosis systems and are designed to reduce the overall volume of this waste through the production of condensate. The condensate is combined with permeate generated from the reverse osmosis units and ultimately discharged to Lake Ontario. The evaporated concentrate (slurry) is fed to mechanical dryers for further dewatering. The dried slurry is transferred into bulk storage totes as a flowable solid which are transferred to the PH LTWMF for permanent disposal.

Dissolved solids in the influent liquid waste stream are chemically precipitated and collected as sludge in the clarifier vessels. These solids are stabilized using polymer compounds and held in batches prior to dewatering in the belt filter press. The filtration step removes excess water from the sludge prior to deposition into bulk storage totes which are then transferred to the PH LTWMF for permanent disposal. The decanted water is discharged back to the main collection pond for recirculating treatment.

A combined total of 1,263,700 kg of residual solid wastes were generated by the PH WWTP in 2021. This represents an increase of 70% in production from recorded 2020 production.

4.1.7 Facility Staffing

There were no changes to the positions related to the PHP Licence [1] in 2021.

The PHP continued to maintain the minimum staffing requirements to provide the needed operational and safety support.

PH LTWMF: There were no changes to the PH LTWMF positions in 2021.

The PH LTWMF continued to maintain the minimum staffing requirements to provide the needed operational and safety support.

The PH LTWMF Staff complement at the end of 2021 was 25.

The PH WWTP Staff complement at the end of 2021 was 25.

Recruitment efforts continue to ensure CNL is resourced appropriately throughout Phase 2 to reflect increased scope and oversight. Continued growth in headcount will occur in 2022 as the Port Hope Project activities increase.

4.2 Reporting Requirements

4.2.1 Reportable Events to CNSC

In 2021, there were two events that occurred at the PHP that were deemed reportable to the CNSC. They are listed in the table below.

Event No.	Title	SCA	Facility (if applicable)
ERM-21-0596	HWP - PH HCP - Stormwater Discharge Exceedance	Environmental Protection	-
ERM-21-2269	HWP - PH SSS - Overhead Powerline Strike	-	-

Table 6: Reportable Events to the CNSC at PHP in 2021

4.2.2 Reportable Events to Other Regulators

Reports to other regulatory agencies consisted of:

- No Hazardous Occurrence Investigation Reports (HOIR) made to Employment and Social Development Canada (see Section 8 Conventional Health and Safety for further details)
- No reports made to Environment and Climate Change Canada (see Section 9 Environmental Protection for further details).

4.2.3 Trending of Events Related to Operational Activities

As events at the PHP occur, they are recorded in the ImpAct system. This information is regularly reviewed to identify any trends.

A total of four ImpActs with cognitive trending analysis were opened in 2021 across all the HWP, where three of the four trending searches were neither limited nor exclusive to either the Port Hope or Port Granby project sites and one was exclusive to Port Hope. The 2021 Trend ImpActs include the following event types:

- HWP PH/PG WWTP TREND "Spills, Over filling, and/or Leaks" Related Events/Incidents.
- HWP PH/PG MO TREND "Third-party Laboratory" Related Issues/Errors.
- HWP PH/PG MO Adverse TREND "Heavy Equipment" Safety Related Events/Issues.
- HWP PH Bus Ops TREND Contractor Data and Reporting Discrepancies.

Three of the four ImpActs were processed, and six corrective actions were assigned to address the event type and contributing factors, one is currently open and ongoing, the remaining three are closed as of 2022 January.

The following table summarizes ImpActs raised over the past five years by Significance Level³.

Year	Level 0 ^a	Level 1	Level 2	Level 3	Level 4	Total
2017	0	0	1	6	87	94
2018	7	0	1	38	155	203
2019	0	0	1	21	122	150
2020	3	0	0	5	81	89
2021	1	0	5	31	132	169 ^{bc}

Table 7: Number of ImpActs raised at PHP

a Level 0 will be assigned if the ImpAct is deemed to be a "non- problem" and a recommendation to close the Impact will be given.

b Total does not include 161 committee-based ImpActs.

c Total does not include an additional five ImpActs and one committee-based ImpAct that were raised for tracking initiatives that span PHAI projects.

³ Significance Level: Levels assigned to an event (SL1 being most significant, SL4 being least significant) based on the actual or potential result in safety, environmental, or business consequences.

4.2.4 Notification of Conflicts or Inconsistencies

In 2021, there were no conflicts or inconsistencies identified between licence conditions, codes or standards, operations, programs, methods, or regulatory documents referenced in the PHP Licence [1] or PHP LCH [2].

5 Safety Analysis

5.1 Safety Analysis Program

As per the PHP LCH [2] the Safety Analysis Program is not applicable to the PHP.

6 Physical Design

6.1 Design Program

The PHP adheres to the Corporate Design Program. See Section 5.1 of the ACMR for CNL [4] for details.

6.1.1 Old Welcome Treatment Building

After continuous operations of the Welcome Treatment Building (WTB) ceased in 2016 December, the system has been inspected by CNL on a weekly basis throughout 2021 to ensure readiness for service in the event of an emergency.

Preventive maintenance orders are generated to ensure routine inspections are conducted on key waste water treatment system components. CNL keeps on retainer certified contractors to provide electrical and mechanical services as needed.

The following operational activities occurred during the reporting period:

- Weekly inspections on WTB to ensure building is ready for service.
- Routine outside maintenance work included grass cutting, road maintenance and snow removal.

6.1.2 Port Hope Waste Water Treatment Plant (PH WWTP)

A remote telemetry and data acquisition system, complete with notification alarms, allows for 24-hour monitoring of water levels and other critical system parameters. The treatment plant process equipment is interfaced with a Supervisory Control and Data Acquisition (SCADA) computer systems.

The new PH WWTP utilizes state of the art technologies to treat water to a higher standard than the former WTB.

The PH WWTP consists of:

- Primary water treatment processes (clarifiers, sand filters, reverse osmosis, building services).
- Residuals management process (evaporators, slurry dryers, belt press).

6.1.3 PH WWTP Action Levels

As of 2020, approved action levels have been implemented at the PH WWTP and updated in the PHP Quarterly Effluent Reports. As per the written communication from the CNSC [17], revised release limits were communicated to CNL with regard to weekly composite sample results and the removal of Boron from the reported list of contaminants of concern [17].

6.1.4 Engineering Upgrades

In an effort to improve operation of the facility, CNL utilized CRL Design Engineering to implement modifications and upgrades to existing equipment following CNL's Engineering Change Control (ECC) process. These changes and planned upgrades included the following:

- Optimization of the evaporator mechanical and process control systems in order to maximize operational efficiency.
- Completed minor modifications to service water circulation process to improve performance of dependent sub-systems and to increase conservation of treated water usage.
- Finalized planning and completed the installation of a supplemental Reverse Osmosis unit to increase water treatment capacity.
- Continued planning for installation of larger storage tanks to hold an increased volume of soda-ash, sodium hydroxide, and sulphuric acid on site.
- Implemented additional concentrate (brine) process modifications to further enhance salt removal and balance in pond return.
- Completed installation and optimized the function of enhanced heat recovery processes. These changes have demonstrated very good results with respect to primary treatment efficiency and reduced fouling of the system in general.

7 Fitness for Service

7.1 Fitness for Service Program

As per the PHP LCH [2], the Fitness for Service Program is not applicable to the PHP.

8 Radiation Protection

8.1 Radiation Protection Program

The PHP adheres to the Corporate Radiation Protection Program. See Section 7 of the ACMR for CNL [4] for details.

The Port Hope Area Initiative Radiation Protection Plan (PHAI RP Plan) [**18**] defines the radiation protection measures applicable to PHAI projects at the PHP site and is consistent with CNL's Radiation Protection Program Requirements [**19**]. The purpose of these radiation protection measures is to ensure that the execution of PHAI projects complies with the level of radiation safety required by the relevant regulations pursuant to the Nuclear Safety and Control Act (NSCA) [**6**] and to ensure dose is kept ALARA.

The CNL Contractors (PHP Contractors) responsible for operating various sites in PHAI utilize a CNSC licensed Dosimetry Service Provider (DSP), specifically Health Canada, for monitoring dosimetry on site while CNL site and facility staff (i.e., CNL employees, contingent workers, and sub-contractors) utilize the Chalk River Laboratories (CRL) Licensed DSP. Dose to CNL site and facility staff is not measured independently – only the total dose per person is recorded, irrespective of the site at which the person works (e.g., licensed activities at both Port Hope and Port Granby). CNL site and facility staff and the PHP Contractors who work in, or frequently enter Controlled Areas are assigned Thermoluminescent Dosimeters (TLDs) or Health Canada issued Optically Stimulated Luminescent Dosimeters (OSLDs) respectively to monitor for external radiation deep and shallow dose radiation exposures.

The CNSC was recently notified [**20**] of revisions to the PHAI RP Plan [**18**] which has entered its 6th revision, as per the PHP LCH [**2**].

8.1.1 ALARA Initiatives and Activities

As Low As Reasonably Achievable (ALARA) initiatives and activities continue to be at the forefront of the PHP Radiation Protection (RP) Program. Recent policy changes related to Nuclear Energy Workers (NEWs) triggered an initiative to update and/or register all CNL staff, contractor, and sub-contractors as NEWs. In 2021, refresher training was offered for the use of Unconditional Release forms, Movement of Non-Waste Materials and Equipment, and filter analysis for long lived alpha monitoring. CNL provided training to the RP staff on portable air scrubber high efficiency particulate air (HEPA) filter replacements. Signage and boundary improvements were initiated in 2021 and continue to be implemented for all project sites. CNL provided clarification for nuclear density gauge use on site to contractors and sub-contractors at all project sites. This occurred at all project sites where CNL is required to know which nuclear sources are on CNL's CNSC licensed sites at any given time as well as the responsibility party for their care and control. CNL performed an extent of condition for all sources on PHAI sites based on the discovery of a non-exempt source being labeled incorrectly.

The revisions to the PHAI RP Plan [18] were implemented which included further guidance on internal dosimetry and instrumentation requirements. CNL had contractors provide confirmation that:

- Radiation Protection instrument and equipment used for radiation measurements are selected, tested, and calibrated for the task and hazard for which they will be utilized;
- The isotope(s) used for instrument calibration efficiency verification are approved by the HWP MO Manager, Radiation Protection and closely represent the energy and type of radiation (α , β , γ) encountered in the LLRW found in Port Hope and Port Granby;
- Instruments and equipment that are used for radiation measurements are selected, tested, and calibrated for their intended use; and
- Each instrument was calibrated to determine its detection efficiency using traceable, uniform planar sources with an active area of similar dimensions to the detector, where practical. The nuclear substance used should emit radiation similar to that of the potential contaminant.

ALARA initiatives and activities are practiced in every facet of the PHP activities and is specifically addressed through the implementation of the PHP environmental monitoring program's monthly and quarterly deployment of PHP Environmental Radon Monitors and TLDs. Results from the 2021 monitoring program confirm a public dose estimate to be 2.3 % of the annual limit for the public based on the maximum readings from Radon and TLD dose measured along the fence line, with a conservative occupancy period of 60 hours per year. The integrity of the ALARA program is managed through routine monitoring and reviews of dose records to confirm that no adverse trends or exceedance have occurred.

8.1.2 Contamination Control

Routine monitoring across the project has allowed us to confirm that current activities have been executed while minimizing the spread of contamination. For the PHP, 2021 had four personal contamination events and one exceedance within radiological safety zone limits. No exceedances of radiation dose Action Levels or Administrative Controls were noted as a result of these contamination events. The following Table 8 outlines contamination events that occurred at PHP in 2021:

	S	kin and Clothir	ng Contaminatio	n	Workplace Contamination			
	Skinª	Personal Clothing ^b	Radiological Work Clothing ^c	Total	Surface ^d	Vehicle /Materials ^e		
2017	0	0	0	0	0	1		
2018	1	0	0	1	2	0		
2019	0	3	0	3	0	0		
2020	0	1	1	2	4	0		
2021	1	3	0	4	1	0		

Table 8: Contamination Events

a Contamination found is greater than 4 Bq/cm² beta-gamma or 0.1 Bq/cm² alpha

b Contamination detected above background on personal clothing

c Contamination detected is greater than 850 Bq/cm² beta/gamma or greater than 30 Bq/cm² alpha

d Fixed/loose contamination in excess of limits specified for the applicable radiological zone

e Removable surface contamination detected above background.

The contamination events noted in the table above occurred during planned routine work and regular operations. The total worst case fixed contamination was 0.38 Bq/cm² alpha and 0.47 Bq/cm² beta based on a 10 cm² area. Maximum skin dose received by the worker involved in the skin contamination event was assessed to be 1.91 μ Sv which is 0.03 % of the PHAI action level and 0.004 % of the public dose limit set by the CNSC.

8.1.3 Sealed Sources

As required by the PHAI RP Plan [**18**], all sealed sources used at the PHP are mandated to be below CNSC exempt quantities as defined in the CNSC Nuclear Substances and Radioactive Devices Regulations. If a non-exempt radioactive source is required to be brought on site, the HWP MO RPP Manager will be informed, and prior approval is required. The main function of the sealed sources at the PHP is for RP instrument function checks and validation. All CNL and contractor-controlled sources are required to be kept secure in a locked cabinet. A sealed source inventory is conducted a minimum of once per year.

CNL performed an extent of conditions for all registered sources on PHP site, based on the 2021 sealed sources inventory conducted at the PHP, there are three CNL and six contractor sources above exemption quantity under direct control of CNL and CNL's contractor, respectively.

All sources were accounted for in the 2021 inventory.

8.1.4 Interpretation of Reported Dose Quantities

The PHAI uses the CRL licensed DSP for external and internal dosimetry for HWP MO staff, contingent workers, and some sub-contractors. HWP MO staff, contingent workers, and sub-contractors whose external and internal dosimetry are monitored using the CRL dosimeters are not measured independent of the site location worked (i.e., staff or contractor may work at more than one PHAI project site); only the total dose per person is recorded, irrespective of the site at which the person works. PHP remediation Contractors use an alternate CNL and CNSC approved dosimetry service provider, where dose is monitored for the assigned PHAI PHP sites where work is performed. In certain instances, contractors my work on multiple sites.

HWP MO staff, contingent workers, and sub-contractors who work within or frequently enter the Controlled Area, are assigned a TLD or OSLD to monitor for external deep and shallow dose radiation exposures. Alternatively, contingent workers and sub-contractors use Optically Stimulated Luminescence Dosimetry equivalents (OSLDs) that are provided by CNSC licensed DSPs. CNL initiated a new quarterly dosimetry period commencing in 2021 January with contractor implementation transitioned where practicable. All external dosimetry are read on a routine basis. Visitors and non-NEWs are typically given Electronic Personal Dosimeters to track dose and to ensure trigger limits identified within the PHAI RP Plan [**18**] are not exceeded.

The Internal Dosimetry program is primarily provided to the CNL Operations and RP staff who work in close proximity with radiological hazards within the PH WWTP. The bioassay is tested for the presence of uranium through in-vivo submissions. All results for uranium bioassay reported were well below CNL's Bioassay Recommendation Level of Minor, which indicates little to no potential for uptake.

CNL's personnel radon exposure program for PHP sites monitors HWP MO staff, contingent workers, and sub-contractors and PHP contractors due to the increased work required to support Phase 2 construction. Phase 2 construction workers were assigned track-etch type Personal Radon detectors and doses are calculated and recorded if the monthly/quarterly average exceeds CNL's trigger level of 150 Bq/m³. No exceedances were identified.

PHP continues to ensure that doses to staff and contractors are kept ALARA by strict compliance to its Dosimetry program as stipulated in the PHAI RP Plan [**18**].

8.2 Dosimetry

The dose data in all tables represent doses delivered at PHP for all monitored persons, which includes employees (including those in temporary employment such as students), contractors, sub-contractors, visitors, and the PHP Contractors. HWP MO staff, contingent worker, and sub-contractors whose external and internal dosimetry are monitored using the CRL dosimeters are not measured independent of the site location worked (i.e., individuals may work at more than one licensed PHAI project site); only the total dose per person is recorded, irrespective of the site at which the person works. The dose data pertaining the HWP MO staff, contingent workers, and sub-contractors are identical to those reported for PGP dose.

Doses have not been broken down by individual facilities because employees, contractors, and visitors routinely move between facilities without changing TLDs, making it difficult to accurately determine how much dose can be attributed to an employee, contractor, or visitor at a single facility.

The maximum individual effective dose during the current five-year period (2021 January 01 to 2025 December 31, effectively 2021 December 31) (Table 9) is 0.38 mSv, received by a CNL sub-contractor tradesperson.

Table 9: Effective Radiation Doses to PHAI Personnel, Current 5 Year Dosimetry Period(2021- 2025)

Monitored Person Type		Maximum Individual Effective Dose (mSv)									
Montored		2021	2022	2023	2024	2025					
	Employee	0.26	-	-	-	-					
INEVV	Contractor	0.43	-	-	-	-					
Non-NEW	Contractor	0.00	-	-	-	-					
	Visitor	0.00	-	-	-	-					

Table 10: Effective Dose for PHP

Monitored Person Type		Total #			Dose	e Range (r	nSv)		Collective				
		of	0	0.01- 0.50	0.51- 1.00	1.01- 5.00	5.01- 10.00	10.01- 20.00	>20.00	Individual Dose (mSv)			Dose
		Persons			Num	ber of Pe	rsons	Max	Ø Avg ^a	Avg All ^b	(person·msv)		
	Employee	193	102	91	0	0	0	0	0	0.26	0.06	0.03	5.32
INEVV	Contractor	726	609	117	0	0	0	0	0	0.43	0.09	0.01	10.65
Non-	Contractor	2	2	0	0	0	0	0	0	0	-	0	0
NEW	Visitor	345	345	0	0	0	0	0	0	0	-	0	0
	Totals	1266	1058	208	0	0	0	0	0	0.43	0.08	0.01	15.97

a Average of all measured doses that exclude the zero dose value, rounded to two decimal places.

b Average of all measured doses that include the zero dose value, rounded to two decimal places.

			Т	able 11:	Distribut	ion of Eq	uivalent	Dose to	the Skin f	or PHP			
		-	Dose Range (mSv)										
Monitored Person Type	of	0	0.01- 0.50	0.51- 1.00	1.01- 5.00	5.01- 10.00	10.01- 20.00	>20.00	Indiv	vidual Dose (mSv)	Dose	
		Fersons			Num	ber of Pe	rsons	Max	Ø Avg ^a	Avg All ^b	(personansv)		
	Employee	193	101	92	0	0	0	0	0	0.32	0.07	0.03	6.14
NEW	Contractor	726	647	79	0	0	0	0	0	0.44	0.09	0.01	7.34
Non-	Contractor	2	2	0	0	0	0	0	0	0	-	0	0
NEW	Visitor	345	345	0	0	0	0	0	0	0	-	0	0
	Totals	1266	1095	171	0	0	0	0	0	0.44	0.08	0.01	13.48

. . ----..

Average of all measured doses that exclude the zero dose value, rounded to two decimal places. а

Average of all measured doses that include the zero dose value, rounded to two decimal places. b

Monito	Monitored Person		External	Penetrati	ng Dose			Extern	al Surface	Dose			Extremity Dose			
Туре		Total # Persons	Collective (p·mSv)	Max	Ø Avg ^b	Avg All ^c	Total # Persons	Collective (p·mSv)	Max	Ø Avg ^b	Avg All ^c	Total # Persons	Collective (p·mSv)	Max	Ø Avg ^b	Avg All ^c
NEWs	Employee	193	5.32	0.26	0.06	0.03	193	6.14	0.32	0.07	0.03	-	-	-	-	-
	Contractor	726	6.54	0.38	0.08	0.01	726	7.34	0.44	0.09	0.01	-	-	-	-	-
Non-	Contractor	2	0	0	-	0	2	0	0	-	0	-	-	-	-	-
NEWs	Visitor	345	0	0	-	0	345	0	0	-	0	-	-	-	-	-
Total		1266	11.86	0.38	0.07	0.01	1226	13.46	0.44	0.08	0.01-	-	-	-	-	-

Table 12: Summary of Dose Components Received as a Result of Licensed Activities for 2021^a

a All quantities are measured in mSv unless otherwise noted.

b Average of all measured doses that exclude the zero dose value, rounded to two decimal places.

c Average of all measured doses that include the zero dose value, rounded to two decimal places.

d Visitor NEWs are persons who were former employee and/or contractor NEWs, but who have returned to the site as visitor while retaining their historical NEW status.
8.2.1 Discussion of Dose Data

No anomalies were noted in the data above. All doses were measured to be less than the assigned dose control point (1 mSv) for all individuals on the project and well below all Action Levels for the project.

8.2.2 Radiation Dose Changes or Trends

As the project continued, Phase 2 Construction doses were expected to remain unchanged from the prior 2020 calendar year. The 2021 whole body dose to all workers (employees, contractors, and students) was determined to be approximately 0.01 mSv for both worker categories. These results are expected given no significant change in scope of work.

8.2.3 Program Exceedances

There were no exceedances of regulatory limits and action levels in the dose monitoring program for the 2021 calendar year.

9 Conventional Health and Safety

9.1 Conventional Health and Safety Program

The PHP adheres to the Corporate Conventional Health and Safety Program. See Section 8 of the ACMR for CNL [4] for details.

The Port Hope Area Initiative Occupational Safety and Health Plan (PHAI OSH Plan) [**13**] has been developed to define the OSH program applicable to PHAI projects and is consistent with CNL's corporate OSH Program. Contractors conducting work for the PHP project submit site specific health and safety plans for CNL's review and approval to ensure compliance with the PHAI OSH Plan [**13**].

Contractor compliance with their project-specific health and safety plan is examined as part of CNL's oversight program. Compliance oversight is a health and safety initiative that has been implemented to ensure consistency with the requirements of the PHAI OSH Plan [**13**]. CNL conducts routine oversights on contractor project activities to ensure compliance with the approved site-specific health and safety plan.

CNL's primary focus for duration of 2021 was the continued safe response to the COVID-19 Pandemic. This includes managing reported potential or suspected cases of exposure, on-going communication between CNL and contractor personnel on Occupational Health and Safety Act updates, implementation of remote work and project orientation, voluntary on-site nasal swab testing, and the implementation of CNL's vaccine policy. There was a focus on work from home ergonomics and the introduction of a wellness series podcast.

In addition, there was increased vigilance around ensuring compliance to work practices that involve hoisting and rigging, working alone, hand safety and confined space. There was a project safety pause due to a series of heavy equipment near misses and rising trend of personal injury events that involved a project wide assessment and verification of equipment related hazards and controls. A pedestrian machine interface assessment was implemented for high-risk project sites.

The CNSC was previously notified [21] of revisions to the OSH Plan for the PHAI [13].

9.1.1 Site Safety and Health Committee

The Site Safety and Health Committee (SSHC) had nine regular scheduled meetings and one special meeting in 2021.

The Site Safety and Health Committee (SSHC) conducted 10 inspections in 2021.

During 2021 the HWP SSHC maintained efforts on the COVID-19 Pandemic, while also focusing on mental health, workplace stress and supporting gradual return to "new normal" as the Pandemic permitted. A significant number of employees at the HWP sites continued to work remotely, either full time or part time. Workplace inspections were successfully carried out in workplaces during 2021. The majority of the lost time injuries were related to workplace transmission of COVID-19 at one HWP workplace. HWP SSHC did not participate in any investigations in 2021.

9.1.2 Inspections

There were 310 site health and safety inspections completed in 2021.

9.1.3 HOIRs and Lost-Time Injuries

There was one hazardous occurrence at the PHP that was reported to Employment and Social Development Canada in 2021. CNSC staff received copies of this notification, as per the requirements of the CNSC REGDOC-3.1.2 [**22**].

The following is a summary of injury rate data for the last 5 years.

	2017	2018	2019	2020	2021
Port Hope Project					
Person Hours Worked			298,378	391,875	389, 016
Lost-Time Injuries	0	0	1	0	2
Working Days Lost	0	0	33	0	12
Frequency ^a	0	0	0.68	0	1.03
Severity ^b	0	0	22.57	0	6.17
PHP Contractors ^c					
Lost Time Injuries	0	0	0	0	0
Working Days Lost	0	0	0	0	0

Table 13: Summary of PHP Injury Rate Data

a Frequency rate equals # of Lost-Time Injuries x 200 000 hrs of exposure divided by person hours worked (based on 100 Full Time workers).

b Severity rate equals # of Working Days Lost x 200 000 hrs of exposure divided by person hours worked (based on 100 Full Time workers).

c The Number of Person Hours worked are not divulged by Contractors. As such, Frequency and Severity rates cannot be calculated.

10 Environmental Protection

10.1 Environmental Protection Program

PHP adheres to the Corporate Environmental Protection (EnvP) Program. See Section 9 of the ACMR [4] for CNL for details.

The CNSC has previously been notified of revisions to Environmental Protection documents, as per the Licence Conditions Handbook [**2**].

10.2 Environmental Monitoring and Environmental Assessment Follow-Up Monitoring

10.2.1 Environmental Monitoring

The monitoring activities reported in this section were led by CNL, including the collection of the field data.

Laboratory analytical services were provided by an accredited laboratory under contract to CNL. The laboratories are accredited to ISO/IEC 17025:2017.

10.2.1.1 Methodology

The methodologies and protocols followed in performing the environmental monitoring are described in the *Port Hope Project Environmental and Biophysical Monitoring Plan* [23].

Operational Groundwater Monitoring

Fourteen on-site PH LTWMF observation wells were scheduled to be sampled in 2021, as identified in Appendix B, Table 16. Observation well 1-75 was decommissioned in 2016 as it was within the footprint of the LTWMF, and it will not be replaced. Observation Well 9-75 was damaged and was replaced by WC-LTWMF MW-06 in 2017. Observation Wells 2-75, 12-75 and 18-76 were decommissioned in 2018 as part of the LTWMF activities, with no plans to replace. Observation Wells 2-87 and 5-79 were decommissioned in 2017. Reinstallation of these wells took place in 2019 May with WC-OW2-19 (2-87) and WC-OW5-19 (5-79). Observation Well 36-76 cannot be located with no plans to replace. The remaining nine wells were sampled in 2021 spring and fall. The locations of the observation wells are shown in Appendix A, Figure 12. A summary of the results of the analyses are included in Appendix B, Table 16. Full results are provided in Appendix C. These results are consistent with historical data.

Domestic Wells

In 2021 November, CNL voluntarily sampled domestic wells on 14 residential properties near the WWMF and analysed the samples for arsenic, radium-226, uranium and nitrate concentrations as well as for pH. Residents will be notified in writing about the results. The results are currently being reviewed.

10.3 EA Follow-Up and Environmental Monitoring

Section 3.2.9, Environmental Protection and Monitoring, Conditions 2.9 to 2.11 of the PHP LCH [2] applies specifically to the natural environment and associated monitoring.

The purpose of an EA Follow-up Program and the associated Environmental Monitoring Program is to confirm that the environmental effects of a project are consistent with the predictions of the EA and, if they are not, to identify measures to further address those effects.

The primary objectives of the environmental monitoring program are the following:

- Confirm predicted effects by the EA by means of monitoring, sampling, measurements, and analysis.
- Demonstrate compliance with license requirements and follow-up program requirements as stipulated in the *Port Hope Project Environmental Biophysical Monitoring Plan* [23].
- Demonstrate the effectiveness of containment and effluent control and provide public assurance of the effectiveness of containment and effluent control.
- Provide data to refine the EA predictions and identify any deviations, positive or negative, in environmental parameters and COPCs.

The secondary objectives of the program are the following:

- Provide data to support operations and plan future phases of the PHAI.
- Provide resources and data that will be of value during unplanned events.
- Demonstrate due diligence.
- Meet stakeholder commitments.

The EA monitoring program is structured using as a framework the six sub-programs of follow up actions. These programs collectively incorporate all the individual activities required for tracking the follow-up actions prescribed in the *Screening Report for the Port Hope Long-Term Low-Level Radioactive Waste Management Project* (PHP Screening Report) [**24**] and involves monitoring the atmospheric environment (air pollution, noise pollution), geology and groundwater (groundwater flow and quality) and aquatic environment (surface water, drainage water quality). The details of the program can be found in the *Port Hope Project Environmental Assessment Follow-up Program* (PHP EA Follow-up Program) [**25**]. This report contains information collected during the 2021 monitoring programs; the status of the Environmental Assessment (EA) commitments for the biophysical effects follow-up monitoring are summarized in Appendix E.

10.3.1 Methodology

The monitoring activities reported in this section were led by CNL, including the collection of the field data. Laboratory analytical services were provided by a laboratory accredited to ISO/IEC 17025, under contract to CNL.

The methodologies used and protocols followed in performing the environmental monitoring are described in the PHP EA Follow-up Program [**25**].

10.3.2 Atmospheric Environmental Monitoring

The prescribed EA follow-up monitoring activities in the atmospheric environment include elements associated with air quality (radiological and non-radiological parameters), noise, and due to the commencement of sediment dredging, dewatering and remediation activities at Port Hope Harbour volatile organic compound (VOC) and odour monitoring.

10.3.2.1 Suspended Particulate Matter (TSP and PM_{2.5})

Air quality monitoring addressed concentrations of suspended particulate that could have been caused by project activities. Two types of suspended particulate were measured:

- Total suspended particulate (TSP) comprising particle sizes < 44 μm in diameter.
- Particulate Matter 2.5 μm (PM2.5) comprising particulate matter with particle sizes
 < 2.5 μm in diameter.

Port Hope LTWMF

Air quality monitoring was conducted throughout 2021 around the PH LTWMF. A holiday shutdown took place from 2021 December 24 to 2022 January 04. The monitoring program used high-volume (Hi-Vol) air samplers operating at 4 locations for both TSP and PM_{2.5}. The locations included Welcome South, Welcome Northwest, Welcome Weather Station and 192 Toronto Road. Air quality monitoring locations are provided in Appendix A, Figure 5 for the PH LTWMF.

Between 217 and 223 samples were collected from each air sampler (TSP and PM_{2.5}), with the exception of 192 Toronto Road. In 2021, some electrical issues occurred at the station at 192 Toronto Road, the issues were rectified in 2022 March. A total of 1,559 samples were analyzed during the year. A summary of the sampling results is provided in Appendix B, Table 21, Table 22, Table 23, and Table 24. The Overriding Limit of 120 μ g/m³ for TSP, as defined in the *PHAI Dust Management Requirements and Plan* [**26**] was not exceeded in 2021 at the PH LTWMF. CNL notes that the same criteria are found in *Ontario's Ambient Air Quality Criteria* (AAQC) [**27**].

It should be noted that in 2012, the Canadian Council of Ministers of the Environment (CCME) adopted the Air Quality Management System as a new comprehensive approach to managing air issues [**28**]. Canadian Ambient Air Quality Standards (CAAQS) for Fine Particulate Matter (PM_{2.5}) are included, which replace the Canada-wide standards developed in 2000. A 2020 value of 27 μ g/m³ is used for PM_{2.5}. The PM_{2.5} results (98th percentile averaged over three years) were compared to this value as a proactive approach to current industry guidelines. PM_{2.5} values were below this level. The PHP Screening Report [**24**] predicted that PM_{2.5} will exceed the 24-hour AAQC [**27**] at some off-site locations.

Additional Analysis – PH LTWMF

The sample containing the highest net weight of TSP collected each week at each of the Hi-Vol monitoring stations was sent for additional analysis to determine the concentration of metals and radionuclides in suspended dust. The PHP Screening Report [**24**] predicted that the 24-hour AAQC [**27**] will be exceeded on occasion for arsenic and cobalt at off-site locations. There were no exceedances for arsenic or cobalt in 2021.

There were no other exceedances of the AAQC [**27**] in 2021. A summary of the results is provided in Appendix B, Table 25, Table 26, Table 27, and Table 28.

The PHP Screening Report [**24**] identified that predicted levels of radionuclides would be below Health Canada Reference Levels. Radium-226 and thorium-232 exceeded the predicted values for some of the filters in 2021; however, they remained well below the Health Canada reference values. It should be noted that the exceedances of the predicted values appear to be related to laboratory detection limits (uncalculated laboratory results were less than the limit of detection for radium-226 and thorium-232).

There were exceedances of the PHP Screening Report [24] predicted values for uranium on some of the filters in 2021. The uranium concentrations above the predicted values in 2021 were not attributed to remediation activities. An increase in the laboratory detection limit for uranium since 2020 has resulted in an elevated annual average relative to previous years. Uranium concentrations remained well below the Health Canada reference values.

The predicted values were based on modeling PM_{10} concentrations. Comparing particulate radioactivity on TSP filters to the modelled predictions is taking a conservative approach.

Pine Street Extension Consolidation Site (PSNE CS) Remediation

Air quality monitoring was conducted throughout 2021 around the remediation of the PSNE CS. The locations for Hi-Vol stations were at the Jack Burger Sports Complex, Port Hope High School, and Cavan Candies. Monitoring commenced in 2021 January and continued when dust-generating activities were occurring at the PSE CS. The PSNE CS air quality monitoring locations are provided in Appendix A, Figure 6. Between 172 and 179 samples were collected from each air sampler (TSP and PM2.5).

A summary of the sampling results is provided in Appendix B, Table 29, Table 30, and Table 31. The Overriding Limit of 120 μ g/m³ for TSP, as defined in the *PHAI Dust Management Requirements and Plan* [**26**] was not exceeded in 2021 at the PSE CS. CNL notes that the same criteria are found in *Ontario's Ambient Air Quality Criteria* (AAQC) [**27**].

It should be noted that in 2012, the Canadian Council of Ministers of the Environment (CCME) adopted the Air Quality Management System as a new comprehensive approach to managing air issues [**28**]. Canadian Ambient Air Quality Standards for Fine Particulate Matter are included, which replace the Canada-wide standards developed in 2000. A 2020 value of 27 μ g/m³ is used for PM_{2.5}. The PM_{2.5} results (98th percentile averaged over 3 years) were compared to this value as a proactive approach to current industry guidelines. PM_{2.5} values below this level. The PHP

Screening Report [24] predicted that PM_{2.5} will exceed the 24-hour AAQC [27] at some off-site locations.

Additional Analysis – Pine Street Extension Consolidation Site

The sample containing the highest net weight of TSP collected each week at each of the Hi-Vol monitoring stations was sent for additional analysis to determine the concentration of metals and radionuclides in suspended dust. The PHP Screening Report [**24**] predicted that the 24-hour AAQC [**27**] will be exceeded on occasion for arsenic and cobalt at off-site locations. There were no exceedances for arsenic or cobalt in 2021.

There were no exceedances of the AAQC [**27**] in 2021. A summary of the results is provided in Appendix B, Table 32, Table 33, and Table 34.

The PHP Screening Report [**24**] identified that predicted levels of radionuclides would be below Health Canada Reference Levels. Radium-226 and thorium-232 exceeded the predicted values for some of the filters in 2021; however, they remained well below the Health Canada reference values. It should be noted that the exceedances of the predicted values appear to be related to laboratory detection limits (uncalculated laboratory results were less than the limit of detection for radium-226 and thorium-232).

There were exceedances of the PHP Screening Report [**24**] predicted values for uranium on some of the filters in 2021. The uranium concentrations above the predicted values in 2021 were not attributed to remediation activities. An increase in the laboratory detection limit for uranium since 2020 has resulted in an elevated annual average relative to previous years. Uranium concentrations remained well below the Health Canada reference values. The predicted values were based on modeling PM₁₀ concentrations. Comparing particulate radioactivity on TSP filters to the modelled predictions is taking a conservative approach.

10.3.2.2 Independent Dust Monitoring

Per the *PHAI Dust Management Requirements and Plan* [**26**], an Independent Dust Monitoring Program is carried out in addition to that conducted by the prime contractor and CNL to ensure that perceived organizational conflicts regarding dust monitoring results and work activities are avoided. Continuous monitoring occurs during the work hours, and results are reported on a 15-minute interval.

The Independent Dust Monitoring Contractor uses real-time monitors to measure TSP at the work site perimeter. The *PHAI Dust Management Requirements and Plan* [**26**] identifies the dust Action Level (AL) for a TSP monitor reading at the work site perimeter to be > 120 μ g/m³ averaged over 15 minutes. An exceedance of a dust AL triggers an immediate response by CNL and the prime contractor to initiative corrective action to reduce dust levels.

Throughout the year, there were 0 confirmed instances when the 15-minute average exceeded the AL that were attributed to site activities at the PH LTWMF. Real-time dust monitoring results from the Independent Dust Monitoring Program for the PH LTWMF construction are

available at <u>PHAL.ca</u>. The weekly reports include daily real-time dust measurements and a site map illustrating the locations of the independent real-time dust monitors.

10.3.2.3 Volatile Organic Compound (VOC)

Volatile organic compound (VOC) verification monitoring is performed weekly during dredging activities at the Port Hope Harbour. The monitoring program used summa canisters provided by the 3rd party laboratory placed upwind and downwind of the dredging activities.

VOC monitoring commenced 2021 June 24 and samples were collected weekly during Port Hope Harbour dredging activities. Please note that dredging activities were not continuous in 2021 for several unrelated reasons. Results were compared to *Ontario's Ambient Air Quality Criteria* (AAQC) [**27**] 24-hour average, no exceedances were noted in 2021. A summary of the results is provided in Appendix B, Table 35, Table 36, Table 37, and Table 38.

10.3.2.4 Odour Monitoring

Per the Port Hope Environmental and Biophysical Monitoring Plan [**23**], an odour monitoring program is carried out during the sediment dredging, dewatering and remediation activities at the Port Hope Harbour. Twice daily off-site receptors upwind and downwind measurements are collected by a 3rd party consultant.

Based on the general understanding that odour annoyance for most offensive odours begins at about 5 dilution-to-threshold (D/T), this was applied as the threshold level above which mitigation measures were triggered, as per the Port Hope Environmental and Biophysical Monitoring Plan [**23**].

Odour monitoring commenced in 2021 June, prior to dredging activities to collect baseline odour data prior to dredging activities commencing. There were 0 confirmed instances when the threshold level of 5 D/T was reached during dredging activities at Port Hope Harbour off-site receptors.

10.3.2.5 Noise Monitoring

EA follow-up monitoring with respect to noise involves monitoring of noise levels at the PH LTWMF, intersection of the LTWMF Access Road and Toronto Road, selected remediation sites, and along the transportation routes to confirm the accuracy of predictions made during the EA and the effectiveness of the mitigation measures. Additional noise monitoring is also required at the remediation sites to confirm compliance with appropriate by-laws and regulations (*World Health Organization's Guideline for Community Noise* (WHO Guideline for Community Noise) [**29**]. In 2021 noise monitoring was conducted at the PH LTWMF, Highland Drive, and vicinity sites and along the North, Central and South Transportation Routes.

PH LTWMF

Noise monitoring is performed quarterly at several locations around the PH LTWMF and at the intersection of the LTWMF Access Road and Toronto Road to confirm the accuracy of predictions made during the EA and the effectiveness of mitigation measures. Four main monitoring campaigns were conducted in 2021 (January, April, August, and November). The results of the campaigns, averaged logarithmically over 3 working days, are provided in Appendix B, Table 39. The noise monitoring locations are presented in Appendix A, Figure 7.

The PHP Screening Report [**24**] predicted an increase in noise levels of 12 dBA for residents adjacent to the LTWMF during construction and development. In comparing 2021 results to the 2015 results prior to the start of the EW3a/EW1 construction (when levels of activity around the site were comparatively low), it can be observed that slight increases are observed in the 2021 results, however all values were below the predicted range of 12 dBA and the World Health Organization's Guideline for Community Noise (WHO Guideline for Community Noise) [**29**] level of 70 dBA over a 24-hour period. The 2021 results are similar to 2020.

Highland Drive Landfill and Vicinity Sites - PSNE CS

Noise monitoring is performed at three locations around the Highland Drive and vicinity sites. PSNE CS is considered to be part of the vicinity sites. The noise monitoring was conducted to confirm the accuracy of predictions made during the EA and the effectiveness of mitigation measures during peak construction. Two main monitoring campaigns were conducted in 2021 to represent spring/summer (June) and fall/winter (December), as per the as per PH Environmental Biophysical Monitoring Plan [**23**]. The results of the campaigns, averaged logarithmically over 3 working days, and are compared to 2020 results, as this was considered baseline. Noise monitoring locations are provided in Appendix B,

Table 41. Noise monitoring locations are presented in Appendix A, Figure 11.

Monitoring results for the Highland Drive and vicinity sites, as to the 2020 results, show a decrease in at HD-N-0001, slight increase at HD-N-0002 and little to no change at HD-N-0003. All values were below the World Health Organization's Guideline for Community Noise (WHO Guideline for Community Noise) [**29**] level of 70 dB over a 24-hour period.

North, Central and South Transportation Routes

Spot noise monitoring at 1-hour interval measurements, morning and evening, is required seasonally during peak transportation activities as discussed in the PH Environmental Biophysical Monitoring Plan [**23**]. Noise monitoring along the transportation routes took place in 2021 on the North Transportation Route, Central Transportation Route (which includes Strachan Street) and South Transportation Route as outlined in Appendix B, Table 40. The noise monitoring locations are presented in Appendix A, Figure 8, Figure 9, Figure 10. Additional baseline data was collected prior to the transportation routes being used by CNL in 2018, as indicated in Appendix B, Table 40. CNL collected hourly measurements from 7 am to 7 pm for each campaign. The daily averages are reported in Appendix B, Table 40. Monitoring occurred during February, April, September and December along the North, South and Central transportation routes.

Monitoring results for the South Transportation Route showed little to no increase from the 2018 baseline monitoring. The Central Transportation Route showed an increase in the 2021 monitoring when compared to the 2018 baseline. The Northern Transportation Route (NTR-001) showed a slight increase in the 2021 monitoring when compared to the revised 2020 baseline. In 2020, location NTR-002 from the Northern Transportation Route was relocated due to the loss of location to safely secure noise monitoring equipment. The new location for NTR-002 is within a few metres of the previous location. All values were below the World Health Organization's Guideline for Community Noise (WHO Guideline for Community Noise) [**29**] level of 70 dB over a 24-hour period.

10.3.3 Geology and Groundwater Monitoring

The prescribed follow-up monitoring activities in the geology and groundwater environment include elements associated with soil quality, groundwater quality, and drainage/leachate water quality. Results of the monitoring are summarized in the following sections.

10.3.3.1 Groundwater (Flow and Quality) Monitoring

Groundwater flow and quality monitoring is performed twice per year at both the PH LTWMF and Highland Drive as part of the PHP EA Follow-Up Program [**25**].

PH LTWMF

Of the 23 monitoring wells located around the PH LTWMF and monitored as part of the PHP EA Follow-Up Program [**25**], 21 wells were suitable for monitoring (levels and/or quality). These wells are presented in Appendix A, Figure 12 and Appendix C. Groundwater monitoring well WC-MW2-02 could not be located, as it is buried under the shoulder of Brand Road. WC-MW102 was not sampled in 2021 as it is in need of- inspection. CNL is currently developing a scope of work for well maintenance and repair. If WC-MW1-02 and WC-MW2-02 cannot be recovered, they will be re-installed during the Maintenance and Monitoring Phase. Note that wells WC-OW2A-75, WC-OW2-87 and WC-OW5-79 were decommissioned as part of the pond expansion project. Reinstallation of these wells took place in 2019 May with WC-OW2-19 (WC-OW2-87), WC-OW2A-19 (WC-OW2A-75) and WC-OW5-19 (WC OW5-79). In 2017, WC-LTWMF-MW-06 was installed to replace WC OW9-75, which was previously damaged and not operational.

Groundwater samples were collected and analyzed for contaminants twice in 2021. Results of these monitoring campaigns are provided in Appendix C. The results were compared against water quality criteria for potable groundwater conditions listed in Table A2.5 of the PHP Screening Report [24]. This is taking a conservative approach, as water is not potable on site, and ensures consistency with reporting from previous years. In addition, results were compared to the Ministry of the Environment and Climate Change groundwater standards; specifically, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition [30].

Exceedances near the WWMF are the result of the effects of the current waste management facility, which does not have a complete engineered liner or cover system in place. Monitoring of the groundwater conditions will continue through the phases of the project, and improvements to groundwater quality are expected to occur as the WWMF is remediated and through natural attenuation.

Groundwater monitoring locations are depicted in Appendix A, Figure 12. Groundwater levels were measured quarterly in 2021 and are presented in Appendix B, Table 42. The average groundwater levels in monitoring wells are generally comparable to previous years.

Highland Drive Landfill

In 2021, groundwater monitoring at the Highland Drive site took place as baseline monitoring prior to remediation activities. Of the 28 monitoring wells located around the Highland Drive site and monitored as part of the Port Hope Project Environmental Biophysical Monitoring Plan [23] for groundwater quality, 24 wells were located/suitable for groundwater quality monitoring, see Appendix A, Figure 13. PH-95-18 was unable to be sampled in 2021 as it was damaged. PH95-I was decommissioned in 2021 April. PH-90-4-I was blocked and was unable to be sampled in 2021. PH-90-4-II was dry and unable to be sampled in 2021. Sampling took place twice in 2021, as required by the Port Hope Project Environmental Biophysical Monitoring Plan [23].

Groundwater samples were collected and analyzed for contaminants twice in 2021 as required by the PHP EA Follow-Up Program [**25**]. Results of these monitoring campaigns are provided in Appendix D. The results were compared against water quality criteria for non-potable groundwater conditions as discussed in the PHP Screening Report [**24**] specifically, those depicted in Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition [**30**].

Exceedances are the result of the effects of the LLRW wastes comingled with the municipal solid wastes at the Highland Drive Landfill site. Monitoring of the groundwater conditions will continue through the phases of the project, and improvements to groundwater quality are expected to occur as the site is remediated. Once remediated, the source of the effects on groundwater will be removed and the groundwater in the vicinity of and downgradient of the landfill will naturally attenuate up through flushing and attenuation mechanisms and the installation of a permeable reactive barrier downgradient of the Highland Drive Landfill site.

Groundwater levels were measured quarterly in 2021 and are presented in Appendix B, Table 43. Of the 41 monitoring wells required to be monitored as part of the EA Follow-Up program, 33 wells were located and deemed suitable for groundwater level monitoring. Of these wells, 28 had calculated water levels as reference groundwater elevation data was not available for five wells. These wells are presented in Appendix A, Figure 13 and Appendix D. Groundwater levels decreased slightly in 2021 when compared to 2020 results.

10.3.3.2 Sentinel Well – PH LTWMF

Groundwater samples are collected twice per year, fall and spring, for the in-place management of arsenic under Cell 1 and Cell 2A/B at the PH LTWMF. Results are compared to averages from previous years to identify trends, as discussed in the PHP Environmental and Biophysical Monitoring Plan [**23**].

A trigger level concentration for arsenic that is 50 % of the PWQO [**15**] for arsenic has been established. The trigger levels have been created as the primary down-gradient receptor of groundwater leaving the site is the tributary to Brand Creek, and Brand Creek is located west of the PH LTWMF. The PWQO [**15**] for arsenic is 100 μ g/L. Thus, the internal trigger level for arsenic groundwater monitoring at the sentinel wells at the PH LTWMF is 50 μ g/L.

Monitoring results are presented in Appendix B, Table 44. No groundwater results in 2021 reached the internal trigger level of 50 μ g/L. Note that wells WC-OW2-87, WC-OW2A-75 and WC-OW5-79 were decommissioned in 2017 fall due to the pond expansion activities. Reinstallation of these wells took place in 2019 May with WC-OW2-19 (WC-OW2-87), WC-OW2A-75 (WC-OW2A-19) and WC-OW5-19 (WC-OW5-79).

10.3.3.3 Soil Monitoring

Soil monitoring activities involved the collection and analyses of surface soil samples at off-site perimeter locations at the PH LTWMF and the Highland Drive remediation site to determine if there has been an increase in contaminant concentrations in these areas as a result of wind-blown dust deposition. Soil located around the PH LTWMF and Highland Drive Landfill was sampled and analyzed for metals and radionuclides in 2021 as presented in Appendix B, Table 45 to Table 51. The soil sampling locations are depicted in Appendix A, Figure 21 and Figure 15.

PH LTWMF

The PHP Screening Report [**24**] predicted maximum concentrations of arsenic and cobalt at the perimeter of the PH LTWMF of 4.7 μ g/g and 6.67 μ g/g, respectively. In 2021, concentrations of arsenic (5.3 μ g/g and 19 μ g/g) were greater than these predicted concentrations at PH-WWMF-SS-01 and PH-WWMF-SS-05, respectively. All other sampling location were below predicted concentrations. Values above the predicted concentrations have been observed in previous years at these locations.

The PHP Screening Report [**24**] also indicated that thorium-230 concentrations would increase 63 % over baseline during the construction of the PH LTWMF, to a predicted mean concentration of 97.7 Bq/kg (0.0977 Bq/g), and a maximum predicted concentration of 141.9 Bq/kg (0.1419 Bq/g). Thorium-230 concentrations in 2021 are above predicted mean and maximum values at some locations due to the laboratory detection limits. Results are provided in Appendix B, Table 45 to Table 49. PH LTWMF soil sampling location are depicted on Appendix A, Figure 14.

Highland Drive Landfill

Remediation activities have not commenced at the Highland Drive landfill site, and therefore the data provided in Appendix B, Table 50 and Table 51 will be used to supplement existing baseline data. Sampling locations are provided in Appendix A, Figure 15. The 2021 results are similar to the data collected in previous years.

10.3.4 Aquatic Environmental Monitoring

The Aquatic Environment Monitoring Program includes sampling surface water at Brand Creek, and Lake Ontario to verify the accuracy of the predictions made during the EA. The expected long term environmental effect is the improved water quality of Brand Creek due to the expected decrease in the contaminated water that currently infiltrates from the underlying groundwater, which eventually discharges to the surface water. In addition, a considerable reduction in contaminant loading from the discharged leachate is considered a long-term beneficial environmental effect of the project. However, slight increases are expected during the construction and remediation phase of the project. As a result, monitoring continues on a quarterly basis for these locations to confirm the EA predictions.

In 2021, additional pre-construction monitoring data was obtained for Brewery Creek, Highland Drive South Creek, and Alexander Creek in anticipation of upcoming remediation activities. Results of the monitoring are summarized in the following sections.

10.3.4.1 Brand Creek Watershed

Surface Water Monitoring – Brand Creek

The water flowing in Brand Creek is sampled on a quarterly basis at four (4) locations. Location BC-U was unable to be sampled in 2021 August due to insufficient surface water. Results were compared to the PWQO [**15**] and CWQG [**16**] where available. The 2021 laboratory results are provided in Appendix B, Table 52, Table 53, Table 54, and Table 55. The surface water monitoring locations are presented in Appendix A, Figure 16.

Results are generally consistent with the monitoring data from 2016 to 2021, suggesting that construction of the PH LTWMF is not having an adverse effect on Brand Creek water quality.

An increase in uranium concentrations were observed in one of the tributaries of Brand Creek (sample location BC-T) relative to the other locations. Exceedances of the PWQO [**15**] were noted in the 2021 January, April, and November samples for uranium. The PWQO [**15**] for cobalt was exceeded at BC-T in 2021 January, April, and November. Arsenic exceeded the CWQG [**15**] at BC-T in 2021 August. This tributary is fed mainly by Clark's Ditch, which receives surface water runoff from the PH LTWMF. Exceedances for uranium and arsenic have been observed in previous years, prior to the construction of the PH LTWMF. The water quality of this tributary is expected to improve over time as remediation progresses. In 2021 August, the CWQG [**16**] for arsenic was exceeded at the downstream location (BC-D).

It should be noted that the provincial and/or federal criteria for iron, chloride and phosphorus were exceeded at the downstream locations in 2021; however, this is consistent with monitoring data from previous years. As discussed in the PHP Screening Report [24], the streams in the Local Study Area exceeded for phosphorus, iron, and aluminum, which is typical for agricultural/urban watersheds in the region. This suggests that an off-site source may be responsible for these elevated levels. Elevated levels of chloride are consistent with monitoring from previous years. It is suspected that the elevated chloride concentration may be due to road salt as Highway 401 is located just to the north of the PH LTWMF.

Storm Event Monitoring

Brand Creek was monitored hourly during one storm event in 2021. The laboratory results are provided in Appendix B, Table 56. The surface water monitoring location BC-M was sampled for the storm event, see Appendix A, Figure 16. The contaminant concentrations were observed to peak as Total Suspended Solids (TSS) increased. Concentrations of phosphorus, chloride and iron were observed to exceed the PWQO [**15**] and/or CWQG [**16**] as TSS increased. As noted above, elevated concentrations of aluminum, phosphorus, chloride, and iron are typical for agricultural/urban watersheds in the region. Concentrations of Contaminants of Potential Concern (COPC) associated with the PHAI are predicted to improve in surface water once the project is completed.

Surface Water Monitoring – Lake Ontario Diffuser

The surface water quality of Lake Ontario is sampled at the PHAI diffuser to verify that the water quality in the vicinity of the PH LTWMF leachate discharge and the associated mixing zone is not affected by PH LTWMF operations. The mixing zone is approximately 12 m around the diffuser. Sampling is conducted at the diffuser (location BC-LO-D) and approximately 20 m east and west of the diffuser (location BC-LO-E and BC-LO-W respectively), as presented in Appendix A, Figure 16 Figure A-12. Results are provided in Appendix B, Table 57, Table 58, and Table 59.

There were no exceedances of the PWQO [**15**] or CWQG [**16**], with the exception of fluoride, phosphorus, and iron. Exceedances of fluoride were noted when compared to the CWQG [**16**] in 2021 June and November at BC-LO-D and 2021 September at BC-LO-E. Phosphorus exceeded the PWQO [**15**] in 2021 November at BC-LO-W. Iron exceeded PWQO [**15**] or CWQG [**16**] in 2021 November at BC-LO-W.

As discussed in the PHP Screening Report [**24**], the elevated fluoride, phosphorus and iron concentrations are typical for the nearshore zone of the lake in this region. Other monitoring results are generally consistent with the monitoring data for the past few years, suggesting that PHAI operations are not having an adverse effect on water quality.

Drainage Water – PH LTWMF

The leachate from the PH LTWMF mound (called drainage water) collected in the treatment ponds was sampled twice in 2021 (May and October). Results are presented in Appendix B, Table 60, Table 61, Table 62, and Table 63. Locations are depicted in Appendix A, Figure 17. The drainage water location WC-SW4-02 was unable to be sampled in 2021 at this location due to insufficient water. Historically, this location has had intermittent drainage water present, and samples cannot always be collected.

Elevated concentrations of some COPCs (such as arsenic, uranium and Lead-210) were observed in the 2021 spring sampling campaign relative to previous years. Upon noticing the elevated results, CNL consulted the project team. Elevated concentrations were thought to be due to leachate from the cells. Results from the fall sampling campaign were similar to previous years. Changes in drainage water quality and volume are expected to occur after remediation work commences. It should be noted that drainage water on site is treated prior to release to the environment.

10.3.4.2 Brewery Creek Watershed

Surface Water Monitoring

The PHP Screening Report [24] predicted that the removal of contaminated materials from the remediation sites is expected to result in improvements to down-gradient surface water quality; for example, concentrations of arsenic and uranium in Brewery Creek should decrease by 78 % to 88 % in the longer term.

The water flowing in Brewery Creek is sampled on a quarterly basis at 2 locations. The sampling in 2021 is to be considered as pre-construction phase. Results were compared to the PWQO [**15**] or CWQG [**16**] where available. The 2021 laboratory results are provided in Appendix B, Table 64 and Table 65, and the monitoring locations are presented in Appendix A, Figure 18.

Results are all less than the PWQO [**15**] or CWQG [**16**] with the exception of chloride and phosphorus. Chloride was elevated above the CWQG [**16**] for all monitoring campaigns in 2021, which as stated in the PHP Screening Report [**24**] is typical downstream of a landfill. Phosphorus exceeded the PWQO [**15**] in 2021 May and October. As discussed in the PHP Screening Report [**24**], exceedances of phosphorus are typical for agricultural/urban watersheds in the region. No other exceedances of the PWQO [**15**] or CWQG [**16**] were noted in the Brewery Creek watershed.

10.3.4.3 Highland Drive South Creek Watershed

Surface Water Monitoring

Highland Drive South Creek is subject to the influences of the Highland Drive Landfill as it is located downgradient. As discussed in the Port Hope Project Environmental Assessment Study Report (PHP EA Study Report) [**31**] the evaluation of water quality changes in Highland Drive South Creek based on expected changes in loadings from groundwater, indicated that concentrations of key contaminants in the creek, uranium, and arsenic, would not be increased during the site remediation and would decrease by 78% to 88% in the longer term.

The water flowing in Highland Drive South Creek is sampled on a quarterly basis at two locations (HC-U and HC-D). Results were compared to the PWQO [**15**] or CWQG [**16**] where available. The 2021 laboratory results are provided in Appendix B,

Table 66 and Table 67 and the monitoring locations are presented in Appendix A, Figure 19.

The 2021 results are below the PWQO [**15**] or CWQG [**16**] with the exception of arsenic, boron, chloride, fluoride, phosphorus, and uranium at both the up- and down-stream locations and iron at the upstream location.

The sampling conducted in 2021 is considered to be pre-construction monitoring, as outlined in PHP Environmental and Biophysical Monitoring Plan [23]. Therefore, elevated results from the 2021 sampling have not been impacted by remediation activities and are consistent with the results from the baseline sampling in 2013.

Sediment Monitoring

The sediments in Highland Drive South Creek are required to be sampled twice in 2021, as outlined in the pre-construction phase of the PHP Environmental and Biophysical Monitoring Plan [23]. Results were less than the Provincial Sediment Quality Guidelines (PSQG) [32], and the Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life [33], with the exception of arsenic and magnesium. Arsenic exceeded the PSQG [32] Lowest Effect Level (LEL) and CCME Interim Sediment Quality Guideline (ISQG) [33] for both sampling campaigns in 2021. Magnesium exceeded the PSQG [32] LEL and SEL in both campaigns in 2021.

These exceedances were predicted in the PHP EA Study Report [**31**], due to the influence of the Highland Drive Landfill. The PHP Screening Report [**24**] states that the effects on sediment quality are directly related to the effects on the surface water, therefore, contaminant concentrations are expected to decrease in the longer term, after the remediation of the Highland Drive Landfill is complete. The 2021 laboratory results are provided in Appendix B, Table 68 and Table 69, and the monitoring locations are presented in Appendix A, Figure 19. Sediment samples were collected at the upstream location only (HC-U). Insufficient sediment was available at the downstream location (HC-D) to collect a sample for both campaigns in 2021.

Storm Event Monitoring

Highland Drive South Creek was monitored hourly during one storm event in 2021. The sampling took place at the downstream location (HC-D) of the Highland Drive South Creek, as outlined in the pre-construction phase of the PHP Environmental Biophysical Monitoring Plan [23]. The contaminant concentrations were observed to peak as Total Suspended Solids (TSS) increased. Concentrations of chloride, arsenic, boron, copper, iron, phosphorus, and uranium were observed to exceed the PWQO [15] and/or CWQG [16] as TSS increased. Concentrations subsequently reduced as TSS levels declined. COPCs associated with the PHAI are predicted to improve in surface water once the project is completed. The 2021 laboratory results are provided in Appendix B, Table 70 and the monitoring locations are presented in Appendix A, Figure 19.

10.3.4.4 Alexander Creek Watershed

Surface Water Monitoring

The Alexander Creek watershed surface water is required to be sampled quarterly, as outlined in the PHP Environmental Biophysical Monitoring Plan [23]. The PHP EA Study Report [31] states that the removal of contaminated materials at the remediation sites, Alexander Street Ravine, is expected to result in a long-term improvement to the down-gradient surface water quality. Results were compared to the PWQO [15] or CWQG [16], where available. The 2021 laboratory results are provided in Appendix B, Table 71 and Table 72, and the monitoring locations are presented in Appendix A, Figure 20. Results are less than the PWQO [**15**] or CWQG [**16**] with the exception of phosphorus, chloride and iron at both sampling locations, AC-1, and AC-3. Uranium exceeded only at the downstream location, AC-3. As discussed in the PHP Screening Report [**24**], the streams in the Local Study Area exceeded for phosphorus and iron, which is typical for agricultural/urban watersheds in the region. As well, uranium is historically elevated in Alexander Creek, likely due to the influence from Alexander Street Ravine.

The sampling conducted in 2021 is considered to be pre-construction monitoring, as outlined in PHP Environmental and Biophysical Monitoring Plan [**23**]. Therefore, elevated results from the 2021 sampling have not been impacted by remediation activities.

10.3.4.5 Port Hope Harbour

Surface Water Monitoring

Lake Ontario Surface Water Quality

Surface water quality was monitored at three (3) locations in the Port Hope Harbour as shown in Appendix A, Figure 21. The 2021 sampling results are provided in Appendix B, Table 73, Table 74, and Table 75. Concentrations of fluoride were at the CWQG [16] through all the sampling campaigns in 2021 at PHH-4. The PHP Screening Report [24] discussed fluoride exceedances are typical of agricultural/urban watersheds in the region. Phosphorus was observed outside the range of the PWQO [15] at PHH-4 in 2021 September. As discussed in the PHP Screening Report [24], concentrations for phosphorus were occasionally elevated above guideline levels in the Port Hope Harbour. Arsenic and uranium exceeded the PWQO [15] and CWQG [16] at PHH-2 from 2021 June through to November when dredging ceased. Beginning in 2021 September and continuing to November, the concentration of lead, iron, cobalt, and copper were also observed to exceed the PWQO [15] and CWQG [16] at PHH-2. The PHP Screening Report [24] predicted concentrations of uranium would increase in the area between the harbour and Ganaraska River. These exceedances were not noted at the far field location (PHH-4). Once contaminated sediment is removed from the harbour, water quality is predicted to improve as noted in the PHP EA Study Report [31].

Surface Water Quality – During Dredging Activities

During dredging operations at the Port Hope Harbour, the PHP Environmental Biophysical Monitoring Plan [**23**] requires weekly sampling in the confluence area beyond the temporary wave attenuator and fish/silt curtain, and in the Ganaraska River above the confluence (PHH-1 and PHH-2) as outlined in Appendix A, Figure 21. Sampling commenced 2021 June 30 and samples were collected weekly during Port Hope Harbour dredging activities. Please note that on 2021 September 16, sampling locations shifted slightly as outlined in Appendix A, Figure 22 (PHH-1a and PHH-2a). This shift in sampling locations occurred due to safety reasons and to ensure consistent monitoring points throughout the calendar year. An Algae Barrier System was also installed close to PHH-2 in 2021. PHH-2a was determined to be more representative of what is entering the Outer Harbour and the confluence. Weekly samples during dredging are currently being collected at PHH-1a and PHH-2a as outlined in Appendix A, Figure 22. Please note that dredging activities were not continuous in 2021. Results are provided in Appendix B, Table 76, and Table 77.

Exceedances of phosphorus and iron above the PWQO [**15**] and/or CWQG [**16**] have taken place since dredging activities commenced in 2021 June at both the PHH-1a and PHH-2/PHH-2a locations. Additional exceedances for arsenic, uranium, cobalt, copper, and lead were observed at the PHH-2/PHH-2a locations. The PHP Screening Report [**24**] predicted concentrations of iron and phosphorus are typical for the nearshore zone of the lake in this region and during dredging operations, and concentrations of uranium would be expected to increase in the area between the harbour and the Ganaraska River.

Predictions from the EA Study Report [**31**] used theoretical/predicted data inputs to a model. Actual conditions related to daily inputs of water to the inner harbour during dredging have resulted in a different set of conditions, requiring that the proposed EA mitigation measures be modified. CNL engaged Responsible Authorities to ensure a path forward for the protection of Lake Ontario and the Ganaraska River. This has resulted in the creation of a robust monitoring program to ensure the protection of the aquatic environment while dredging activities continue at the Port Hope Harbour.

Turbidity Monitoring

Turbidity monitoring was conducted by the Prime Contractor daily during in-water and near-water works in 2021. Dredging activities commenced in 2021 June 30 and continued until the holiday shutdown on 2021 December 24. Please note, dredging at the Port Hope Harbour was not continuous in 2021 due to statutory holidays, routine maintenance, safety stand down, and a pause in dredging due to contaminant exceedances. Monthly reports are provided to CNL with a summary of the turbidity monitoring completed by the Prime Contractor.

Turbidity was monitored at four locations as outlined in the *Port Hope Harbour Turbidity Monitoring Plan* [**34**] (1 location upstream in the Ganaraska River, 2 locations south of the Wave Attenuator and 1 location near the entrance channel in Lake Ontario). Remote turbidity monitors were installed by the Prime Contractor over 2021 April 8 and 9 for Locations 1, 2 and 3. Location 4 was installed 2021 April 19. The remote turbidity monitor at Location 4 in the *Port Hope Harbour Turbidity Monitoring Plan* [**34**] went missing in 2021 October, therefore, manual turbidity measurements were collected on days in which in-water works and/or dredging was taking place. Based on the *Port Hope Harbour Turbidity Monitoring Plan* [**34**], no turbidity exceedances were noted in 2021 attributable to CNL activities.

11 Emergency Management and Fire Protection

11.1 Emergency Preparedness Program

The PHP adheres to the Corporate Emergency Preparedness Program. See Section 10.1 of the ACMR for CNL [4] for details.

The Port Hope Area Initiative Emergency Plan (PHAI Emergency Plan) [**35**] has been developed to describe the planning and operational requirements for the response to an emergency directly or indirectly affecting the PHAI projects. The PHAI Emergency Plan is consistent with CNL's Corporate Emergency Preparedness Program which ensures all components of emergency preparedness and response are effectively maintained. Contractors conducting work as part of the PHAI submit emergency preparedness plans to CNL for review and approval to ensure contractor site plans meet the requirements of the PHAI Emergency Plan. Contractor compliance with project-specific emergency preparedness plans are examined as part of CNL's Oversight Program.

The Port Hope Area Initiative Emergency Plan was revised and republished on 2021 July 15. Change includes information on newly created five-year drill plan, significant changes to the independent construction sites section, and further clarifying requirements for contractor's site emergency response plans.

The CNSC has previously been notified [36] of revisions to the PHAI Emergency Plan [35].

11.1.1 Drills and Exercises

In 2021 a comprehensive five-year plan was created outlining all drills that are required to be conducted and an approximate timeline for those drills. In addition to the five-year drill plan, all drills were completed as per regulatory and programmatic requirements.

Two drills were completed internally.

11.1.2 Training

In 2021, comprehensive emergency steward and officer in charge training was offered to staff at all PHAI facilities and coaching sessions were conducted with all personnel who currently hold officer in charge and emergency steward positions.

11.1.3 External Collaborations

In 2021 May, a remote town hall session with all first responders servicing PHAI locations was held. Site tours were conducted with Port Hope Fire and Emergency Services and Northumberland EMS.

11.1.4 Unplanned Emergency Events

There were three unplanned emergency events at PHP:

- On 2021 June 7 and 2021 June 15 two different tri-axle trucks hauling LLRW soil experienced mechanical breakdowns. For each the site supervisor and support team responded to the event and applicable external notifications where completed. For both events there was no damage to the load or loss of material.
- On 2021 August 11 a dump truck delivering clean fill to a Shuter Street work site moved forward without lowering box and stuck an overhead electrical wire. Wire was pulled off the poll and fell onto the truck. The truck driver remained in vehicle. The site was evacuated, and the area was isolated. The electrical utility was called to respond to turn off power. The driver remained in the truck until electrical utility responders arrived and depowered the line. The event resulted in no injuries.

No PHP incidents required activation of the EOC/SEP in 2021.

11.2 Fire Protection Program

The PHP adheres to the Corporate Fire Protection Program. See Section 10.2 of the ACMR for CNL [4] for details.

There were no revisions to Fire Protection documents in 2021.

11.2.1 Fire Response Drills

In 2021 all required annual fire response drills were completed at the PH site. Drill responses identified requirements for updated notification processes, improved training, and awareness on response procedures for previously newly assigned Emergency Stewards. Updated Officer in Charge and Emergency Steward Training was conducted for all CNL sites to correct the deficiencies noted.

11.2.2 External Collaborations

In 2021 May, a remote town hall session with all first responders servicing PHAI locations was held. Site tours were conducted with Port Hope Fire and Emergency Services.

11.2.3 Third Party Audits & Inspections

In 2021, all required routine CNL fire protection program inspections were completed at the PHP. Inspections were completed using standard inspection forms and processes with no significant deficiencies noted with respect to fire hazards and necessary protective measures. Third-party fire system experts conducted inspections and follow-up maintenance on the PG WWTP updated fire system sensors.

11.2.4 Fire Hazard Analysis

In 2021, several fire screening assessments were completed for various maintenance and capital improvement projects in accordance with CNL's ECC program.

12 Waste Management

12.1 Waste Management Program

The PHP adheres to the Corporate Waste Management Program. See Section 11.1 of the ACMR for CNL [4] for details.

Additionally, the PHP follows Waste Management Plans to ensure continued support to all waste generators in meeting the strategic priorities and CNL business needs:

- Management of Historic Artefact Recovery Program (HARP).
- Port Hope Project Management of Historic LLRW.
- Cameco Decommissioning Waste Management Plan.
- Reconfiguration of Administration Building at 196 Toronto Rd.

12.1.1 Waste Management Operations

The waste located at remediation sites in Port Hope will be transported to the PH LTWMF. The PH LTWMF site includes a wastewater treatment plant, an aboveground engineered storage mound (currently under construction) and supporting infrastructure under construction. The LTWMF will have a capacity of approximately 2 million cubic metres comprised of LLRW and non-radioactive Industrial Waste (including contingencies and daily clean soil cover materials).

The engineered aboveground mound at the PH LTWMF has been designed to isolate the historic LLRW that will be received from the remediation sites by securely encasing it on the top, bottom, and sides with thick, multiple layers of natural and specially manufactured materials. These layers form components of the cover and baseliner that, independently, are robust enough to prevent contaminants from entering the environment.

Systems are being installed within and around the mound that will monitor it for hundreds of years. Inspections and monitoring of the collection system for contaminated water (leachate) will confirm the effectiveness of the cover system. Sensors in both the cover and the baseliner will monitor performance, while groundwater quality will be monitored through ongoing testing of specially designed wells surrounding the base.

The waste is generated in accordance with the remediation project plans and is transported from the remediation sites to the PH LTWMF via tandem or triaxle dump trucks. Other non-radiological waste such as clean construction debris, hazardous waste (e.g., fuel spill product, residual chemicals), and general/lunchroom garbage is diverted away from the PH LTWMF site, and is delivered to off-site facilities for management, recycling, and/or disposal. The radioactive waste, or other waste deemed acceptable for receipt at the PH LTWMF is received and placed in accordance with standard operating procedures.

12.1.2 Waste Inventory

On-site waste movement occurred from 2021 January 01 to 2021 December 31. Off-site waste deliveries to the PH LTWMF originated from various sites including Cameco, Waterfront Sites,

1

SSS and the CMP, and other waste sources such as on-site waste transfers listed in Table 14 below.

Waste Type	Source	Total Estimated Quantity (volume/weight)	Total Estimated Radioactivity (Bq) [Calculated/ Measured]	Primary Radionuclides
Radioactive	PH WWTP	1,360 tonnes	2.70E+11	Uranium and Uranium Progeny
Radioactive	PH LTWMF – On-Site Waste Placement	0 tonnes	0.00E+00	Uranium and Uranium Progeny
Radioactive	PH LTWMF – Forested and Brush Area	19,910 tonnes	3.95E+12	Uranium and Uranium Progeny
Radioactive	Cameco – Supersacks and Drums	503 tonnes	4.06E+11	Uranium and Uranium Progeny
Radioactive	Cameco – Dump Trucks	4,305 tonnes	N/A	Uranium and Uranium Progeny
Radioactive	TSS (STP, SC)	0 tonnes	0.00E+00	Uranium and Uranium Progeny
Radioactive	Small-Scale Sites – Package 2, 3 and 4 Waste	38,482 tonnes	3.85E+10	Uranium and Uranium Progeny
Radioactive	Pine St	74,418 tonnes	6.50E+11	Uranium and Uranium Progeny
Radioactive	Waterfront Sites	49,976 tonnes	2.24E+11	Uranium and Uranium Progeny
Radioactive	Harbour-Centre Pier	20,749 tonnes	3.93E+12	Uranium and Uranium Progeny
Radioactive	Construction Monitoring Program	1,802 tonnes	1.80E+09	Uranium and Uranium Progeny
Radioactive	PG	36 tonnes	7.14E+09	Uranium and Uranium Progeny
Radioactive	Off-Site Waste Water	2,601 tonnes	N/A	Uranium and Uranium Progeny

Table 14: Waste Transferred to the PH LTWMF

The total radioactivity of the offsite waste water is not included since the water is treated at the PH WWTP. The inventory is included in the PH WWTP contribution.

13 Security

13.1 Security Program

The PHP adheres to the Corporate Security Program. See Section 12 of the ACMR for CNL [4] for details.

The Port Hope Area Initiative Security Plan (PHAI Security Plan) [**37**] has been implemented for the PHP. The PHAI Security Plan [**37**] establishes the security arrangements that are required for PHAI project sites. It addresses the responsibilities, linkages with local law enforcement, functions, and elements of the security plan such as training, drills, exercises, and various physical security components. The purpose of the PHAI Security Plan [**37**] is to ensure the physical protection of the PHP assets and safeguarding of the public and personnel. The PHAI Security Plan [**37**] is based on applicable legislation, regulations and operating licences and is consistent with CNL's corporate security policies and programs.

Contractors conducting work as part of the PHAI submit security plans. As confirmed through CNL's mandated review and acceptance process, contractor plans are consistent with the requirements of the PHAI Security Plan [**37**]. Contractors' compliance with project-specific security plans is examined as part of CNL's oversight program. In 2021, a project wide security assessment on contractor security clearance and site access was completed. As a result, the PHAI implemented a graded personnel security assessment program.

The CNSC has previously been notified [**38**] of revisions to the PHAI Security Plan [**37**]. Major updates include the newly implemented graded security assessment process and additional cascaded changes to the visitor process.

13.1.1 Security Events

In 2021, there were no security event(s) that affected the PHP.

14 Safeguards and Non-Proliferation

14.1 Safeguards Program

The PHP adheres to the Corporate Nuclear Materials and Safeguards Management (NM&SM) Program. See Chapter 13 of the ACMR for CNL [4] for details.

14.1.1 Nuclear Materials Inventory

In 2021, the PH LTWMF (material balance area CNWF) received and placed approximately 25,428 kgU from Cameco (material balance area CNWE) in accordance with the requirements of CNL's Nuclear Materials and Safeguards Management (NM&SM) program. The emplaced inventory has been transferred to retained waste.

In addition, the inventory of nuclear materials in material balance area CN-2 decreased by three items in 2021. The items, which comprised of two sources and one souvenir vial, were sent to Chalk River for long-term management and repurposing.

Date	Shipment #	Cameco	PH LTWMF	Items	Safeguarded Waste kg U
2021-03-16	67650	CNWE	CNWF	20	8,401
2021-03-16	67651	CNWE	CNWF	20	8,523.9
2021-03-17	67652	CNWE	CNWF	21	8,402.5
2021-11-19	68782	CNWE	CNWF	47	3.701
2021-11-19	68781	CNWE	CNWF	48	3.48
2021-11-19	68807	CNWE	CNWF	44	2.62
2021-11-22	68780	CNWE	CNWF	48	3.453
2021-11-22	68806	CNWE	CNWF	44	5.996
2021-11-22	68812	CNWE	CNWF	48	4.39
2021-11-24	68799	CNWE	CNWF	48	3.826
2021-11-24	68798	CNWE	CNWF	48	2.705
2021-11-24	68800	CNWE	CNWF	48	3.257
2021-11-25	68811	CNWE	CNWF	48	2.377
2021-11-25	68853	CNWE	CNWF	48	4.953
2021-11-25	68857	CNWE	CNWF	48	3.38
2021-11-26	68854	CNWE	CNWF	48	3.136
2021-11-29	68864	CNWE	CNWF	46	5.312

Table 15: 2021 Nuclear Materials Inventory

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 101 of 246

Date	Shipment #	Cameco	PH LTWMF	ltems	Safeguarded Waste kg U
2021-11-29	68856	CNWE	CNWF	48	3.969
2021-11-29	68855	CNWE	CNWF	46	4.945
2021-11-29	68859	CNWE	CNWF	42	2.219
2021-12-01	68861	CNWE	CNWF	48	2.662
2021-12-01	68862	CNWE	CNWF	48	4.792
2021-12-01	68868	CNWE	CNWF	48	4.445
2021-12-03	68858	CNWE	CNWF	48	2.759
2021-12-03	68860	CNWE	CNWF	48	2.834
2021-12-03	68871	CNWE	CNWF	48	3.128
2021-12-06	68870	CNWE	CNWF	48	3.743
2021-12-06	68872	CNWE	CNWF	10	0.869
2021-12-06	68873	CNWE	CNWF	10	0.988
2021-12-13	68905	CNWE	CNWF	48	3.375
2021-12-20	68908	CNWE	CNWF	48	2.702
			Total	1310	25,423,416

14.1.2 International Atomic Energy Agency (IAEA) Activities

The International Atomic Energy Agency (IAEA) conducted routine seal replacement on the IAEA Portal Monitor on 2021 August 5. The PH LTWMF was not selected for a Physical Inventory Verification in 2021.

A list of IAEA inspections conducted at all CNL sites can be found in Section 1.2, Management System of the ACMR for CNL [4].

15 Packaging and Transport

15.1 Packaging and Transport Program

The PHP adheres to the Corporate Transportation of Dangerous (TDG) Goods Program, which includes the requirements of the Packaging and Transport SCA. See Section 14 of the ACMR for CNL [4] for details.

The Port Hope Area Initiative Transportation of Dangerous Goods Plan (PHAI TDG Plan) [**39**] applies to any activities involving the transportation of dangerous goods to, or from CNL sites. The TDG program provides an operational framework for the safe off-site transport of dangerous goods by conforming to all applicable laws and regulations, as well as CNL policies and procedures.

In addition, firms or contractors performing work on behalf of CNL for the PHAI project under the PHP Licence [1] adhere to project specific work plans, which are compliant with the PHAI TDG Plan [39].

There were no revisions made to the PHAI TDG Plan [**39**] in 2021.

15.1.1 Shipments

The implementation of the TDG program for the PHAI project is detailed in the PHAI TDG Plan [**39**]. Each contract is required to adhere to the PHAI TDG Plan [**39**], and project specific implementation is reviewed against the requirements of this plan. Shipments of dangerous goods have occurred throughout 2021. Furthermore, ongoing oversight of each contract is performed to ensure continuous adherence to the plan or recommend incremental improvements to the means and methods to deliver a project.

There were no reportable events related to the TDG program in 2021.

16	Acronyms
AAQC	Ambient Air Quality Criteria
ALARA	As Low As Reasonably Achievable
AECL	Atomic Energy of Canada Limited
CCME	Canadian Council of Ministers of the Environment
CNL	Canadian Nuclear Laboratories
CNSC	Canadian Nuclear Safety Commission
CRL	Chalk River Laboratories
CLG	Citizen Liaison Group
CRP	Complaints Resolution Process
COPC	Contaminants of Potential Concern
dBA	Decibels
DSP	Dosimetry Service Provider
EGGC	East Gorge Groundwater Collection
ECC	Engineering Change Control
ECCC	Environment and Climate Change Canada
EA	Environmental Assessment
EQ	Equalization
HOIR	Hazardous Occurrence Investigation Reports
Hi-Vol	High Volume
HWP MO	Historic Waste Program Management Office
HU	Human Performance
ImpAct	Improvement Action
IWC	Integrated Work Control
ISQG	Interim Sediment Quality Guideline
LCH	Licence Conditions Handbook
LLRW	Low Level Radioactive Waste
LCV	Lowest Chronic Value
LEL	Lowest Effect Level
MECP	Ministry of the Environment, Conservation, and Parks (Ontario)
MNDMNRF	Ministry of Northern Development, Mines, Resources and Forestry

MPH	Municipality of Port Hope
NORM	Naturally Occurring Radioactive Material
NSDF	Near Surface Disposal Facility
NEW	Nuclear Energy Worker
NSCA	Nuclear Safety and Control Act
OSH	Occupational Safety and Health
OFI	Opportunity for Improvement
OSLD	Optically Stimulated Luminescence Dosimetry
PM	Particulate Matter
PG LTWMF	Port Granby Long-term Waste Management Facility
PGP	Port Granby Project
PG WMF	Port Granby Waste Management Facility
PG WWTP	Port Granby Waste Water Treatment Plant
PHAI	Port Hope Area Initiative
РНР	Port Hope Long-Term Low-Level Radioactive Waste Management Project
PH LTWMF	Port Hope Long-Term Waste Management Facility
PVP	Property Value Protection

17 References

- [1] Canadian Nuclear Safety Commission, Port Hope Long-Term Low-Level Radioactive Waste Management Project Waste Nuclear Substance Licence, WNSL-W1-2310.02/2022, Expiry Date: 2022 December 31.
- [2] Canadian Nuclear Safety Commission, Port Hope Long-Term Low-Level Radioactive Waste Management - Licence Conditions Handbook WNSL-W1-LCH-2310, Revision 1, 2014 December 04.
- [3] An Agreement for the Cleanup and Long-Term Safe Management of Low-Level Radioactive Waste Situated in The Town of Port Hope, The Township of Hope and the Municipality of Clarington, LLRWMO-513700-110-11000-008, 2001 March 29.
- [4] Annual Compliance Monitoring Report for Canadian Nuclear Laboratories, 145-00583-ACMR-2021, Revision 0, 2022 April.
- [5] Letter, M. Gull to R. Jammal, J. Cameron, P. Elder, *Notification of Change in Site Licence Holder at Canadian Nuclear Laboratories*, 140-CNNO-21-0001-L, 2021 February 24.
- [6] Nuclear Safety and Control Act, S.C. 1997, c. 9, 2013 July.
- [7] Canadian Nuclear Safety Commission, Waste Nuclear Substance Licence Pine Street Extension Temporary Storage Site, WNSL-W1-182.1/2022, Expiry Date: 2022 December 31.
- [8] Canadian Nuclear Safety Commission, *Waste Nuclear Substance Licence Port Hope Radioactive Management Facility*, WNSL-W1344.1.8/ind., Expiry Date: Indefinite.
- [9] Canadian Nuclear Safety Commission, *Public Information and Disclosure*, REGDOC-3.2.1, 2018 April 27.
- [10] *Port Hope Area Initiative (PHAI) Phase 2 Public Information Program Plan,* 4500-513000-PLA-003, Revision 4, 2020 March.
- [11] *Historic Waste Program Quality Plan*, 236-514200-QAP-001, Revision 1, 2020 December.
- [12] HWP MO Field Oversight Activities. 236-514200-PRO-001, Revision 2, 2021 December.
- [13] *Occupational Safety and Health Plan*, Port Hope Area Initiative, 4500-510400-PLA-001, Revision 3, 2021 July 15.
- [14] Port Hope Area Initiative Training Plan, 4500-510200-PLA-001, Revision 3, 2016 August.
- [15] Ontario Ministry of the Environment, *Provincial Water Quality Objectives*, 1999 February.
- [16] Canadian Council of Ministers of the Environment, *Canadian Water Quality Guidelines for Protection of Aquatic Life*, 1999.
- [17] Letter, R. Buhr (CNSC) to S. Morris (CNL), *Port Hope Project Waste Water Treatment Plant Release Limits*, 4501-NOCN-20-0006-L, 2020 April 20.

- [18] *Port Hope Area Initiative Radiation Protection Plan,* 4500-508740-PLA-001, Revision 6, 2021 September 01.
- [19] CNL, Radiation Protection Program Requirements Management System Document, 900-508740-PRD-001. Revision 2, 2017 July 17.
- [20] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Radiation Protection Plan*, 4500-CNNO-21-0008-L, 2021 September 02.
- [21] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Occupational Safety and Health Plan*, 4500-CNNO-21-0017-L, 2021 December 10.
- [22] Canadian Nuclear Safety Commission, *Reporting Requirements*, REGDOC-3.1.2, Volume I: Non-Power Reactor Class I Nuclear Facilities and Uranium Mines and Mills, April 2021.
- [23] *Port Hope Project Environmental and Biophysical Monitoring Plan*, 4501-509247-PLA-001, Revision 2, 2018 October.
- [24] Government of Canada, *Screening Report The Port Hope Long-Term Low-Level Radioactive Waste*, 4501-03710-041-000-0002, Revision 0, 2006 December.
- [25] *Port Hope Project Environmental Assessment Follow-up Program*, 4501-509246-PLA-001, Revision 2, 2015 April.
- [26] *Port Hope Area Initiative Dust Management Requirements and Plan,* 4500-509200-PLA-001, Revision 3, 2018 March.
- [27] Ontario Ministry of the Environment and Climate Change, *Ambient Air Quality Criteria* (*AAQC*), 2020 April.
- [28] Canadian Council of Ministers of the Environment, Guidance Document on Achievement Determination Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone. Available at: https://ccme.ca/en/res/pn1483_gdad_eng-secured.pdf, Accessed: 2021 April.
- [29] World Health Organization, *Guidelines for Community Noise*, Edited by B. Berglund, T., 1999.
- [30] Ontario Ministry of the Environment, Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act., 2011. Available at: https://www.ontario.ca/page/soil-ground water and-sediment-standards-use-under-partxv1-environmental protection act, Accessed: 2021 April.
- [31] Port Hope Project Environmental Assessment Study Report, LLRWMO-03710-ENA-12003, Revision 1D1, 2006 January.
- [32] Ontario Ministry of the Environment, *Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach - Provincial Sediment Quality Guidelines,* Revision 0, 2008 May.

- [33] Canadian Council of Ministers of the Environment, *Sediment Quality Guidelines for the Protection of Aquatic Life*, 1993 August.
- [34] *Port Hope Harbour Turbidity Monitoring Work Plan*, 4501-121250-PLA-069, Revision 0, 2020 October.
- [35] Port Hope Area Initiative Emergency Plan, 4500-508730-PLA-001, Revision 3, 2021 July 15.
- [36] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Emergency Plan*, 4500-CNNO-21-0012-L, 2021 November 12.
- [37] *Port Hope Area Initiative Security Plan,* 4500-508710-PLA-001, Revision 3, 2021 September 20.
- [38] Letter, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Security Plan*, 4500-CNNO-21-0013-L, 2021 November 12.
- [39] Port Hope Area Initiative (PHAI) Transportation of Dangerous Goods Plan. 4500-508520-PLA-001, Revision 4, 2018 June 21.
- [40] Port Hope Project Dust Management and Requirements Plan Small-Scale Sites Remediation, 4501-209200-PLA-01, Revision 0, 2018 March 26.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 108 of 246

Appendix A EA MONITORING LOCATIONS

Figure 5: PHP LTWMF high-volume air sampler locations.
Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 109 of 246

Figure 6: Pine Street Extension Consolidation Site air monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 110 of 246

Figure 7: PH LTWMF noise monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 111 of 246

Figure 8: Central Transportation Route noise monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 112 of 246

Figure 9: Northern Transportation Route noise monitoring locations.

UNRESTRICTED

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 113 of 246

Figure 10: Southern Transportation Route noise monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 114 of 246

Figure 11: Highland Drive Noise Monitoring Locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 115 of 246

Figure 12: PH LTWMF groundwater monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 116 of 246

Figure 13: Highland Drive groundwater monitoring locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 117 of 246

Figure 14: PH LTWMF soil sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 118 of 246

Figure 15: Highland Drive Landfill soil sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 119 of 246

Figure 16: Brand Creek and Lake Ontario surface water sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 120 of 246

Figure 17: PH LTWMF drainage water sampling locations.

UNRESTRICTED

UNRESTRICTED Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 121 of 246

Figure 18: Brewery Creek aquatic sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 122 of 246

Figure 19: Highland Drive South Creek aquatic sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 123 of 246

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 124 of 246

Figure 21: Port Hope Harbour surface water sampling locations.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 125 of 246

Figure 22: Port Hope Harbour surface water weekly sampling locations.

Appendix B PORT HOPE ENVIRONMENTAL MONITORING RESULTS

Table 16: 2021 PH LTWMF operational observation well sampling results

Observation Well	Arsenic	Uranium	Radium-226	рН	Notes
Number	(µg/L)	(µg/L)	(Bq/L)		
		Ave	rage		
1-75					Well Decommissioned in 2016
1-87	0.9	3.90	0.01	7.43	
2-75					Well Decommissioned in 2018
WC-OW2-19 ¹	1.8	0.1	<0.01	7.42	
3-87	5	0.68	0.01	7.87	
4-79	0.8	0.08	<0.01	7.66	
WC-OW5-19 ²	2.6	0.1	<0.01	7.28	
WC-LTWMF-MW-06 ³	1.5	0.94	<0.01	8.21	
12-75					Well Decommissioned in 2018
18-76					Well Decommissioned in 2018
27-76	0.4	0.13	<0.01	7.62	
28-76	0.5	0.19	<0.01		
33-76	0.6	3.35	<0.01	7.60	
36-76					No sample – well not found
Notes: Sampling is conducted se					

ampring is conducted serin-armit

-- - No data.

¹ - Replaced 2-87 in 2019

² - Replaced 5-79 in 2019

³ - Replaced 9-75 in 2017

Table 17: 2019 to 2021 Port Hope Waste Water Treatment Plant -**Results of water sampling analysis (effluent)**

Final Effluent Sample Monthly Average	Total Suspended Solids (mg/L)	рН	Total Aluminum (μg/L)	Total Arsenic (μg/L)	Total Boron (µg/L) ⁽²⁾	Total Copper (μg/L)	Total Lead (μg/L)	Total Uranium (μg/L)	Total Zinc (µg/L)	Radium-226 (Bq/L)	Toxicity (Pass/Fail)	Totalized Effluent Volume (m ³)
Design Objective	15	6-9	66	41	1820	15	22.8	150	110	0.37	PASS	
Action Level ⁽¹⁾	7.5	6.5 - 8.5	100	41	175	5	5	100	15	0.050	FAIL	
2019 January	1	7.84	5	1.9	24	1.0	0.5	2.10	5.0	0.005	PASS	15,426
2019 February	1	7.86	6	1.8	27	1.0	0.5	2.25	5.0	0.005	PASS	15,034
2019 March	1	7.72	5	1.0	27	1.0	0.5	1.60	5.0	0.005	PASS	17,063
2019 April	1	7.93	5	1.0	23	1.0	0.5	1.20	5.0	0.005	PASS	16,039
2019 May	1	7.84	5	1.0	29	1.0	0.5	1.25	5.0	0.005	PASS	14,804
2019 June	1	7.86	6	1.1	40	1.0	0.5	1.50	5.0	0.005	PASS	14,845
2019 July	1	7.57	6	1.0	43	1.0	0.5	0.81	5.0	0.005	PASS	8,792
2019 August	1	7.56	5	1.1	47	2.5	0.5	0.78	5.0	0.005	PASS	10,799
2019 September	1	7.91	5	1.0	47	1.0	0.5	0.79	5.0	0.005	PASS	7,012
2019 October	1	7.89	5	1.0	44	1.0	0.5	0.89	5.0	0.005	PASS	9,507
2019 November	1	7.82	5	1.0	28	1.0	0.5	0.33	5.0	0.005	PASS	15,108
2019 December	1	7.90	5	1.0	32	1.0	0.5	0.41	5.0	0.005	PASS	11,872
2020 January	1	7.79	2.5	0.2	27	1.0	0.1	1.11	1.0	0.0065	PASS	19,382
2020 February	1	7.80	1.0	0.3	28	1.3	0.1	0.53	3.0	0.005	PASS	22,856
2020 March	1	7.90	5.0	1.0	28	1.3	0.5	0.91	5.0	0.005	PASS	22,756
2020 April	1	7.61	5.0	1.0		1.9	0.6	2.80	5.0	0.005	PASS	18,656
2020 May	1	7.28	5.4	1.0		1.4	0.5	1.15	5.0	0.005	PASS	8,221
2020 June	1	7.34	5.0	2.4		0.9	0.5	0.70	5.0	0.007	PASS	3,735
2020 July	1	7.73	1.0	6.8		1.1	0.2	2.15	2.0	0.008	PASS	7,600
2020 August	1	7.57	1.0	1.7		1.9	0.4	2.50	2.5	0.0055	PASS	10,621
2020 September	1	7.32	1.0	1.1		1.4	0.4	1.22	2.0	0.008	PASS	3,927
2020 October	1	7.59	1.0	0.5		1.3	0.6	1.75	2.0	0.005	PASS	9,591
2020 November	1	7.46	2.5	0.4		1.3	0.3	0.79	1.5	0.005	PASS	4,183
2020 December	1	7.60	1.6	0.3		1.9	0.5	1.45	1.0	0.005	PASS	8,689
2021 January	1	7.52	1.0	0.3		2.1	0.4	1.05	1.0	0.005	PASS	15,554
2021 February	1	7.38	1.0	0.6		2.0	0.6	0.83	1.0	0.005	PASS	3,870
2021 March	1	7.49	1.0	0.3		1.0	0.3	0.87	1.0	0.005	PASS	15,329
2021 April	1	7.52	1.0	0.7		1.0	0.5	1.00	1.0	0.005	PASS	14,488
2021 May	1	7.36	1.0	3.5		1.5	0.7	1.30	1.0	0.005	PASS	4,254
2021 June	NO EFF*	NO EFF	NO EFF	NO EFF		NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	0
2021 July	1.5	7.53	1	20.4		1.2	0.29	2.34	2.5	0.005	PASS	7,130
2021 August	1	7.77	1	29.9		1.3	0.409	2.49	2.0	0.005	PASS	6,381
2021 September	2	7.88	2	20.2		1.6	0.278	0.98	2.0	0.005	PASS	9,089
2021 October	1.5	7.70	2	19.2		0.6	0.41	1.70	1.5	0.005	PASS	20,642
2021 November	2	7.74	1	20.1		0.8	0.46	2.34	1.0	0.005	PASS	15,581
2021 December	1	7.59	1	13.2		1.6	0.62	1.54	1.0	0.005	PASS	12,656

Notes: (1) - The values shown are based on License Condition Handbook WNSL-W1-LCH-2310 R1. Revised values proposed by CNL were reviewed by the CNSC with formal acceptance provided on 2020 April 20. Notes: (2) - Regulated monitoring of Boron was removed from the requirment of the Waste Nuclear Substance Licence WSNL-W1-2310.01/2022 as of 2020 April 20. Notes: * NO EFF refers to No Effluent sampling. No effluent discharges from the PH WWTP occurred in 2021-June due to low collection pond level.

Table 18: 2019 to 2021 Port Hope Waste Water Treatment Plant -**Results of water sampling analysis (influent)**

	-										
Influent Sample Monthly Average	Total Suspended Solids (mg/L)	рН	Total Aluminum (μg/L)	Total Arsenic (μg/L)	Total Boron (µg/L) ⁽¹⁾	Total Copper (μg/L)	Total Lead (μg/L)	Total Uranium (μg/L)	Total Zinc (μg/L)	Radium-226 (Bq/L)	Totalized Influent Volume (m ³)
2019 January	3	8.09	31	510	82	24	2.3	630	37	0.180	30,945
2019 February	4	8.08	44	530	90	35	5.0	730	51	0.535	30,436
2019 March	3	7.99	32	320	79	35	5.5	620	45	0.590	36,253
2019 April	3	8.48	25	240	67	22	3.0	480	29	0.400	36,474
2019 May	3	8.90	23	245	62	11	0.8	390	13	0.335	37,738
2019 June	3	8.93	22	230	64	8	0.5	325	5	0.330	37,309
2019 July	5	9.04	45	250	73	8	0.6	150	5	0.570	30,558
2019 August	18	9.03	250	315	82	17	2.3	115	10	1.750	31,176
2019 September	14	9.21	195	145	91	20	9.1	130	15	1.300	27,258
2019 October	8	8.80	110	120	83	21	3.8	110	16	0.530	23,275
2019 November	8	8.47	73	57	79	41	4.9	110	32	0.605	33,021
2019 December	9	8.75	61	80	105	63	11.5	190	33	0.505	25,483
2020 January	3	8.51	25	119	105	112	25.1	309	50	0.555	38,083
2020 February	4	8.58	32	109	117	103	21.5	305	50	0.505	39,912
2020 March	7	8.41	37	110	120	230	46.0	340	68	0.420	40,817
2020 April	18	8.49	110	90		330	75.0	705	140	0.700	35,230
2020 May	13	8.39	85	68		180	37.5	485	71	0.475	17,601
2020 June	11	8.61	120	140		41	12.0	350	38	0.540	20,485
2020 July	7	9.26	38	377		22	17.6	340	27	0.455	20,938
2020 August	9	8.83	259	252		39	33.3	319	41	0.455	23,933
2020 September	7	8.75	190	202		54	45.2	298	45	0.240	10,499
2020 October	8	8.47	178	123		32	44.3	326	60	0.155	19,494
2020 November	5	8.46	87	112		19	30.7	291	47	0.150	11,154
2020 December	2	7.99	29	114		134	47.8	379	54	0.140	18,636
2021 January	1	8.45	15	126		162	51	366	48	0.175	31,150
2021 February	2	8.61	14	171		144	52	303	51	0.190	11,912
2021 March	4	8.27	61	86		52	28	239	44	0.139	29,028
2021 April	4	8.05	57	206		95	48	394	58	0.203	28,320
2021 May	6	8.48	106	524		81	72	470	69	0.337	14,419
2021 June	7	8.28	100	752		23.4	41	416	78	0.244	20,485
2021 July	4	9.55	49	680		36.0	32	281	42	0.200	22,304
2021 August	6	9.17	31	999		33.4	40	397	70	0.371	15,659
2021 September	6.5	8.91	157	610		13.7	30	318	69	0.335	12,488
2021 October	6	8.21	127	574		26.9	46	317	49	0.428	40,754
2021 November	5	8.33	60	747.0		43.0	55.10	531.00	51.0	0.36	31,825
2021 December	8	8.12	78.5	478.5		151.0	76.00	439.50	49.0	0.414	29,019
	(4) 0 1 1	1. 1. (0.	14			1 01 1		2212 21 (2222	(2020 1 1/20		

ing of Boron was removed from the requirment of the Waste Nuclear Substance Licence WSNL-W1-2310.01/2022 as of 2020 April 20

Table 19: 2019-2021 Port Hope Waste Water Treatment Plant and Old Water Treatment Building Operations - Results of water sampling analysis (effluent toxicity)

Sample Date	48 Hour Result	96 Hour Result	Old WTP 48 Hour Result	Old WTP 96 Hour Result
2019 January 01	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 February 05	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 March 12	Pass (3.3% mortality)	Pass (0.0% mortality)	-	-
2019 April 02	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 April 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 April 24	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 01	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 07	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 May 08	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 14	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 May 15	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 22	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 29	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 04	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 June 05	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 12	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 19	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 July 02	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 July 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 August 13	Pass (10% mortality)	Pass (0.0% mortality)	-	
2019 September 10	Pass (6.7% mortality)	Pass (0.0% mortality)	-	
2019 October 08	Pass (0.0% mortality)	Pass (10% mortality)	-	
2019 November 12	Pass (10% mortality)	Pass (0.0% mortality)	-	
2019 December 10	Pass (3.3% mortality)	Pass (0.0% mortality)	-	
2020 January 14	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2020 February 11	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2020 March 10	Pass (0.0% mortality)	Pass (0.0% mortality)		
2020 April 07	Pass (3.3% mortality)	Pass (0.0% mortality)	-	
2020 May 12	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2020 June 09	Pass (3.3% mortality)	Pass (0.0% mortality)	-	
2020 July 07	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2020 August 11	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2020 September 08	Pass (3.3% mortality)	Pass (0.0% mortality)	-	-
2020 October 06	Pass (3.3% mortality)	Pass (0.0% mortality)	-	-
2020 November 10	Pass (0.0% mortality)	Pass (30% mortality)		
2020 November 24	Pass (3.3% mortality)	Pass (20% mortality)	-	
2020 December 08	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 January 12	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 February 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 March 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 April 20	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 May 11	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2021 June 01	NO EFF	NO EFF		
2021 July 13	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2021 August 24	Pass (0.0% mortality)	Pass (30% mortality)	-	-
2021 September 14	Pass (3.3% mortality)	Pass (0.0% mortality)	-	-
2021 October 12	Pass (0.0% mortality)	Pass (0.0% mortality)		
2021 November 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2021 December 14	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-

Parameter/Criteria	Total Suspended Solids (mg/L)	рН	Total Aluminum (μg/L)	Total Arsenic (μg/L)	Total Boron (μg/L)	Total Copper (µg/L)	Total Lead (μg/L)	Total Uranium (µg/L)	Total Zinc (μg/L)	Radium-226 (Bq/L)
PWQ0 ⁽¹⁾	NV	6.5:8.5	75	100	200	5	5	5	30	1
CCME FWA-LT ⁽²⁾	NV	6.5:9.0	100	5	1,500	2	1	15	30	NV ⁽³⁾
Sample Date										
2019 January 01	45	8.08	820	<1.0	10	1.7	0.7	2.3	<5.0	< 0.0050
2019 February 12	22	8.27	440	<1.0	11	<1.0	<0.50	3.3	14	< 0.0050
2019 March 05	13	8.03	250	<1.0	10	<1.0	<0.50	3.7	<5.0	<0.0050
2019 April 02	45	8.11	960	<1.0	<10	1.5	0.7	3	5	< 0.0050
2019 May 07	24	8.28	480	1.1	11	1.4	< 0.50	2.8	<5.0	< 0.0050
2019 June 04	3	8.22	70	<1.0	12	<1.0	<0.50	2.2	<5.0	< 0.0050
2019 July 09	93	8.18	1,700	2.7	15	<u>2.7</u>	<u>1.3</u>	1.3	9.5	< 0.0050
2019 August 06	89	8.27	1,600	2.5	18	<u>3.0</u>	<u>1.2</u>	1.4	11	< 0.0050
2019 September 10	33	8.17	470	1.6	11	1.0	<0.50	1.1	<5.0	<0.0050
2019 September 17	16	8.28	500	1.7	12	1.2	<0.50	1.4	<5.0	<0.0050
2019 September 24	25	8.28	710	1.9	13	1.3	0.53	1.2	<5.0	< 0.0050
2019 October 01	130	8.26	1,900	2.6	12	<u>2.2</u>	<u>1.4</u>	1.2	9.3	< 0.0050
2019 October 08	28	8.22	790	1.8	13	1.2	0.58	1.2	<5.0	<0.0050
2019 November 05	11	8.29	210	<1.0	12	1.4	<0.50	3.3	<5.0	< 0.0050
2019 December 03	22	8.17	460	<1.0	<10	<1.0	<0.50	3.3	<5.0	<0.0050
2020 January 07	20	8.30	260	0.8	<20	1.4	0.32	3.4	<10	0.007
2020 February 04	33	8.22	798	0.8	8	1.2	0.57	3.0	4.0	0.008
2020 March 17	14	8.16	350	<1.0	<10	<1.0	<0.50	2.5	<5.0	<0.0050
2020 April 21	13	8.17	410	<1.0	13	<1.0	<0.50	2.1	<5.0	< 0.0050
2020 May 19	56	8.19	230	<1.0	13	<1.0	<0.50	2.8	<5.0	<0.0050
2020 June 02	14	8.14	220	1.1	<10	1.2	<0.50	2.0	<5.0	< 0.0050
2020 July 14	44	8.13	1,720	3.3	16	<u>2.6</u>	1.04	2.8	9.0	0.006
2020 August 11	15	8.19	570	3.2	21	1.6	0.45	2.7	7.0	0.01
2020 September 01	24	8.17	621	3.8	17	1.5	0.46	2.4	7.0	0.008
2020 October 13	7	8.31	304	2.4	18	1.1	0.133	2.3	4.0	0.008
2020 November 03	5	8.09	284	1.5	60	0.9	0.23	3.1	4.0	0.01
2020 December 15	4	8.2	95	1.5	13	1.0	0.29	5.7	2.0	<0.0050
2021 January 24	13	8.17	143	0.5	11	0.7	<0.01	2.2	2.0	<0.005
2021 February 21	8	8.21	298	1.0	12	2.1	0.30	2.5	3.0	<0.005
2021 March 16	0	8.17	242	0.7	10	0.7	0.10	3.9	4.0	0.018
2021 April 24	0	0.4	243	1.2	12	1.0	0.10	3.2	2.0	<0.005
2021 May 10	35	8.25	1 470	3.1	19	2.2	1.0	2.0	9.0	0.003
2021 July 23	11	8.16	213	3.1	37	1.6	0.7	3.4	6.0	<0.01
2021 August 10	18	7.98	477	4.6	19	1.0	0.4	2.4	3.0	<0.005
2021 September 21	20	7.99	445	3.7	19	1.1	0.6	2.0	5.0	<0.005
2021 October 23	7	8.15	187	6.0	22	0.8	0.2	3.4	4.0	0.006
2021 November 20	13	8.15	155	1.2	16	1.0	0.2	2.5	3.0	<0.005
2021 December 14	14	8.15	237	0.8	29	0.9	0.3	2.5	8.0	<0.005

Table 20: 2019 to 2021 PHWWTP Operations - Results of Brand Creek surface water sampling

Notes:

1 - Ontario Ministry of the Environment and Energy Provincial Water Quality Objectives (1994)

2 - Canadian Council of Ministers of the Environment - Protection of Fresh Water Aquatic Life (Long Term)

3 - NA refers to "No Value" for selected criteria

Legend:

Bold Exceedance of PWQO criteria

Bold and Underlined Exceedance of CCME criteria

Shaded White Text Exceedance of PWQO and CCME criteria

	20	16	20	17	20	18	20	19	20	20	20	21
	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP
	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$
Observations	205	209	194	196	252	248	240	237	171	169	223	222
Geometric Mean	6	21	6	22	8	23	5	16	5	18	7	19
Arithmetic Mean	7	26	7	27	10	29	5	19	8	22	9	24
Median	6	23	7	22	9	25	4	17	6	19	8	19
98 th Percentile	27	-	25	-	20	-	18	-	20	-	20 ¹	-
Maximum	28	95	20	116	50	104	17	158	21	85	49	116
Exceedances (%)	0%	0%	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0%
N - h												

Table 21: Air quality monitoring – PH LTWMF Weather Station

Note:

¹98th Percentile for PM_{2.5} averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598th percentile is compared to the 2000 Canadian A ir Quality Standards for Fine Particulate M attervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

	2016		2017		20	2018		19	2020		2021	
	PM2.5	TSP	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP
	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)					
Observations	207	207	194	192	248	255	240	240	166	158	219	220
Geometric Mean	6	22	6	18	9	26	4	21	6	21	7	21
Arithmetic Mean	8	25	7	21	10	30	5	24	8	25	9	25
Median	7	23	7	18	9	26	4	19	6	22	8	21
98 th Percentile	28	-	24	-	19	-	18	-	19	-	20 ¹	-
Maximum	24	79	18	73	28	150	17	96	21	179	52	97
Exceedances (%)	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0.63%	0%	0%

Table 22: Air quality monitoring – PH LTWMF Northwest

Note:

¹98th Percentile for PM_{2.5} averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of 120 μ g/m 3 as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598th percentile is compared to the 2000 Canadian A ir Quality Standards for Fine Particulate M attervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

	20	16	20	17	20	18	20	19	20	20	20	21
	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP
	(µg/m ³)	(µg/m ³)	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$
Observations	205	205	196	194	259	253	240	240	136	169	217	220
Geometric Mean	6	16	6	14	9	20	5	14	6	15	7	17
Arithmetic Mean	8	19	7	16	10	23	5	17	8	18	9	21
Median	7	16	6	16	10	20	4	14	8	17	9	18
98 th Percentile	25	-	22	-	19	-	19	-	19	-	20 ¹	-
Maximum	25	85	31	53	37	162	22	85	22	73	53	84
Exceedances (%)	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0%	0%	0%
Note:												

Table 23: Air quality monitoring – PH LTWMF South

¹98th Percentile for PM_{2.5} averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of 120 μ g/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598th percentile is compared to the 2000 Canadian A ir Quality Standards for Fine Particulate M attervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

	2016		2017		2018		2019		2020		2021	
	PM2.5	TSP	PM _{2.5}	TSP	PM2.5	TSP						
	(µg/m ³)	(µg/m ³)	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$						
Observations	208	107	196	130	256	256	237	242	170	166	221	17
Geometric Mean	6	27	6	20	8	26	4	18	5	19	7	24
Arithmetic Mean	8	33	7	22	9	30	4	21	8	21	9	29
Median	7	27	6	20	9	28	3	18	6	21	8	30
98 th Percentile	-	-	27	-	18	-	17	-	19	-	20 ¹	-
Maximum	24	151	18	57	23	119	12	75	21	58	51	72
Exceedances (%)	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Note:

¹98th Percentile for PM_{2.5} averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of 120 μ g/m 3 as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 25 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate M attervalue of 30 µg/m3 and the proposed 2020 value of 27 µg/m3.

Table 25: Metals and radionuclides concentrations in total suspended particulates – PH **LTWMF** Weather Station

							v	Veather Statio	n		
					2016	2017	2018	2019	2020	20	21
		Nu	mber of San	nples Analyzed	45	38	50	51	38	4	9
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m ³	-			0.01	0.01	0.01	0.08	0.89	1.06	1.23
Silver	ng/m ³	1000			4	3	3	4	23	23	25
Arsenic	ng/m ³	300			2.0	3.5	3.7	3.8	3.1	3.2	7.8
Barium	ng/m ³	10000			10	9	9	8	5	6	14
Beryllium	ng/m ³	10			0.13	0.58	0.58	0.55	0.03	0.03	0.03
Boron	ng/m ³	120000			9	4	4	4	12	21	95
Cadmium	ng/m ³	25			0.4	1.2	1.2	1.1	0.3	0.3	0.3
Cobalt	ng/m ³	100			0.5	1.2	1.6	1.5	0.3	0.3	0.8
Copper	ng/m ³	50000			17	10	13	13	13	11	33
Molybdenum	ng/m ³	120000			0.9	1.8	1.8	1.9	2.8	3.5	14.8
Nickel	ng/m ³	200			2	2	2	2	1	3	26
Lead	ng/m ³	500			3	3	3	3	3	3	5
Antimony	ng/m ³	25000			3	6	6	6	7	7	24
Selenium	ng/m ³	10000			2	6	6	6	4	4	14
Uranium	ng/m ³	300	1.8	4070	0.8	0.3	0.3	0.5	3.0	3.0	4.9
Vanadium	ng/m ³	2000			1.2	2.9	2.9	2.8	0.4	0.4	1.0
Zinc	ng/m ³	12000			25	20	24	22	24	19	47
Lead-210	Bq/m ³	-			0.1275	0.0005	0.0009	0.0009	0.0007	0.0007	0.0032
Radium-226	Bq/m ³	-	0.000049	0.05	0.000033	0.000058	0.000060	0.000072	0.000030	0.000033	0.000058
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00011	0.00029	0.00030	0.00029	0.00006	0.00006	0.00012
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000106	0.000289	0.000289	0.000278	0.000059	0.000063	0.000115
Note: AAQC = Ambient Air	Quality	Criteria									

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) Bold values indicate an exceedance of the predicted values.

Table 26: Metals and radionuclides concentrations in total suspended particulates -**PH LTWMF Northwest**

							We	lcome Northw	est		
					2016	2017	2018	2019	2020	20	21
		Nu	mber of Sar	nples Analyzed	45	38	51	51	34	4	9
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*		-	Average			Average	Maximum
Total Mercury (Hg)	ng/m ³	-			0.01	0.01	0.01	0.08	0.94	1.03	1.20
Silver	ng/m ³	1000			2	3	3	4	22	22	24
Arsenic	ng/m ³	300			1.6	3.4	4.2	3.4	3.1	3.3	8.2
Barium	ng/m ³	10000			19	17	20	26	11	7	16
Beryllium	ng/m ³	10			0.14 0.56 0.56 0.54 0.03 0.03 10 4 3 4 11 20 0.4 1.1 1.1 1.2 0.3 0.3						0.05
Boron	ng/m ³	120000			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						104
Cadmium	ng/m ³	25			0.4	1.1	1.1	1.2	0.3	0.3	0.5
Cobalt	ng/m ³	100			0.3	1.1	2.5	1.1	0.4	0.3	0.8
Copper	ng/m ³	50000			12	9	11	12	11	10	25
Molybdenum	ng/m ³	120000			0.9	1.7	1.7	1.8	2.8	7.9	210.8
Nickel	ng/m ³	200			1	2	3	2	1	3	30
Lead	ng/m ³	500			3	3	3	2	3	2	5
Antimony	ng/m ³	25000			3	6	6	6	8	9	29
Selenium	ng/m ³	10000			2	6	6	6	4	4	15
Uranium	ng/m ³	300	1.8	4070	0.3	0.3	0.3	0.4	3.0	2.9	6.3
Vanadium	ng/m ³	2000			1.0	2.8	2.8	2.7	0.4	0.4	0.8
Zinc	ng/m ³	12000			29	22	26	26	23	21	47
Lead-210	Bq/m ³	-			0.0004	0.0006	0.0009	0.0007	0.0006	0.0007	0.0032
Radium-226	Bq/m ³	-	0.000049	0.05	0.000040	0.000056	0.000059	0.000060	0.000030	0.000031	0.000057
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00011	0.00028	0.00030	0.00027	0.00006	0.00006	0.00011
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000108	0.000281	0.000281	0.000274	0.000056	0.000062	0.000113
Note:		-	-	-							

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

Table 27: Metals and radionuclides concentrations in total suspended particulates – **PH LTWMF South**

								Welcome South	1		
					2016	2017	2018	2019	2020	20	21
			Number of S	amples Analyzed	45	38	50	51	38	4	9
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m³	-			0.01	0.01	0.01	0.08	0.87	1.04	1.20
Silver	ng/m³	1000			2	3	3	4	21	23	24
Arsenic	ng/m³	300			1.6	3.4	3.8	3.4	3.0	3.2	8.2
Barium	ng/m³	10000			8	6	7	7	5	5	13
Beryllium	ng/m³	10			0.13	0.57	0.57	0.54	0.03	0.03	0.03
Boron	ng/m³	120000			9	4	4	4	11	22	133
Cadmium	ng/m³	25			0.4	1.1	1.1	1.1	0.3	0.3	0.5
Cobalt	ng/m³	100			0.4	1.1	1.9	1.1	0.3	0.3	0.8
Copper	ng/m³	50000			21	8	11	12	12	10	30
Molybdenum	ng/m³	120000			1.0	1.7	1.7	1.9	3.4	6.7	98.7
Nickel	ng/m³	200			2	2	2	2	1	3	34
Lead	ng/m³	500			3	3	3	2	3	2	5
Antimony	ng/m³	25000			3	6	6	6	7	8	38
Selenium	ng/m ³	10000			2	6	6	6	4	4	13
Uranium	ng/m ³	300	1.8	4070	0.4	0.3	0.3	0.4	2.7	3.0	6.0
Vanadium	ng/m ³	2000			1.1	2.8	2.8	2.7	0.3	0.4	0.9
Zinc	ng/m ³	12000			29	17	20	19	19	18	45
Lead-210	Bq/m ³	-			0.0004	0.0005	0.0009	0.0008	0.0007	0.0007	0.0034
Radium-226	Bq/m ³	-	0.000049	0.05	0.000032	0.000057	0.000059	0.000060	0.000028	0.000032	0.000056
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00011	0.00028	0.00029	0.00027	0.00006	0.00006	0.00011
Thorium-232	Bq/m°	-	0.000057	0.006	0.000107	0.000283	0.000284	0.000271	0.000056	0.000062	0.000113
Note:											

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) Bold values indicate an exceedance of the predicted values.

Table 28: Metals and radionuclides concentrations in total suspended particulates -**192 Toronto Road**

								192 Toronto R	1		
					2016	2017	2018	2019	2020	20)21
		Nu	mber of Sar	nples Analyzed	45	38	50	51	38		5
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m ³	-			0.01	0.01	0.01	0.08	0.87	1.17	1.19
Silver	ng/m ³	1000			2	3	3	4	21	23	24
Arsenic	ng/m ³	300			1.7	3.5	3.4	3.4	2.8	3.3	4.6
Barium	ng/m ³	10000			7	7	9	9	6	6	7
Beryllium	ng/m ³	10			0.15	0.58	0.57	0.54	0.03	0.03	0.03
Boron	ng/m ³	120000			10	4	4	4	11	12	12
Cadmium	ng/m ³	25			0.4	1.2	1.1	1.1	0.3	0.3	0.3
Cobalt	ng/m ³	100			0.4	1.2	1.1	1.1	0.3	0.5	0.8
Copper	ng/m ³	50000			15	9	10	14	12	11	15
Molybdenum	ng/m ³	120000			0.9	1.8	1.7	1.8	2.9	4.6	10.5
Nickel	ng/m ³	200			1	2	2	2	1	20	46
Lead	ng/m ³	500			2	2	2	2	3	2	2
Antimony	ng/m ³	25000			3	6	6	6	10	22	41
Selenium	ng/m ³	10000			2	6	6	6	4	3	5
Uranium	ng/m ³	300	1.8	4070	0.7	0.3	0.3	0.4	2.8	3.3	4.1
Vanadium	ng/m ³	2000			1.3	2.9	2.8	2.7	0.3	0.4	0.6
Zinc	ng/m ³	12000			21	19	23	22	23	16	23
Lead-210	Bq/m ³	-			0.0004	0.0005	0.0008	0.0008	0.0007	0.0007	0.0022
Radium-226	Bq/m ³	-	0.000049	0.05	0.000034	0.000058	0.000057	0.000056	0.000030	0.000029	0.000030
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00011	0.00029	0.00028	0.00027	0.00006	0.00006	0.00006
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000111	0.000285	0.000283	0.000271	0.000056	0.000059	0.000059
Note:											

AAQC = Ambient Air Quality Criteria *Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) Bold values indicate an exceedance of the predicted values.

Table 29: Air quality monitoring – Pine Street Extension Consolidation Site, Cavan Candies

	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP
	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)
Observations	36	36	177	179
Geometric Mean	3	9	6	17
Arithmetic Mean	4	11	8	21
Median	3	10	8	20
98 th Percentile	10	-	20 ¹	-
Maximum	11	22	53	83
Exceedances (%)	0%	0%	0%	0%

Note:

 $^198^{th}$ Percentile for $PM_{2.5}$ averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2.5 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Table 30: Air quality monitoring – Pine Street Extension Consolidation Site, Jack Burger Sports Complex

	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP
	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)
Observations	36	35	179	177
Geometric Mean	2	10	6	16
Arithmetic Mean	3	12	9	20
Median	2	11	8	17
98 th Percentile	10	-	24 ¹	-
Maximum	13	45	52	89
Exceedances (%)	0%	0%	0%	0%

Note:

¹98th Percentile for PM_{2.5} averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of 120 μ g/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC. PM _{2.5} 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 μ g/m³ and the proposed 2020 value of 27 μ g/m³.

Table 31: Air quality monitoring – Pine Street Extension Consolidation Site, Port Hope High School

	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP
	$(\mu g/m^3)$	(µg/m ³)	(µg/m ³)	(µg/m ³)
Observations	36	34	177	172
Geometric Mean	3	9	7	15
Arithmetic Mean	4	11	9	19
Median	2	9	8	16
98 th Percentile	12	-	23 ¹	-
Maximum	13	26	51	86
Exceedances (%)	0%	0%	0%	0%

Note:

 $^198^{th}$ Percentile for $\text{PM}_{2.5}$ averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

						Cavan Candies	
					2020	20	21
		Nu	mber of San	nples Analyzed	9	4	.3
	1			Health Canada			
				Reference	Average	Average	Maximum
Analysis	Unit	AAQC	Predicted*	Levels*	-	-	
Total Mercury (Hg)	ng/m ³	-			1.14	0.96	1.20
Silver	ng/m ³	1000			23	22	24
Arsenic	ng/m ³	300			2.8	2.9	5.4
Barium	ng/m ³	10000			4	6	21
Beryllium	ng/m ³	10			0.03	0.03	0.03
Boron	ng/m ³	120000			11	25	107
Cadmium	ng/m ³	25			0.3	0.3	0.4
Cobalt	ng/m ³	100			0.3	0.3	0.9
Copper	ng/m ³	50000			4	9	24
Molybdenum	ng/m ³	120000			4.1	3.7	14.5
Nickel	ng/m ³	200			1	2	21
Lead	ng/m ³	500			3	3	10
Antimony	ng/m ³	25000			11	7	17
Selenium	ng/m ³	10000			3	3	12
Uranium	ng/m ³	300	1.8	4070	3.0	2.9	6.1
Vanadium	ng/m ³	2000			0.3	0.3	0.7
Zinc	ng/m ³	12000			12	19	49
Lead-210	Bq/m ³	-			0.0008	0.0007	0.0032
Radium-226	Bq/m ³	-	0.000049	0.05	0.000028	0.000032	0.000057
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00006	0.00007	0.00017
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000057	0.000062	0.000114
Note:							

Table 32: Metals and radionuclides concentrations in total suspended particulates – Pine Street Extension Consolidation Site, Cavan Candies

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) **Bold values** indicate an exceedance of the predicted values.

						Jack Burger	Sports Comple	x
					2018	2020	20	21
		Nu	m ber of Sam	nples Analyzed	15	9	4	3
				Health Canada				
				Reference	Ave	rage	Average	Maximum
Analysis	Unit	AAQC	Predicted*	Levels*				
Total Mercury (Hg)	ng/m ³	-			0.01	1.14	0.97	1.19
Silver	ng/m ³	1000			3	23	22	24
Arsenic	ng/m ³	300			3.3	2.8	3.0	8.7
Barium	ng/m ³	10000			5	3	5	15
Beryllium	ng/m ³	10			0.55	0.03	0.03	0.03
Boron	ng/m ³	120000			3	11	26	130
Cadmium	ng/m ³	25			1.1	0.3	0.3	0.3
Cobalt	ng/m ³	100			1.1	0.3	0.3	0.8
Copper	ng/m ³	50000			5	3	9	19
Molybdenum	ng/m ³	120000			1.7	2.9	3.1	7.9
Nickel	ng/m ³	200			2	1	2	17
Lead	ng/m ³	500			2	3	2	6
Antimony	ng/m ³	25000			6	11	7	35
Selenium	ng/m ³	10000			6	3	3	12
Uranium	ng/m ³	300	1.8	4070	0.3	2.8	3.0	4.9
Vanadium	ng/m ³	2000			2.8	0.3	0.3	1.0
Zinc	ng/m ³	12000			15	12	18	43
Lead-210	Bq/m ³	-			0.0008	0.0009	0.0007	0.0034
Radium-226	Bq/m ³	-	0.000049	0.05	0.000055	0.000028	0.000032	0.000057
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00028	0.00006	0.00006	0.00011
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000277	0.000057	0.000063	0.000114
Note:								

Table 33: Metals and radionuclides concentrations in total suspended particulates – Pine Street Extension Consolidation Site, Jack Burger Sports Complex

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

						Port Hope	High School	
					2018	2020	20	21
		Nu	mber of San	nples Analyzed	20	9	4	3
				Health Canada				
				Reference	Ave	rage	Average	Maximum
Analysis	Unit	AAQC	Predicted*	Levels*				
Total Mercury (Hg)	ng/m ³	-			0.01	1.14	0.97	1.20
Silver	ng/m ³	1000			3	23	22	24
Arsenic	ng/m ³	300			3.4	2.9	2.9	6.5
Barium	ng/m ³	10000			6	3	4	13
Beryllium	ng/m ³	10			0.56	0.03	0.03	0.03
Boron	ng/m ³	120000			3	11	22	90
Cadmium	ng/m ³	25			1.1	0.3	0.3	0.5
Cobalt	ng/m ³	100			1.1	0.3	0.4	0.6
Copper	ng/m ³	50000			6	9	9	23
Molybdenum	ng/m ³	120000			1.7	2.9	11.3	226.1
Nickel	ng/m ³	200			2	1	2	13
Lead	ng/m ³	500			2	3	3	7
Antimony	ng/m ³	25000			6	10	7	28
Selenium	ng/m ³	10000			6	3	3	12
Uranium	ng/m ³	300	1.8	4070	0.3	3.0	2.9	4.4
Vanadium	ng/m ³	2000			2.8	0.3	0.3	0.6
Zinc	ng/m ³	12000			16	14	17	38
Lead-210	Bq/m ³	-			0.0009	0.0007	0.0007	0.0030
Radium-226	Bq/m ³	-	0.000049	0.05	0.000056	0.000029	0.000033	0.000109
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00028	0.00006	0.00006	0.00011
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000282	0.000057	0.000063	0.000114
Note:								

Table 34: Metals and radionuclides concentrations in total suspended particulates – Pine Street Extension Consolidation Site, Port Hope High School

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

			2021	-06-24	2021-06-28 ¹	2021	-07-14 ¹	2021	07-20	2021	-07-26
	Monito	oring Location	HCP NW	HCP SE	No Sample	HCP NW	No Sample	HCP NW	West	HCP NW	NW of
			Corner	Corner	-	Corner	-	Corner	Harbour	Corner	Sediment
Wind Dire	ction at time o	fDeployment	SE	SE		SW	SW	NW	NW	w	w
Analysis		Criteria									
MS Volatiles (ONMOEAPH) Benzene	ua/m ³	(AAQC) 2.3	0.256	0.164	r	0.433	r	1.35	1.37	0.787	0.673
Ethylbenzene	µg/m ³	1000	0.246	< 0.217		< 0.217		< 0.217	0.228	0.218	< 0.217
Toluene	µg/m ³	2000	0.631	0.423		1.68		1.43	1.66	1.43	1.23
m,p-Xylene	µg/m³	730	0.814	< 0.434		0.606		0.545	0.597	0.668	0.578
Naphthalene	ua/m ³	22.5	< 0.524	< 0.524		0.237		< 0.524	< 0.524	< 0.524	< 0.524
PHC F1 (C6-C10)	µg/m ³					-					
PHC F1 (C6-C10) - BTEX	µg/m³		24.1	28.7		45.9		36.8	45.2	48.2	80.7
PHC F2 (>C10-C16)	µg/m³		13.2	39.9		17.4		16.1	24.4	15.2	29.8
Alinhatic >C5_C6	µg/m²		< 50	< 50		< 50		< 50	< 50	< 50	
Aliphatics C6-C8 (Unadj.)	µg/m ³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	7.5
Aliphatics >C8-C10 (Unadj.)	µg/m ³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	7.1
Aliphatics >C10-C12 (Unadj.)	µg/m ³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	9.2
Aliphatic >C12-C16 Aromatic >C7-C8 (TEX Excluded)	µg/m²		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatics >C8-C10 (Unadj.)	µg/m ³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatics >C10-C12 (Unadj.)	µg/m ³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatic >C12-C16	µg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
MS Volatiles (TO-15)	µg/m3	44000	0.04	0.77		5.50		44.0	40.7	0.05	7.04
1.3-Butadiene	µg/m ua/m ³	2	< 1.11	<u>3.77</u> < 1.11	-	5.50		11.8	13.7	5.35	/.64
Benzene	µg/m ³	2.3	0.256	0.164		0.433		1.35	1.370	0.787	0.673
Bromodichloromethane	µg/m³		< 1.34	< 1.34		< 1.34		< 1.34	< 1.34	< 1.34	< 1.34
Bromoform	µg/m ³	55	< 1.03	< 1.03		< 1.03		< 1.03	< 1.03	< 1.03	< 1.03
Bromoethane	µg/m²		< 0.194	< 0.194		< 0.194		< 0.194	< 0.194	< 0.194	< 0.194
Benzvl Chloride	ua/m ³		< 2.59	< 2.59		< 2.59		< 2.59	< 2.59	< 2.59	< 2.59
Carbon disulfide	µg/m ³		< 1.56	< 1.56		< 1.56		< 1.56	< 1.56	< 1.56	< 1.56
Chlorobenzene	µg/m³		< 0.230	< 0.230		< 0.230		< 0.230	< 0.230	< 0.230	< 0.230
Chloroethane	µg/m³		< 7.92	< 7.92		< 0.792		< 0.792	< 0.792	< 0.792	< 0.792
Chloroform	µg/m ³	1	< 0.195	< 0.195		0.209		0.221	0.250	0.929	0.200
3-Chloropropene	µg/m ua/m ³	5600	1.66	1.69		0.919		1.03	1.08	0.983	0.939
2-Chlorotoluene	ua/m ³										
Carbon tetrachloride	µg/m ³	2.4	0.805	0.826		0.749		0.911	0.885	0.685	0.664
Cyclohexane	µg/m³	6100	0.69	0.69		< 1		< 0.688	< 0.688	< 0.688	< 0.688
1,1-Dichloroethane	µg/m ³	165	< 0.202	< 0.202		< 0.202		< 0.202	< 0.202	< 0.202	< 0.202
1,1-Dicnioroethylene 1,2-Dibromoethane (EDB)	µg/m ⁻	3	< 0.198	< 0.198		< 0.198		< 0.0768	< 0.198	< 0.198	< 0.198
1,2-Dichloroethane	µg/m ³		0.0785	0.073		0.0675		0.0842	0.088	0.0523	0.0518
1,2-Dichloropropane	µg/m ³		< 0.231	< 0.231		< 0.231		< 0.231	< 0.231	< 0.231	< 0.231
1,4-Dioxane	µg/m³		< 3.60	< 3.60		< 3.60		< 3.60	< 3.60	< 3.60	< 3.60
Dichlorodifluoromethane	µg/m ³		2.40	2.25		2.51		3.08	3.16	2.62	2.37
trans-1 2-Dichloroethylene	µg/m ⁻	105	< 1.70	< 1.70		< 1.70		< 1.70	< 1.70	< 1.70	< 1.70
cis-1.2-Dichloroethylene	µg/m µa/m ³	105	< 0.390	< 0.390		< 0.390		< 0.390	< 0.390	1.11	< 0.198
cis-1,3-Dichloropropene	µg/m ³		< 0.227	< 0.227		< 0.227		< 0.227	< 0.227	< 0.227	< 0.227
m-Dichlorobenzene	µg/m³										
o-Dichlorobenzene	µg/m³	30500	< 0.301	< 0.301		< 0.301		< 0.301	< 0.301	< 0.301	< 0.301
trans-1 3-Dichloropropene	µg/m ua/m ³	95	< 0.301	< 0.227		< 0.227		< 0.227	< 0.227	< 0.301	< 0.301
Ethanol	µg/m ³		3.96	5.10		8.44		7.00	35.2	4.68	37.4
Ethylbenzene	µg/m³	1000	0.246	< 0.217		< 0.217		< 0.217	0.228	0.218	< 0.217
Ethyl Acetate	µg/m³		< 3.60	< 3.60		< 3.60		< 3.60	8.35	< 3.60	< 3.60
4-Ethyltoluene	µg/m²		< 2.46	< 2.46		< 2.46		< 2.46	< 2.46	< 2.46	< 2.46
Freon 113	µg/m µa/m³	700000				-					
Heptane	µg/m ³	11000	< 1.23	< 1.23		< 1.23		< 1.23	< 1.23	< 1.23	< 1.23
Hexachlorobutadiene	µg/m ³		< 0.0501	< 0.0501		< 0.0501		< 0.0501	< 0.0501	< 0.0501	< 0.0501
Hexane	µg/m ³	7500	0.430	< 0.352		0.588		< 1.06	< 1.76	0.646	0.512
2-nexalione	µg/m ⁻	7300	< 4.10	< 4.10		< 4.10		< 4.10	< 4.10	< 4.10	< 4.10
Methylene chloride	ua/m ³	220	0.657	0.354		0 704		0 670	1 44	0.682	0,563
Methyl ethyl ketone	µg/m ³	1000	1.30	1.42		1.26		2.21	3.33	1.12	2.09
Methyl Isobutyl Ketone	µg/m ³	1200	< 0.410	< 0.41		< 0.410		< 0.410	< 0.410	< 0.410	< 0.410
Methyl Tert Butyl Ether	µg/m ³	7000	< 0.361	< 0.361		< 0.361		< 0.361	< 0.361	< 0.361	< 0.361
Nanhthalene	µg/m	22.5	< 0.524	< 0.524		0.675		< 0.524	< 0.524	< 0.524	< 0.524
Propylene	µg/m ³	4000						- 0.024	- 0.024		
Styrene	µg/m ³	400	< 0.213	< 0.213		< 0.213		< 0.213	< 0.213	< 0.213	< 0.213
1,1,1-Trichloroethane	µg/m³	115000	< 0.273	< 0.273		< 0.273		< 0.273	< 0.273	< 0.273	< 0.273
1,1,1,2-Tetrachloroethane	µg/m ³		< 0.144	< 0.144		< 0.144		< 0.144	< 0.144	< 0.144	< 0.144
1.1.2-Trichloroethane	ua/m ³		< 0.0165	< 0.0165		< 0.0165		< 0.0165	< 0.0165	< 0.0165	< 0.0165
1,2,4-Trichlorobenzene	µg/m ³	400	< 0.742	< 0.742		< 0.742		< 0.742	< 0.742	< 0.742	< 0.742
1,2,4-Trimethylbenzene	µg/m³	220	< 2.45	< 2.45		< 2.45		< 2.45	< 2.45	< 2.45	< 2.45
1,3,5-Trimethylbenzene	µg/m³	220	< 2.45	< 2.45		< 2.45		< 2.45	< 2.45	< 2.45	< 2.45
z,z,4- i rimetnyipentane	µg/m ⁻		< 0.934	< 0.934		< 0.934		< 0.934	< 0.934	< 0.934	< 0.934
Tetrachloroethylene	µg/m µa/m³		< 0.339	< 0.339		< 0.339		< 0.339	< 0.339	3.07	< 0.339
Tetrahydrofuran	µg/m ³	93000	< 1.18	< 1.18		< 1.18		< 1.18	< 1.18	< 1.18	< 1.18
Toluene	µg/m ³	2000	0.631	0.423		1.68		1.43	1.66	1.43	1.23
Trichloroethylene	µg/m ³	12	< 0.269	< 0.269		< 0.269		< 0.269	< 0.269	2.13	< 0.269
Trichlorofluoromethane	µg/m³	6000	1.23	< 1.12		1.62		2.12	2.25	1.69	1.67
Vinyi chloride	µg/m ⁻	1	< 0.0511	< 0.0511		< 0.0511		< 0.0511	< 0.0511	< 0.0511	< 0.0511
m.p-Xylene	ua/m ³	730	0.814	< 0.434		0.606		0.545	0.597	0.668	0.578
o-Xylene	µg/m ³	730	0.238	< 0.217		0.237		< 0.217	0.225	0.276	0.222
Xylenes (total)	µg/m³	730	1.05	< 0.651		0.843		< 0.651	0.82	0.944	0.800
AAQC = Ambient Air Quality Criteria, Ontari	o Ministry of the	Environment, N	fay 2020								
Bold values indicate an exceedance of a AA	AQC value										

Table 35: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (June and July 2021)

--- indicates parameter not analyzed by the contract lab ND = Not Detected ¹ No Sample due to equipment issues

			2021	-08-03	2021-	-08-11 ²	2021-	09-15	2021-	09-20 ¹	2021-	09-27
	Monito	ring Location	HCP NW	NW of	HCP NW	NW of	HCP NW	West Side	No Sam ple	West Side	HCP NW	West Side
		-	Corner	Sediment	Corner	Sediment	Corner	of Harbour		of Site -	Corner	of Harbour
Wind Direc	ction at time o	f Deployment	SW	SW	SW	SW	NW	NW	E	E	SW	SW
Analysis		Criteria										
MS Volatiles (ONMOE APH)	Units	(AAQC)										
Benzene	µg/m³	2.3	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64		< 0.64	< 0.64	< 0.64
Ethylbenzene	µg/m³	1000	1	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Toluene	µg/m³	2000	1.6	0.75	< 0.75	0.87	1.2	1.1		< 0.75	< 0.75	< 0.75
m,p-Xylene	µg/m²	730	7.8	< 0.87	< 0.87	< 0.87	1.0	1.3		< 0.87	< 0.87	< 0.87
Nanhthalene	ug/m ³	22.5	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 10
PHC F1 (C6-C10)	ua/m ³		52.4	20	21	29	21	407		28	24	12
PHC F1 (C6-C10) - BTEX	µg/m ³		41.8	19	20	26	19	403		27	23	11
PHC F2 (>C10-C16)	µg/m ³		13	< 3.5	9.3	13	15	322		11	7.6	< 3.5
PHC F2 (>C10-C16) - Nap	µg/m³		13	< 3.5	9.3	13	15	321		11	7.6	< 3.5
Aliphatic >C5-C6	µg/m ³											
Aliphatics C6-C8 (Unadj.)	µg/m³		11	15	9.2	9.2	< 3.5	< 3.5		8.8	6.3	6.0
Aliphatics >C8-C10 (Unadj.)	µg/m²		42	4.4	15.0	24	26	561		24	22	6.3
Aliphatic >C12-C12 (Unadj.)	µg/m ua/m ³		13	< 3.5	9.5	13	15	314		9.9	/.0	< 3.5
Aromatic >C7-C8 (TEX Excluded)	ua/m ³											
Aromatics >C8-C10 (Unadj.)	µg/m ³		< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3		< 2.3	< 2.3	< 2.3
Aromatics >C10-C12 (Unadj.)	µg/m ³		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	6.9		< 2.0	< 2.0	< 2.0
Aromatic >C12-C16	µg/m³							-				
MS Volatiles (TO-15)	µg/m3											
Acetone (2-Propanone)	µg/m ³	11880	57.2	32.8	13	9	5.7	7.6		11	4.8	5.2
1,3-Butadiene	µg/m°	2	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44		< 0.44	< 0.44	< 0.44
Bromodichloromethane	µg/m²	2.3	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64		< 0.64	< 0.64	< 0.64
Bromoform	µg/m ³	55	< 21	< 21	< 21	< 0.1	< 0.1	< 21		< 0.1	< 0.1	< 21
Bromomethane	µg/m ug/m ³	55	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78		< 0.78	< 0.78	< 0.78
Bromoethene	ua/m ³		< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Benzyl Chloride	µg/m ³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Carbon disulfide	µg/m ³		< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62		< 0.62	< 0.62	< 0.62
Chlorobenzene	µg/m ³		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92		< 0.92	< 0.92	< 0.92
Chloroethane	µg/m³		< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53		< 0.53	< 0.53	< 0.53
Chloroform	µg/m ³	1	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
Chloromethane	µg/m³	5600	0.93	0.87	1.2	1.1	0.91	1.0		1.1	1.0	0.87
3-Chloropropene	µg/m³		< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63		< 0.63	< 0.63	< 0.63
2-Chlorotoluene	µg/m³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Carbon tetrachloride	µg/m³	2.4	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3		< 1.3	< 1.3	< 1.3
Lycionexane	µg/m ⁻	6100	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69		< 0.69	< 0.69	< 0.69
1.1-Dichloroethylene	µg/m µg/m ³	105	< 0.01	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81		< 0.81	< 0.81	< 0.81
1.2-Dibromoethane (EDB)	ug/m ³	3	< 1.5	< 15	< 1.5	< 15	< 1.5	< 1.5		< 1.5	< 1.5	< 15
1.2-Dichloroethane	ua/m ³		< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81		< 0.81	< 0.81	< 0.81
1,2-Dichloropropane	µg/m³		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92		< 0.92	< 0.92	< 0.92
1,4-Dioxane	µg/m³		< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72		< 0.72	< 0.72	< 0.72
Dichlorodifluoromethane	µg/m³		2.0	1.9	2.8	2.7	2.6	2.4		2.5	2.5	2.6
Dibromochloromethane	µg/m³		< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7		< 1.7	< 1.7	< 1.7
trans-1,2-Dichloroethylene	µg/m ³	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79		< 0.79	< 0.79	< 0.79
cis-1,2-Dichloroethylene	µg/m²	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79		< 0.79	< 0.79	< 0.79
cis-1,3-Dichloropropene	µg/m ⁻		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91		< 0.91	< 0.91	< 0.91
o.Dichlorobenzene	µg/m µg/m ³	30500	< 1.2	< 1.2 c 1.2	< 1.2 c 1.2	< 1.2	< 1.2 c 1.2	< 1.2 c 1.2		< 1.2 c 1.2	< 1.2 c 1.2	< 1.2
p-Dichlorobenzene	ug/m ³	95	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2
trans-1,3-Dichloropropene	µg/m ³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91		< 0.91	< 0.91	< 0.91
Ethanol	µg/m ³		9.4	6.6	6.0	4.0	5.8	4.7		5.1	6.0	6.2
Ethylbenzene	µg/m³	1000	1.0	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Ethyl Acetate	µg/m³		2.6	2.4	2.5	3.0	10	3.0		2.5	< 0.72	< 0.72
4-Ethyltoluene	µg/m³		< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
Freon 113	µg/m²		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
Freon 114	µg/m²	700000	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4
Heptane	µg/m²	11000	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Hexane	µg/m ³	7500	< 0.70	\$ 2.1	< 2.1 0.70	< 0.70	< 0.70	< 0.70		< 0.70	< 0.70	< 2.1 0.78
2-Hexanone	ua/m ³		< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Isopropyl Alcohol	µg/m ³	7300	0.93	0.84	2.1	0.84	1.6	1.4		< 0.49	0.64	0.57
Methylene chloride	µg/m ³	220	4.5	0.73	12	1.1	4.5	0.8		< 0.69	3.8	15
Methyl ethyl ketone	µg/m³	1000	1.6	0.77	2.4	1.5	< 0.59	0.65		1.4	< 0.59	< 0.59
Methyl Isobutyl Ketone	µg/m ³	1200	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Methyl Tert Butyl Ether	µg/m³	7000	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72		< 0.72	< 0.72	< 0.72
Metnyimethacrylate	µg/m²	aa -	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Naphthalene	µg/m²	22.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.0		< 1.0	< 1.0	< 1.0
Propylene	µg/m	4000	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00		< 0.00	< 0.00	< 0.00
1.1.1.Trichloroethane	µg/m µg/m ³	115000	< 1.1	< 1.1	< 0.85	< 0.85	< 0.85	< 0.65		< 1.1	< 0.85	< 0.85
1 1 1 2 Tetrachloroethane	ug/m ³	113000	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1		< 1.1	< 1.1	< 1.1
1.1.2.2-Tetrachloroethane	ua/m ³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4
1,1,2-Trichloroethane	µg/m³		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1		< 1.1	< 1.1	< 1.1
1,2,4-Trichlorobenzene	µg/m³	400	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
1,2,4-Trimethylbenzene	µg/m³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
1,3,5-Trimethylbenzene	µg/m ³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
2,2,4-Trimethylpentane	µg/m³		< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93		< 0.93	< 0.93	< 0.93
Tertiary Butyl Alcohol	µg/m°		0.82	< 0.61	< 0.61	0.70	< 0.61	< 0.61		< 0.61	< 0.61	< 0.61
Tetrahudrafuran	µg/m²	02000	3.5	2.5	< 0.27	0.37	< 0.27	< 0.27		< 0.27	< 0.27	< 0.27
Teluene	µg/m ⁻	93000	< 0.59	< 0.59 0.07	0.65	< 0.59 0.70	< 0.59	< 0.59		< 0.59	< 0.59	< 0.59
Trichloroethylene	µg/m µg/m ³	2000	1.5	< 0.21	< 0.75	< 0.79	1.1	< 0.21		< 0.75	20	< 0.75
Trichlorofluoromethane	ug/m ³	6000	1.4	12	24	16	22	12		12	1.0	1.8
Vinvl chloride	ua/m ³	1	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51		< 0.51	< 0.51	< 0.51
Vinyl Acetate	µg/m ³		< 0.70	< 0.70	2.0	1.1	< 0.70	0.77		< 0.70	< 0.70	< 0.70
m,p-Xylene	µg/m³	730	4.0	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
o-Xylene	µg/m³	730	0.96	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Xylenes (total)	µg/m³	730	4.8	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
AAQC = Ambient Air Quality Criteria, Ontario	o Ministry of the	Environment										

Table 36: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (August and September 2021)

Bold values indicate an exceedance of a AAQC value -- indicates parameter not analyzed by the contract lab ¹ No Sample due to equipment issues ² Dredging activities haulted mid-morning due to w eather

			2021	10-06	2021-	10-12	2021-	10-18	2021-	10-28
	Monito	oring Location	HCP NW	West Side	HCP NW	NW of	HCP NW	West Side	HCP NW	East of
			Corner	of Site - HCP	Corner	Sediment	Corner	of Harbour	Corner	Dredging
Wind Dire	ction at time o	of Deployment	NE	E	SE	SE	NW	NW	E	E
Analysis		Criteria								
MS Volatiles (ONMOE APH) Benzene	Units	(AAQC)	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	× 0.64	< 0.64
Ethylbenzene	ug/m ³	1000	< 0.87	0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Toluene	μg/m ³	2000	1.1	1.3	1.7	< 0.75	2.6	< 0.75	< 0.75	1.4
m,p-Xylene	µg/m³	730	1.2	5.6	1.0	1.0	< 0.87	< 0.87	< 0.87	< 0.87
o-Xylene	µg/m³	730	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Naphthalene	µg/m ³	22.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PHC F1 (C6-C10)	µg/m³		15	53.1	26	78	14	9.4	12	23
PHC F1 (C6-C10) - BTEX	µg/m³		12	45.2	23	75.4	11	8.3	10	20
PHC F2 (>C10-C16)	µg/m²		< 3.5	< 3.5	16	35	< 3.5	< 3.5	13	10
Aliphotic >CE CE	µg/m		< 3.5	< 3.5	10	35	< 3.5	< 3.5	13	10
Aliphatic 20-00	ug/m ³		6.0	6.7	6.0	9.9	6.0	4.2	< 35	7.0
Aliphatics >C8-C10 (Unadi.)	ua/m ³		8.4	53	23	90.2	5.8	5.2	10	18
Aliphatics >C10-C12 (Unadj.)	µg/m ³		< 3.5	< 3.5	16	34	< 3.5	< 3.5	10	9.3
Aliphatic >C12-C16	µg/m³									
Aromatic >C7-C8 (TEX Excluded)	µg/m³									
Aromatics >C8-C10 (Unadj.)	µg/m³		< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Aromatics >C10-C12 (Unadj.)	µg/m²		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic >C12-C16	µg/m²									
A cetone (2 Propanone)	µg/ma ug/m ³	11000	6.0	10	14	22.7	26	7.1	7.0	200
1 3-Butadiene	ug/m ³	2	< 0.4	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44
Benzene	ug/m ³	23	< 0.64	< 0.64	< 0.64	< 0.64	< 0.44	< 0.64	< 0.44	< 0.44
Bromodichloromethane	µg/m ³		< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Bromoform	µg/m ³	55	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1
Bromomethane	µg/m³		< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
Bromoethene	µg/m ³		< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Benzyl Chloride	µg/m³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.0	1.0
Carbon disulfide	µg/m³		< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62
Chlorobenzene	µg/m³		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92
Chloroform	µg/m ²		< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53
Chloromethane	µg/m ua/m ³	1 5600	 0.98 0.00 	 0.98 1.1 	~ U.98 1.1	< U.98 1.1	< 0.98 0.85	~ U.98	× 0.98	 0.98 1.3
3-Chloropropene	µg/m µg/m ³	5600	0.99	1.1	1.1	1.1	0.63	1.1	1.0	1.3
2-Chlorotoluene	ug/m ³		< 1.0	< 1.0	< 1.05	< 1.05	< 1.0	< 1.05	< 1.0	< 1.0
Carbon tetrachloride	ug/m ³	2.4	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Cvclohexane	µg/m ³	6100	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69
1,1-Dichloroethane	µg/m ³	165	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
1,1-Dichloroethylene	µg/m ³		< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,2-Dibromoethane (EDB)	µg/m³	3	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
1,2-Dichloroethane	µg/m ³		< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
1,2-Dichloropropane	µg/m°		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92
1,4-Dioxane	µg/m²		< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72
Discrementarie	µg/m		2.0	2.1	1.9	2.0	2.0	Z.1	2.0	2.0
trans_1 2-Dichloroethylene	µg/m ³	105	< 0.79	< 0.79	< 0.70	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
cis_1 2-Dichloroethylene	ug/m ³	105	< 0.79	< 0.79	< 0.79	< 0.79	0.79	< 0.79	< 0.79	< 0.79
cis-1.3-Dichloropropene	ua/m ³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91
m-Dichlorobenzene	µg/m ³		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
o-Dichlorobenzene	µg/m³	30500	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
p-Dichlorobenzene	µg/m³	95	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
trans-1,3-Dichloropropene	µg/m³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91
Ethanol	µg/m°		11	11	5.1	4.9	3.6	3.2	8.5	12
Ethylbenzene	µg/m°	1000	< 0.87	0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Ethyl Acetate	µg/m²		1.2	1.2	6.1	5.0	0.76	1.1	7.6	4.0
4-Enviroldene	µg/m		< 0.96	< 1.5	< 0.96	< 0.96	< 1.5	< 0.96	< 0.96	< 0.96
Freen 114	ug/m ³	700000	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Heptane	ua/m ³	11000	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Hexachlorobutadiene	ua/m ³		< 21	< 21	< 21	< 21	< 21	< 21	< 21	< 21
Hexane	µg/m ³	7500	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	0.78
2-Hexanone	µg/m³		< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Isopropyl Alcohol	µg/m ³	7300	2.1	2.5	0.88	1.1	< 0.49	< 0.49	0.71	1.5
Methylene chloride	µg/m ³	220	< 0.69	1.6	< 0.69	< 0.69	1.1	< 0.69	0.94	< 0.69
Methyl ethyl ketone	µg/m³	1000	0.62	0.86	0.97	3.5	< 0.59	< 0.59	< 0.59	1.2
Methyl Tert Butyl Ether	µg/m ⁻	1200	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Methylmethacrylate	ug/m ³	7000	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72
Naphthalene	ua/m ³	22.5	< 10	< 10	< 10	12	< 10	< 10	< 10	< 10
Propylene	ua/m ³	4000	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86
Styrene	µg/m ³	400	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85
1,1,1-Trichloroethane	µg/m ³	115000	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
1,1,1,2-Tetrachloroethane	µg/m³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
1,1,2,2-Tetrachloroethane	µg/m ³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
1,1,2- Irichloroethane	µg/m²		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
1,2,4-IFICNIOFODENZENE	µg/m ⁻	400	< 1.5 < 0.09	< 1.5 < 0.09	< 1.5	< 1.5 < 0.09	< 1.5 c 0.09	< 1.5	< 1.5 c 0.09	< 0.00
1.3.5-Trimethylbenzenc	µg/m µg/m ³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	× 0.98	< 0.98
2.2.4.Trimethylpentane	µg/m ua/m ³	220	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Zertiary Butyl Alcohol	µg/m ua/m ³		< 0.93	< 0.95	0.93	< 0.93	< 0.95	< 0.95	< 0.93	< 0.93
Tetrachloroethylene	ug/m ³		0.01	< 0.01	< 0.91	1 9	< 0.01	< 0.01	< 0.01	10
Tetrahydrofuran	µg/m ³	93000	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	1.9
Toluene	µg/m ³	2000	1.1	1.3	1.8	0.75	2.9	< 0.75	< 0.75	1.4
Trichloroethylene	µg/m ³	12	< 0.21	0.86	< 0.21	0.64	< 0.21	< 0.21	< 0.21	< 0.21
Trichlorofluoromethane	µg/m³	6000	1.2	1.9	1.2	1.2	1.4	< 1.1	< 1.1	< 1.1
Vinyl chloride	µg/m ³	1	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
Vinyl Acetate	µg/m ³		< 0.70	0.95	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	0.77
m,p-Xylene	µg/m³	730	< 0.87	2.6	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
o-Xylene	µg/m³	730	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Xylenes (total)	µg/m°	730	< 0.87	2.6	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
AAQC = Ambient Air Quality Criteria, Ontar	o Ministry of the	e Environment								

Table 37: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (October 2021)

Bold values indicate an exceedance of a AAQC value -- indicates parameter not analyzed by the contract lab

				2021	-11-0			2021-	11-08		2021-	11-15		2021	-11-23	202	1-11-29
	Monito	oring Location	HC	PNW	E	ast of		HCP NW	SE of		HCP NW	West Side	F	ICP NW	SE of	HCP NW	West Side
			Co	orner	Dr	edging		Corner	Dredging		Corner	of Site - HCF) (Corner	Dredging	Corner	of Harbour
Wind Direc	ction at time o	f Deployment		w		W		S	S	1	NW	NW		NW	NW	w	w
Analysis	Unito	Criteria															
Benzene	µg/m ³	2.3	<	0.64	<	0.64	<	0.64	0.64	<	0.64	< 0.64	1	0.64	< 0.64	0.73	0.73
Ethylbenzene	µg/m ³	1000	<	0.87	<	0.87	<	0.87	< 0.87	<	0.87	< 0.87	<	0.87	< 0.87	< 0.87	< 0.87
Toluene	µg/m ³	2000	<	0.75		1.5		1.2	1.6	<	0.75	< 0.75		1.2	0.79	2.2	1.9
m,p-Xylene	µg/m³	730	<	0.87	<	0.87		1.1	1.8	<	0.87	< 0.87		1.1	0.91	2.1	2.1
o-Xylene	µg/m²	730	<	0.87	<	0.87	<	0.87	< 0.87	<	0.87	< 0.87	<	0.87	< 0.87	< 0.87	< 0.87
Naphthalene	µg/m ⁻	22.5	<	1.0	<	1.0	<	1.0	< 1.0	<	1.0	< 1.0	<	1.0	< 1.0	< 1.0	< 1.0
PHC F1 (06-010) - BTEX	µg/m µg/m ³			6.4	-	9.4	+	9.4	10	+	6.0	18	+	7.2	9.4	7.0	64
PHC F2 (>C10-C16)	ua/m ³			4.7	<	3.5	<	3.5	14	<	3.5	9.3	<	3.5	4.8	< 3.5	< 3.5
PHC F2 (>C10-C16) - Nap	µg/m ³			4.7	<	3.5	<	3.5	13	<	3.5	9.3	<	3.5	4.8	< 3.5	< 3.5
Aliphatic >C5-C6	µg/m ³																
Aliphatics C6-C8 (Unadj.)	µg/m³		<	3.5		5.3		4.9	5.6		3.5	< 3.5		4.9	6.3	7.4	6.0
Aliphatics >C8-C10 (Unadj.)	µg/m ³			3.5		5.2		5.8	10	<	3.1	21.0	<	3.1	3.4	< 3.1	< 3.1
Aliphatics >C10-C12 (Unadj.)	µg/m²			4.7	<	3.5	<	3.5	13	<	3.5	9.3	<	3.5	4.8	< 3.5	< 3.5
Aliphatic >C12-C16	µg/m ⁻				-		+			+			-				
Aromatics >C8-C10 (Inadi)	µg/m µg/m ³		<	2.3	<	2.3	<	2.3	< 23	<	2.3	< 23	<	2.3	< 23	< 23	< 23
Aromatics >C0-C12 (Unadi.)	ua/m ³		<	2.0	<	2.0	<	2.0	< 2.0	<	2.0	< 2.0	<	2.0	< 2.0	< 2.0	< 2.0
Aromatic >C12-C16	µg/m ³																
MS Volatiles (TO-15)	µg/m3																
Acetone (2-Propanone)	µg/m ³	11880		4.0		7.6		5.0	4.8	T	2.6	2.9		3.3	2.2	4.5	4.0
1,3-Butadiene	µg/m³	2	<	0.44	<	0.44	<	0.44	< 0.44	<	0.44	< 0.44	<	0.44	< 0.44	< 0.44	< 0.44
Benzene	µg/m³	2.3	<	0.64	<	0.64	<	0.64	0.70	<	0.64	< 0.64	<	0.64	< 0.64	0.73	0.67
Bromodichloromethane	µg/m²		<	1.3	<	1.3	<	1.3	< 1.3	<	1.3	< 1.3	<	1.3	< 1.3	< 1.3	< 1.3
Bromotorm	µg/m²	55	<	2.1	<	2.1	<	2.1	< 2.1	<	2.1	< 2.1	<	2.1	< 2.1	< 2.1	< 2.1
Bromoethene	µg/m µg/m³		<	0.78	<	0.78	<	0.78	< 0.78	1	0.78	< 0.78	<	0.78	< 0.78	< 0.78	< 0.78
Benzyl Chloride	ug/m ³		è.	1.0	è	1.0	È	1.0	1.0	1	1.0	< 1.0	1	1.0	1.0	1.0	1.0
Carbon disulfide	µg/m ³		<	0.62	<	0.62	<	0.62	< 0.62	~	0.62	< 0.62	<	0.62	< 0.62	< 0.62	< 0.62
Chlorobenzene	ua/m ³		<	0.92	<	0.92	<	0.92	< 0.92	<	0.92	< 0.92	<	0.92	< 0.92	< 0.92	< 0.92
Chloroethane	µg/m ³		<	0.53	<	0.53	<	0.53	< 0.52	<	0.52	< 0.52	<	0.53	< 0.52	< 0.52	< 0.53
Chloroform	µg/m ³	1	<	0.98	<	0.98	<	0.98	< 0.98	<	0.98	< 0.98	<	0.98	< 0.98	< 0.98	< 0.98
Chloromethane	µg/m ³	5600		0.99		1.1		0.95	1.0		0.78	0.78		0.85	0.87	1.1	1.0
3-Chloropropene	µg/m³		<	0.63	<	0.63	<	0.63	< 0.63	<	0.63	< 0.63	<	0.63	< 0.63	< 0.63	< 0.63
2-Chlorotoluene	µg/m³		<	1.0	<	1.0	<	1.0	< 1.0	<	1.0	< 1.0	<	1.0	< 1.0	< 1.0	< 1.0
Carbon tetrachloride	µg/m³	2.4	<	1.3	<	1.3	<	1.3	< 1.3	<	1.3	< 1.3	<	1.3	< 1.3	< 1.3	< 1.3
Cyclohexane	µg/m³	6100	<	0.69	<	0.69	<	0.69	< 0.69	<	0.69	< 0.69	<	0.69	< 0.69	< 0.69	< 0.69
1,1-Dichloroethane	µg/m³	165	<	0.81	<	0.81	<	0.81	< 0.81	<	0.81	< 0.81	<	0.81	< 0.81	< 0.81	< 0.81
1,1-Dichloroethylene	µg/m³		<	0.79	<	0.79	<	0.79	< 0.79	<	0.79	< 0.79	<	0.79	< 0.79	< 0.79	< 0.79
1,2-Dibromoethane (EDB)	µg/m²	3	<	1.5	<	1.5	<	1.5	< 1.5	<	1.5	< 1.5	<	1.5	< 1.5	< 1.5	< 1.5
1,2-Dichloropropage	µg/m		<	0.02	-	0.02	5	0.02	< 0.01	È	0.02	< 0.01	-	0.02	< 0.01	< 0.81	< 0.01
1.4-Diovane	µg/m µg/m ³		~	0.92	2	0.92	2	0.92	< 0.92	È	0.92	< 0.92	È	0.92	< 0.92	< 0.92	< 0.92
Dichlorodifluoromethane	ua/m ³		-	1.9	1	2.1	1	2.0	2.0	+	1.8	1.8	1	1.9	1.9	2.1	2.1
Dibromochloromethane	µa/m³		<	1.7	<	1.7	<	1.7	< 1.7	<	1.7	< 1.7	<	1.7	< 1.7	< 1.7	< 1.7
trans-1.2-Dichloroethylene	ua/m³	105	<	0.79	<	0.79	<	0.79	< 0.79	<	0.79	< 0.79	<	0.79	< 0.79	< 0.79	< 0.79
cis-1,2-Dichloroethylene	µg/m ³	105	<	0.79	<	0.79	<	0.79	< 0.79	<	0.79	< 0.79	<	0.79	1.0	< 0.79	< 0.79
cis-1,3-Dichloropropene	µg/m³		<	0.91	<	0.91	<	0.91	< 0.91	<	0.91	< 0.91	<	0.91	< 0.91	< 0.91	< 0.91
m-Dichlorobenzene	µg/m³		<	1.2	<	1.2	<	1.2	< 1.2	<	1.2	< 1.2	<	1.2	< 1.2	< 1.2	< 1.2
o-Dichlorobenzene	µg/m ³	30500	<	1.2	<	1.2	<	1.2	< 1.2	<	1.2	< 1.2	<	1.2	< 1.2	< 1.2	< 1.2
p-Dichlorobenzene	µg/m³	95	<	1.2	<	1.2	<	1.2	< 1.2	<	1.2	< 1.2	<	1.2	< 1.2	< 1.2	< 1.2
trans-1,3-Dichloropropene	µg/m²		<	0.91	<	0.91	<	0.91	< 0.91	<	0.91	< 0.91	<	0.91	< 0.91	< 0.91	< 0.91
Enanoi	µg/m	4000	-	5.1	-	20.3		4.9	5.7	-	3.0	3.0		0.07	4.5	9.6	10
Ethyl A cetate	µg/m µg/m ³	1000	`	0.87	È	40.3	È	2.1	27	È	0.07	- 0.87	È	0.87	< 0.87	< 0.87	< 0.87 1.1
4-Ethyltoluene	ug/m ³		<	0.98	<	0.98	<	0.98	< 0.98		0.98	< 0.98	<	0.98	< 0.98	< 0.98	< 0.98
Freen 113	ua/m ³		<	1.5	<	1.5	<	1.5	< 1.5	<	1.5	< 1.5	<	1.5	< 15	< 1.5	< 1.5
Freon 114	µg/m ³	700000	<	1.4	<	1.4	<	1.4	< 1.4	<	1.4	< 1.4	<	1.4	< 1.4	< 1.4	< 1.4
Heptane	µg/m³	11000	<	0.82	<	0.82	<	0.82	< 0.82	<	0.82	< 0.82	<	0.82	< 0.82	< 0.82	< 0.82
Hexachlorobutadiene	µg/m ³		<	2.1	<	2.1	<	2.1	< 2.1	<	2.1	< 2.1	<	2.1	< 2.1	< 2.1	< 2.1
Hexane	µg/m³	7500	<	0.70		1.2	<	0.70	0.81	<	0.70	< 0.70	<	0.70	< 0.70	< 0.70	< 0.70
2-Hexanone	µg/m³		<	0.82	<	0.82	<	0.82	< 0.82	<	0.82	< 0.82	<	0.82	< 0.82	< 0.82	< 0.82
Isopropyl Alcohol	µg/m³	7300		1.6		3.2		0.59	0.54	<	0.49	< 0.49		2.0	0.71	1.7	1.7
Methylene chloride	µg/m³	220	<	0.69		3.2	-	0.73	1.0	<	0.69	< 0.69		0.73	0.80	0.90	0.87
Methyl echutyl Ketone	µg/m²	1000	<	0.59	-	0.65	-	0.68	0.71	<	0.59	1.4	<	0.59	< 0.59	< 0.59	0.71
Methyl Tert Butyl Rher	µg/m µg/m ³	7000	<	0.62	<	0.62	<	0.82	< 0.82	1	0.82	< 0.82	<	0.62	< 0.82	< 0.82	< 0.82
Methylmethacrylate	µg/m ³	7000	<	0.82	<	0.82	< c	0.72	< 0.72	2	0.72	< 0.72	<	0.82	< 0.82	< 0.72	< 0.72
Naphthalene	ua/m³	22.5	<	1.0	<	1.0	<	1.0	< 10	<	10	< 10	<	1.0	< 10	< 10	< 10
Propylene	µg/m ³	4000	<	0.86	<	0.86	<	0.86	< 0.86	<	0.86	< 0.86	<	0.86	< 0.86	< 0.86	< 0.86
Styrene	µg/m ³	400	<	0.85	<	0.85	<	0.85	< 0.85	<	0.85	< 0.85	<	0.85	< 0.85	< 0.85	< 0.85
1,1,1-Trichloroethane	µg/m ³	115000	<	1.1	<	1.1	<	1.1	< 1.1	<	1.1	< 1.1	<	1.1	< 1.1	< 1.1	< 1.1
1,1,1,2-Tetrachloroethane	µg/m³		<	1.4	<	1.4	<	1.4	< 1.4	<	1.4	< 1.4	<	1.4	< 1.4	< 1.4	< 1.4
1,1,2,2-Tetrachloroethane	µg/m³		<	1.4	<	1.4	<	1.4	< 1.4	<	1.4	< 1.4	<	1.4	< 1.4	< 1.4	< 1.4
1,1,2-Trichloroethane	µg/m²		<	1.1	<	1.1	<	1.1	< 1.1	<	1.1	< 1.1	<	1.1	< 1.1	< 1.1	< 1.1
1,2,4- Irichlorobenzene	µg/m²	400	<	1.5	<	1.5	<	1.5	< 1.5	<	1.5	< 1.5	<	1.5	< 1.5	< 1.5	< 1.5
1,2,4- Irimethylbenzene	µg/m²	220	<	0.98	<	0.98	<	0.98	< 0.98	<	0.98	< 0.98	<	0.98	< 0.98	< 0.98	< 0.98
2.2.4 Trimethylpentanc	µg/m µg/m ³	220	~	0.98	-	0.98	<	0.98	< 0.98	1	0.98	< 0.98	1	0.98	< 0.98	< 0.98	< 0.98
Zertiary Butyl Alcohol	µg/m µg/m ³		È	0.93	È	0.93	1	0.93	- 0.93	1	0.93	< 0.93	È	0.93	0.93	- 0.93	- 0.93
Tetrachloroethylene	µg/m µg/m ³		È	0.01	È	0.01	1	0.01	< 0.01	1	0.01	< 0.01	È	0.01	0.01	- 0.01	< 0.01
Tetrahydrofuran	µg/m µa/m³	93000	<	0.27	<	0.27	1	0.27	< 0.2/		0.27	< 0.27	È	0.27	< 0.27	< 0.50	< 0.27
Toluene	ua/m ³	2000	<	0.75	Ê	1.4	Ê	14	18	<	0.75	< 0.75	Ê	1.1	< 0.53	21	17
Trichloroethylene	ua/m ³	12	<	0.21	<	0.21	<	0.21	< 0.21	Ť	0.29	< 0.21	<	0.21	3.5	< 0.21	< 0.21
T () ()	µg/m ³	6000	<	1.1	<	1.1	<	1.1	< 1.1	<	1.1	< 1.1	1	1.2	1.2	1.3	1.3
Irichlorofluoromethane		1	<	0.51	<	0.51	<	0.51	< 0.51	<	0.51	< 0.51	<	0.51	< 0.51	< 0.51	< 0.51
Vinyl chloride	µg/m°			-	-		-			12	0.70	1 0.70	12	0.70	< 0.70	< 0.70	C 0.70
Vinyl chloride Vinyl Acetate	µg/m² µg/m²		<	0.70		0.74	<	0.70	< 0.70	·	0.70	< 0.70	~	0.10	. 0.70	- 0.70	\$ 0.70
Vinyl chloride Vinyl Acetate m,p-Xylene	μg/m³ μg/m³ μg/m³	730	< <	0.70	<	0.74	<	0.70	< 0.70	<	0.70	< 0.70	<	0.87	< 0.87	1.0	1.0
Vinyl chloride Vinyl chloride Vinyl cctate m,p-Xylene o-Xylene	μg/m ³ μg/m ³ μg/m ³	730 730	< < < <	0.70 0.87 0.87	<	0.74 0.87 0.87	< < <	0.70 0.87 0.87	< 0.70 1.0 < 0.87	< < <	0.87	< 0.87 < 0.87 < 0.87	< < <	0.87	< 0.87 < 0.87	< 0.70 1.0 < 0.87	< 0.70 < 0.87

Table 38: Air quality monitoring – Harbour/Centre Pier – Volatile Organic Compound Monitoring (November 2021)

Bold values indicate an exceedance of a AAQC value -- indicates parameter not analyzed by the contract lab

Table 39: Noise monitoring levels – PH LTWMF

		2015 Average L _{eq} (dBA) Pre-Early Works 3a			2017 Average L _{eq} (dBA) During Early Works 1			2018 Average L _{eq} (dBA)		2019 Average L _{eq} (dBA)		2020 Average L _{eq} (dBA)		2021 Average L _{eq} (dBA)					
		Day	Evening	Night	Day	Evening	Night	Day	Evening	Night	Day	Evening	Night	Day	Evening	Night	Day	Evening	Night
Monitoring Location	Monitoring Location	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)
PH-N-0001	192 Toronto Rd	63	61	59	67	63	61	66	63	60	67	62	61	65	62	59	66	61	60
PH-N-0002	NW WWMF, Brand Rd	66	67	64	66	67	64	66	66	64	66	66	64	65	66	63	64	64	63
PH-N-0003	South WWMF	52	53	52	54	54	53	58	55	53	58	54	51	53	52	49	54	52	51
PH-N-0004	SW WWMF, Brand Rd	56	55	53	58	55	55	58	56	55	56	57	55	56	58	55	56	54	54
PH-N-0005	Weather Station	54	54	52	63	54	54	65	56	55	62	55	56	57	52	50	58	53	55
PH-N-0006	Welcome North	62	61	58	67	67	65	67	67	65	66	65	63	64	65	63	67	67	65
PH-N-0007	SE Corner WWMF				59	56	52	56	55	53	58	56	55	56	52	52	55	55	54
Note:	Note:																		
-=Data not available																			
Noise monitoring results	are compared to:																		
1.12 dBA difference from	1. 12 dBA difference from Baseline (2015) monitoring results																		
2.70 dB over a 24 hour pe	eriod as per the World Hea	Ith Organization	n's Guideline for (Community Nois	2,1999														

Table 40: Noise monitoring levels – Port Hope Central, North and South transportation routes

	T			F a have and	السمير	Contouchou	December	
Central Transporation Route		Yearly Average		February	April	September	December	
	Ho	ourly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leq (dBA)		Measurements	Measurements	Measurements	Measurements	
				Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018 2019 2020				Yearly Average			
	Day Day Day			Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00) (07:00-19:00) (07:00-19:00) ((07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)
C-TR-N-001	61	64	62	61	65	65	65	64
C-TR-N-002	69 71 69			68	68	69	70	69
North Transporation Route		Yearly Average		February	April	September	December	
	He	ourly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leg (dBA)		Measurements	Measurements	Measurements	Measurements	
		,		Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018 2019 2020				Yearly Average			
	Day	Day	Day	Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00) (07:00-19:00) (07:00-19:00)		(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	
N-TR-N-001	63 61 62		62	62	62	63	62	
N-TR-N-002	62	61	65	67	67	66	72	68
South Transporation Route		Yearly Average		February	April	September	November	
	Ho	ourly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Lea (dBA)		Measurements	Measurements	Measurements	Measurements	

	Ho	ourly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leq (dBA)		Measurements	Measurements	Measurements	Measurements	
				Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018	2019	2020		Yearly Average			
	Day	Day	Day	Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)
S-TR-N-001	70	70	70	70	69	68	69	69
S-TR-N-002	69	70	70	70	70	70	70	70
S-TR-N-003	68	68	68	67	67	69	69	68
S-TR-N-004	63	65	65	63	65	66	66	65
S-TR-N-005	61	60	61	61	62	60	61	61

Table 41: Noise monitoring levels – Highland Drive and Vicinity Sites – PSE CS

	202	0 Average L _{eq} (c	IBA)	2021 Average L _{eq} (dBA)									
	Day	Evening	Night	Day	Evening	Night							
Monitoring Location	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)							
HD-N-0001	48	48	47	45	47	46							
HD-N-0002	50	48	48	53	51	52							
HD-N-0003	61	55	54	61	56	52							
	2016	2017	2018	2019	2020		2021						
----------------------------	--------------	------------------------------	------------	----------	------------	-------------	--------	---------	--	--	--	--	--
Well ID		Av	erage (mAS	iL)		Min	Max	Average					
WC-IW93-22	123.44	123.94	123.81	123.74	123.47	123.03	123.88	123.48					
WC-MW1-02	127.37	127.87	128.57		N	/ell Damage	d						
WC-MW1-03	148.14	148.26	148.30	148.48	148.16	148.14	148.45	148.25					
WC-MW2-02			-	Well No	t Found		-						
WC-MW3A-02 ¹													
WC-MW3A-11R													
WC-MW3B-02	129.48	129.57	129.66	130.93	130.72	129.80	130.45	130.11					
WC-MW3C-02	135.34	135.52	135.98	136.15	135.81	135.18	135.86	135.56					
WC-MW3D-02	136.39	136.53	136.91	136.85	136.86	136.32	136.57	136.46					
WC-MW4A-02	127.29	127.03	127.15	127.09	126.87	126.39	126.79	126.62					
WC-MW4B-02	127.09	127.18	127.25	127.17	126.92	126.70	127.09	126.94					
WC-OW2-75	133.60) 134.86 Well Decommissioned											
WC-OW2A-75	119.87	120.23			Well Decor	nmissioned							
WC-OW2A-19 ²				120.14	119.76	119.50	120.49	120.04					
WC-OW2-87	119.46	119.63			Well Decor	nmissioned							
WC-OW2-19 ³				120.02	120.38	119.89	120.93	120.54					
WC-OW3-79	119.18	119.47	119.50	119.31	116.73	118.84	119.28	119.11					
WC-OW5-79	119.91	119.68			Well Decor	nmissioned							
WC-OW9-75				Well [Decommissi	oned							
WC-OW10-75	139.92	140.33	140.56	140.30	140.14	139.78	140.81	140.33					
WC-OW25-76	118.42	118.75	118.74	118.76	118.66	118.52	118.81	118.71					
WC-OW-27-76	120.28	120.80	120.58	120.83	120.71	120.69	121.10	120.93					
Note:													
mASL – meters ab	ove sealev	<i>i</i> el											
- = Data not avail	able												
¹ WC-MW3A-11R w	vas installe	d in 2011 to	replace WC	-MW3A-02									
² WC-OW2A-19 wa	s installed	in 2019 to re	place WC-C)W2A-75									
³ WC-OW2-19 was	installed i	n 2019 to rep	lace WC-OV	N2-87									
⁴ WC-OW5-19 was	installed i	n 2019 to rep	lace WC-OV	N5-79									
⁵ LTWMF-MW-06 v	vas installe	ed in 2017 to	replace WC	-OW9-75									

Table 42: PH LTWMF groundwater levels

	2018	2019	2020		2021	
		Average		Min	Max	Average
Well ID			(m/	ASL)		
PH-02-01	104.08	104.20	104.13	103.82	103.99	103.89
PH-02-02	104.07	104.29	104.11	103.72	103.95	103.88
PH-02-03	104.08	105.58	104.11	103.77	103.96	103.90
PH-90-3-I	110.16	110.00	110.19	109.30	110.49	109.89
PH-90-3-II		119.54	120.19	119.07	119.74	119.45
PH-90-4-W	107.29	107.67	107.77	107.46	107.67	107.57
PH-90-4-I	106.38	106.38	106.43	106.08	106.24	106.16
PH-90-4-II	107.27					
PH-90-4-III	115.58	115.50	115.47	115.04	115.33	115.16
PH-90-6-I	107.36	111.34	107.30	106.93	107.28	107.06
PH-90-6-II	114.16	114.70	109.94	107.28	115.22	112.54
PH-90-6-III	115.92	116.25	115.88	115.36	118.12	116.44
PH-90-7-I		105.01	105.01	104.54	104.54	104.54
PH-90-7-II	105.42	105.48	105.36	105.05	105.20	105.12
PH-90-7-III	112.49	112.79	112.57	111.85	112.49	112.17
PH-90-8-I	104.03	104.07	103.99	103.79	103.92	103.88
PH-90-8-II	104.08	104.15	104.09	103.79	104.04	103.93
PH-90-9-I			Well No	t Found		
PH-90-9-11		94.77	90.40	90.25	90.25	90.25
PH-90-9-III	95.18	96.85	96.18	95.42	96.21	95.92
PH-93-3-I		106.09	106.21	105.67	105.84	105.74
PH-93-3-II	105.98	106.09	106.06	105.55	105.82	105.70
PH-93-3-III	112.46	112.58	112.50	111.99	112.19	112.10
PH-93-6-I						
PH-93-6-II						
PH-93-6-III						
PH-93-9-I						
PH-93-9-11						
PH-93-10-I	105.39	105.50	105.48	104.89	105.27	105.15
PH-93-10-II	105.44	105.50	105.49	104.94	105.32	105.14
PH-93-10-IIIA						
PH-93-10-IIIB		110.15	110.19	109.94	110.04	110.00
PH-93-12-I			Well No	t Found		
PH-93-12-II						
PH-93-12-III			Well No	t Found		
PH-95-I	105.37	105.53	105.49	105.29	108.37	106.33
PH-95-7						
PH-95-17-I	106.04	106.13	106.09	105.70	105.90	105.77
PH-95-17-II	112.91	113.00	113.00	112.51	112.70	112.61
PH-95-18	106.11	106.16	106.22	W	Vell Damage	d
PH-M-19	100.17	100.17	100.16	100.11	100.12	100.12
Note:						
mASL – meters	above sea l	evel				
= Data not av	allable					

Table 43: Highland Drive groundwater levels

		Arsenic (diss PWQO <i>Trigge</i> 50 (µg/I	solved) er Level _)			
	2018	2019	2020		2021	
Well ID		Average		Sample	e Dates	Average
				2021-05-19	2021-12-14	
VVC-IVV93-22	1.4	1.3	1.5	1.4	1.5	1.5
				2021-04-23	2021-11-22	
WC-OW1-67	<1.0	<1.0	0.8	0.9	0.9	0.9
WC-OW2A-75		WELL	DECOMMISSIONED			
				2021-04-22	2021-11-29	
WC-OW2A-19		1.4	0.6	0.7	0.7	0.7
WC-OW2-87		WELL	DECOMMISSIONED			
				2021-04-22	2021-11-26	
WC-OW2-19		<1.0	1.5	1.8	1.7	1.8
				2021-04-21	2021-12-03	
WC-0W3-79	3.1	3.2	3.8	3.8	3.6	3.7
				2021-04-23	2021-12-13	
WC-OW3-07	4.5	4.2	5.1	4.1	5.9	5.0
				2021-04-15	2021-12-01	
WC-OW4-79	1.1	<1.0	0.7	1.1	0.5	0.8
WC-OW5-79		WELL	DECOMMISSIONED			
				2021-05-13	2021-11-29	
WC-OW5-19		2.8	3.4	0.8	4.3	2.6
WC 0W25 76				2021-04-15	2021-12-01	
WC-0W25-76	<1.0	<1.0	0.8	0.7		0.7
WC 0W27 76				2021-04-15	2021-12-01	
WC-OW27-76	<1.0	<1.0	0.4	0.3	0.4	0.4
WC 0W28 76				2021-04-15	2021-12-01	
WC-OW20-70	<1.0	<1.0	0.6	0.5		0.5
WC 0W22 76				2021-05-20	2021-12-09	
WC-OW33-76	<1.0	<1.0	1.2	0.5	0.7	0.6

Table 44: PH LTWMF sentinel well monitoring program

Waste Nuclear Substance Licence, Port Hope Long-Term Low-Level Radioactive Waste Management Project

-- = Data not available

¹ WC-OW2A-19 w as installed in 2019 to replace WC-OW2A-75

² WC-OW2-19 w as installed in 2019 to replace WC-OW2-87

³ WC-OW5-19 w as installed in 2019 to replace WC-OW5-79

						Pł	-www	1F-\$	SS-01				
Parameter	Units	2	2016		2017	2	2018		2019	2	2020	2	021
Water Soluble Boron	µg/g		_1		0.50		0.51		0.54	<	0.50	<	0.50
Mercury	µg/g	<	0.05		0.067	<	0.05	<	0.05		0.06		0.05
Silver	µg/g		0.98	<	0.40		0.22		0.25		0.47		0.48
Arsenic	µg/g		3.5		5.7		4.0		4.1		4.8		5.3
Barium	µg/g		54		52		48		53		66		55
Beryllium	µg/g		0.39		0.43		0.37		0.45		0.40		0.37
Boron	µg/g		6.0	۷	5.0		5.6		6.4		5.0		5.0
Cadmium	µg/g		0.84		0.34		0.35		0.31		0.49		0.42
Cobalt	µg/g		5.2		8.8		6.0		6.7		8.2		6.6
Copper	µg/g		9.4		13		11		11		18		12
Molybdenum	µg/g		0.40	۷	0.50		0.53	<	0.50		0.60		0.40
Nickel	µg/g		8.2		11		8.3		9.1		12		9.0
Lead	µg/g		18		20		20		20		23		21
Selenium	µg/g	<	0.70	<	0.50	۷	0.50	<	0.50	۷	0.70	۷	0.70
Antimony	µg/g	<	0.80		0.24		0.22	<	0.20	۷	0.80	۷	0.80
Uranium	µg/g		2.1		3.1		2.4		3.4		4.1		4.0
Vanadium	µg/g		17		22		22		27		23		19
Zinc	µg/g		380		75		510		310		80		120
Lead-210	Bq/g		0.04		0.10		0.14		0.10		0.40		0.12
Radium-226	Bq/g		0.10	<	0.10	۷	0.05		0.06		0.10		0.19
Thorium-230	Bq/g	<	0.02	<	0.50	۷	0.40	<	0.40	<	0.40	۷	0.40
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in laborate	ry contract.												

Table 45: Soil monitoring- PH LTWMF – Location 1 (PH-WWMF-SS-01)

Table 46: Soil monitoring- PH LTWMF – Location 2 (PH-WWMF-SS-02)

	Unite					Pł	I-WWN	۱F-\$	SS-02				
Parameter	Units	2	2016	1	2017	1	2018		2019	2	2020	2	021
Water Soluble Boron	µg/g		_1		0.75		0.69		0.70	<	0.50	<	0.50
Mercury	µg/g		0.06		0.052	<	0.05	<	0.05		0.05	<	0.05
Silver	µg/g		0.29	<	0.20	<	0.20	<	0.20		0.15		0.15
Arsenic	µg/g		2.6		2.4		3.3		3.8		3.5		3.7
Barium	µg/g		41		30		36		39		40		38
Beryllium	µg/g		0.29		0.25		0.29		0.32		0.26		0.25
Boron	µg/g		3.0	۷	5.0	۷	5.0	<	5.0		3.0		3.0
Cadmium	µg/g		0.35		0.20		0.27		0.22		0.26		0.23
Cobalt	µg/g		3.4		3.4		4.1		4.8		4.9		4.1
Copper	µg/g		6.1		5.3		6.7		7.5		7.9		7.0
Molybdenum	µg/g		0.30	۷	0.50	۷	0.50	<	0.50		0.30		0.30
Nickel	µg/g		5.4		5.2		6.0		6.8		7.0		5.7
Lead	µg/g		19		14		17		16		17		16
Selenium	µg/g	۷	0.70	۷	0.50	۷	0.50	<	0.50	<	0.70	۷	0.70
Antimony	µg/g	<	0.80	۷	0.20	۷	0.20	<	0.20	<	0.80	۷	0.80
Uranium	µg/g		2.2		0.9		1.2		1.3		1.4		1.2
Vanadium	µg/g		15		18		20		24		19		14
Zinc	µg/g		47		37		38		44		44		35
Lead-210	Bq/g		0.08	۷	0.05		0.06		0.08		0.08		0.08
Radium-226	Bq/g		0.06	۷	0.10	۷	0.05	<	0.05		0.13		0.12
Thorium-230	Bq/g		0.03	۷	0.50	۷	0.40	<	0.40	۷	0.08	۷	0.30
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.01		0.01
¹ Analysis not included in laboratory	/ contract.												

	Linita					P	-www	1F-\$	SS-03				
Parameter	Units	2	2016	2	2017	2	2018		2019	2	2020	2	021
Water Soluble Boron	µg/g		_ 1		0.42		0.57		0.59	<	0.50	<	0.50
Mercury	µg/g	<	0.05		0.064		0.05	<	0.05	<	0.05	۷	0.05
Silver	µg/g		0.07	۷	0.20	۷	0.20	<	0.20		0.08		0.06
Arsenic	µg/g		2.9		3.2		3.5		3.8		3.4		3.7
Barium	µg/g		95		87		110		98		100		94
Beryllium	µg/g		0.50		0.54		0.57		0.56		0.50		0.44
Boron	µg/g		5.0	<	5.0		6.6		7.3		5.0		4.0
Cadmium	µg/g		0.23		0.20		0.22		0.23		0.28		0.21
Cobalt	µg/g		5.8		6.1		7.1		6.5		7.5		6.2
Copper	µg/g		11		11		13		13		14		12
Molybdenum	µg/g		0.40	<	0.50	<	0.50	<	0.50		0.40		0.30
Nickel	µg/g		11		12		13		13		14		11
Lead	µg/g		11		11		13		13		12		11
Selenium	µg/g	<	0.70	<	0.50	<	0.50	<	0.50	<	0.70	۷	0.70
Antimony	µg/g	<	0.80		0.22	<	0.20	<	0.20	<	0.80	۷	0.80
Uranium	µg/g		1.2		1.1		1.3		1.3		1.4		1.2
Vanadium	µg/g		27		31		35		35		35		28
Zinc	µg/g		53		54		62		58		63		49
Lead-210	Bq/g		0.13		0.06		0.07	<	0.05		0.10		0.09
Radium-226	Bq/g		0.04	<	0.10	<	0.05	<	0.05		0.08	۷	0.05
Thorium-230	Bq/g		0.04	<	0.50	<	0.40	<	0.40	<	0.20	۷	0.20
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in laborator	y contract.												

Table 47: Soil monitoring- PH LTWMF – Location 3 (PH-WWMF-SS-03)

' Analysis not included in laboratory contract.

Table 48: Soil monitoring- PH LTWMF – Location 4 (PH-WWMF-SS-04)

	Unite					PI	H-WWN	1F-8	SS-04				
Parameter	Units	2	2016	2	2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	µg/g		_1		0.58		0.59		0.58	<	0.50	۷	0.50
Mercury	µg/g	<	0.05	<	0.050	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g		0.04	<	0.20	۷	0.20	<	0.20	<	0.05	۷	0.05
Arsenic	µg/g		2.1		1.8		2.1		1.4		2.5		2.9
Barium	µg/g		23		21		34		20		28		36
Beryllium	µg/g		0.26	<	0.20	<	0.20	<	0.20		0.22		0.23
Boron	µg/g		4.0	<	5.0	۷	5.0	<	5.0		4.0		3.0
Cadmium	µg/g		0.21		0.22		0.19		0.12		0.21		0.26
Cobalt	µg/g		2.5		2.2		2.4		1.8		3.0		2.8
Copper	µg/g		5.3		4.0		4.6		4.1		6.7		5.8
Molybdenum	µg/g		0.30	<	0.50	<	0.50	<	0.50		0.30		0.20
Nickel	µg/g		4.2		3.7		4.1		3.2		5.1		4.5
Lead	µg/g		11		11		40		10		11		19
Selenium	µg/g		0.80	۷	0.50	<	0.50	<	0.50	۷	0.70	<	0.70
Antimony	µg/g	۷	0.80	۷	0.20	۷	0.20		0.23	<	0.80	۷	0.80
Uranium	µg/g		0.66		0.56		0.50		0.43		0.67		0.6
Vanadium	µg/g		13		14		13		15		15		11
Zinc	µg/g		310		140		220		550		260		99
Lead-210	Bq/g	<	0.04	۷	0.05		0.07	<	0.05		80.0		0.08
Radium-226	Bq/g		0.04	<	0.10	<	0.05	<	0.05	<	0.04		0.09
Thorium-230	Bq/g		0.03	۷	0.50	۷	0.40	۷	0.40	۷	0.30	۷	0.30
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.01		0.01
¹ Analysis not included in laboratory	/ contract.												

	L Incide					Р	H-WWI	1F-\$	SS-05				
Parameter	Units	1	2016		2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	µg/g		_ 1		0.54		0.71		0.46	<	0.50	<	0.50
Mercury	µg/g	<	0.05	<	0.050	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g		0.04	<	0.20	<	0.20	<	0.20	<	0.05	<	0.05
Arsenic	µg/g		57		50		34		30		2.0		19.0
Barium	µg/g		100		50		62		69		81		78
Beryllium	µg/g		0.36		0.31		0.33		0.36		0.41		0.32
Boron	µg/g		7.0	<	5.0		6.4		7.0		6.0		6.0
Cadmium	µg/g		0.16		0.24		0.22		0.19		0.26		0.17
Cobalt	µg/g		5.3		3.4		4.1		4.4		6.3		4.4
Copper	µg/g		13		8.3		11		9.6		14		9.7
Molybdenum	µg/g		0.40	<	0.50	<	0.50	۷	0.50		0.40		0.30
Nickel	µg/g		11		6.9		7.6		8.3		12		8.6
Lead	µg/g		12		19		24		22		34		21
Selenium	µg/g	<	0.70	<	0.50	۷	0.50	۷	0.50	۷	0.70	۷	0.70
Antimony	µg/g	<	0.80	<	0.20		0.21	۷	0.20	۷	0.80	۷	0.80
Uranium	µg/g		9.6		9.5		8.9		6.5		0.6		7.5
Vanadium	µg/g		24		20		22		25		29		21
Zinc	µg/g		62		45		180		59		84		55
Lead-210	Bq/g		0.04		0.07		0.06		0.06		0.08		0.08
Radium-226	Bq/g		0.03	<	0.10	۷	0.05	۷	0.05		0.09		0.13
Thorium-230	Bq/g		0.03	<	0.50	<	0.40	<	0.40	<	0.20	<	0.20
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in lat	poratory contract												

Table 49: Soil monitoring- PH LTWMF – Location 5 (PH-WWMF-SS-05)

Table 50: Soil monitoring- Highland Drive – Location 1 (PH-H-SS-01)

	Unite						PH-H-	SS	-01				
Parameter	Units	2	2016		2017		2018		2019	1	2020		2021
Water Soluble Boron	µg/g		_1		0.42		0.34		0.30	<	0.50	<	0.50
Mercury	µg/g	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g		0.07	<	0.20	۷	0.20	<	0.20		0.07		0.06
Arsenic	µg/g		2.1		1.6		2.0		2.3		2.4		2.2
Barium	µg/g		100		66		120		110		140		95
Beryllium	µg/g		0.49		0.34		0.56		0.52		0.50		0.38
Boron	µg/g		5.0		5.8		7.1		6.6		6.0		5.0
Cadmium	µg/g		0.17		0.14		0.14		0.19		0.22		0.15
Cobalt	µg/g		5.9		4.7		7.2		7.0		8.9		6.0
Copper	µg/g		13		10		15		14		19		13
Molybdenum	µg/g		0.30	<	0.50	<	0.50	<	0.50		0.40		0.30
Nickel	µg/g		12		8.7		15		13		18		12
Lead	µg/g		15		8.4		16		14		14		8.9
Selenium	µg/g	۷	0.70	<	0.50	<	0.50	<	0.50	<	0.70	<	0.70
Antimony	µg/g	<	0.80	<	0.20		0.25	<	0.20	<	0.80	<	0.80
Uranium	µg/g		0.71		0.51		0.78		0.70		0.89		0.60
Vanadium	µg/g		31		25		38		36		44		29
Zinc	µg/g		54		43		87		71		89		50
Lead-210	Bq/g	۷	0.04		0.06	<	0.05		0.06	<	0.20		0.11
Radium-226	Bq/g		0.03	<	0.10	<	0.05	<	0.05		0.08	<	0.04
Thorium-230	Bq/g	<	0.02	<	0.5	<	0.40	<	0.40		0.07	<	0.30
Thorium-232	Bq/g		_1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in laboratory	/ contract.												

	L halfes						PH-H-	SS	-02				
Parameter	Units	1	2016		2017		2018		2019	1	2020	1	2021
Water Soluble Boron	µg/g		_1		0.57		0.47		0.40	<	0.50	<	0.50
Mercury	µg/g	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g		0.12	۷	0.20	۷	0.20	۷	0.20		0.10		0.12
Arsenic	µg/g		4.8		3.1		3.9		3.2		4.2		4.0
Barium	µg/g		110		82		99		96		95		108
Beryllium	µg/g		0.48		0.44		0.52		0.45		0.38		0.42
Boron	µg/g		5.0		6.2		6.3		6.5		5.0		5.0
Cadmium	µg/g		0.19		0.19		0.22		0.19		0.19		0.19
Cobalt	µg/g		6.1		5.8		6.9		6.2		6.5		6.4
Copper	µg/g		14		13		15		13		15		15
Molybdenum	µg/g		0.40	<	0.50		0.52	<	0.50		0.40		0.30
Nickel	µg/g		12		11		13		12		13		12
Lead	µg/g		18		12		15		13		19		16
Selenium	µg/g	۷	0.70	۷	0.50	۷	0.50	<	0.50	<	0.70	۷	0.70
Antimony	µg/g	۷	0.80		0.21		0.24		0.21	<	0.80	۷	0.80
Uranium	µg/g		2.3		1.4		2.3		2.0		1.7		2.3
Vanadium	µg/g		31		30		34		33		31		30
Zinc	µg/g		55		54		53		49		54		49
Lead-210	Bq/g	۷	0.04		0.05		0.06		0.07	<	0.20		0.06
Radium-226	Bq/g		0.05	۷	0.10	<	0.05	۷	0.05	<	0.03	۷	0.04
Thorium-230	Bq/g		0.04	<	0.5	<	0.40	<	0.40		0.10	<	0.30
Thorium-232	Bq/g		- ¹	<	0.30	<	0.04	<	0.30		0.01		0.02
¹ Analysis not included in laboratory	/ contract.												

Table 51: Soil monitoring- Highland Drive – Location 2 (PH-H-SS-02)

Table 52: Surface water quality – Brand Creek – downstream of PH LTWMF (BC-D)

									BC-D				
		Crit	eria	2016	2017	2018	2019	2020			2021		
Parameter	Units	PWQO	CWQG			Average			2021-01-14	2021-04-08	2021-08-06	2021-11-01	Average
Total Suspended Solids	ma/l			52	13	72	24	21	5	6	10	10	8
pH	no unit	6.5-8.5	6.5-9.0	8.00	8 18	8 11	8 14	8.07	8 15	8.02	7 77	7 89	7.96
Alkalinity	mg/L as CaCO ₂	0.0 0.0	0.0 0.0	258	275	285	273	262	269	269	287	302	282
Carbonate	mg/L as CaCO ₃			4	4	3	4	< 1	< 1	< 1	< 1	< 1	< 1
Bicarbonate	mg/L as CaCO ₃			256	273	278	265	262	269	269	287	302	282
Total Dissolved Solids	ma/L			667	505	620	609	630	610	540	811	537	625
Fluoride	mg/L		0.12	0.11	0.10	< 0.10	0.10	0.08	0.08	0.10	0.09	0.08	0.09
Total Organic Carbon	mg/L			3	3	4	3	3	2	2	7	3	4
Ammonia+Ammonium (N)	as N mg/L			0.06	< 0.05	0.06	0.07	0.06	0.04	< 0.04	0.09	0.16	0.08
Chloride (Dissolved)	mg/L		120	193	100	165	159	203	150	140	300	85	169
Sulphate (dissolved)	mg/L			33	21	22	22	25	28	24	18	22	23
Bromide (dissolved)	mg/L			0.5	< 1.0	< 1.0	< 1.0	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	0.02	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	3.37	4.19	3.65	3.36	4.08	5.38	5.06	1.23	7.47	4.79
Nitrate + Nitrite (as N)	as N mg/L			3.37	4.20	3.65	3.37	4.08	5.38	5.06	1.23	7.47	4.79
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			366	315	340	360	384	384	419	374	375	388
Silver (total)	µg/L	0.1	0.25	0.03	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aluminum (Al)	µg/L			265	288	813	480	434	83	111	431	152	194
Aluminum (0.2µm)	µg/L	75	100	_1	< 5	< 5	< 5	26	7	1	3	4	4
Arsenic (total)	µg/L	100	5	1.5	1.5	1.7	1.4	1.6	0.6	0.6	5.7	1.0	2.0
Barium (total)	µg/L			80.2	59.3	83.0	78.3	88.8	68.5	63.7	92.8	57.2	70.6
Beryllium (total)	µg/L	1100		0.1	< 0.5	< 0.5	< 0.5	0.018	< 0.007	< 0.007	0.020	0.007	0.010
Boron (total)	µg/L	200	1500	11	16	10	12	14	10	10	17	51	22
Bismuth (total)	µg/L			0.3	< 1.0	< 1.0	< 1.0	0.040	0.007	800.0	0.020	< 0.010	0.011
Calcium (total)	µg/L		0.00	120750	106750	117500	112500	125000	130000	143000	124000	129000	131500
Cadmum (total)	µg/L	0.2	0.09	0.03	< 0.10	< 0.10	< 0.10	0.02	0.02	0.01	0.02	0.01	0.02
Cobalt (total)	µg/L	0.9		0.305	< 0.500	0.630	< 0.500	0.301	0.513	0.330	0.503	0.308	0.414
Chromum (total)	µg/L	E		2.0	< 0.0	< 5.U	< 0.0 1.0	0.91	1.00	0.00	0.92	0.61	0.01
Copper (total)	µg/L	200	200	1.2	> 1.1	0.0	I.Z	1.7	1.0	0.0	622	0.7	1.0
Potossium (total)	µg/L	300	300	49Z 1725	343 1575	1600	1700	404 1735	62 1370	1710	2420	1730	203
Magnosium (total)	µg/L			1723	11650	15000	1/750	1730	14300	1710	15300	12000	1/375
Magnesium (total)	µg/L			13030	30	70	147.50	60	14300	13000	310	30	07
Molybdenum (total)	ug/L	40	73	0.44	< 0.50	0.51	< 0.50	0.43	0.31	0.56	0.74	0.25	0.47
Sodium (total)	ug/L		10	101650	57500	96250	93750	96525	71900	70000	120000	39500	75350
Nickel (total)	ug/L	25	25	0.7	11	14	10	0.7	0.8	0.6	1 1	0.8	0.8
Phosphorus (total)	µg/L	10-30		38	35	75	46	36	16	20	88	25	37
Lead (total)	µa/L	5	7	0.36	< 0.50	0.83	0.56	0.37	0.14	0.10	0.50	0.14	0.22
Antimony (total)	µa/L	20		0.3	< 0.5	< 0.5	< 0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	µg/L	100	1	0.6	< 2.0	< 2.0	< 2.0	0.19	0.27	0.31	0.15	0.16	0.22
Tin (total)	µg/L	l		0.3	< 1.0	< 1.0	< 1.0	0.09	0.14	< 0.06	< 0.06	0.09	0.09
Strontium (total)	µg/L			323	258	295	285	335	338	307	361	290	324
Titanium (total)	µg/L			24.0	17.3	45.7	29.8	21.4	3.4	6.1	23.2	9.3	10.5
Thallium (total)	µg/L	0.3	0.8	0.02	< 0.05	< 0.05	< 0.05	0.008	< 0.005	< 0.005	0.010	< 0.005	0.006
Uranium (total)	µg/L	5	15	2.01	2.25	2.03	1.60	2.02	4.42	2.41	3.42	2.70	3.24
Vanadium (total)	µg/L	6		1.40	1.28	2.11	1.63	1.51	0.68	0.73	1.98	0.97	1.09
Zinc (total)	µg/L	30	30	4	< 5	8	5	5	3	2	4	3	3
Lead-210	Bq/L			< 0.02	0.03	< 0.10	< 0.10	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		0.02	0.03	< 0.04	< 0.04	0.01	0.01	< 0.01	0.01	< 0.01	0.01
Thorium-230	Bq/L			0.03	< 0.06	< 0.07	< 0.07	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters					L	L	L	L					
ODO % Sat	%			_ ²	- ²	- ²	_ ²	- ²	105.2	99.6	86.7	83.3	
ORP	mV	ļ		-2	-2	-2	-2	-2	209	139.5	127.7	137.4	
SPC	µs/cm			- ²	-2	-2	-2	-2	1031	875	1307	883	
Temperature	°C	ļ		- ²	-2		-2	-4	3.974	4.685	21.868	10.707	
Turbidity	FNU	ļ		-4	-4		-4	-4	7.2	4.88	10.01	38.37	
рн	Units	ļ		-4		-	-4		8.14	8.18	8.01	7.84	
Statt Gauge	cm												<u> </u>

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 53: Surface water quality – Brand Creek – upstream of PH LTWMF (BC-U)

		E								BC-	U										
		Crit	eria	2016		2017		2018		2019		2020					2021				
Parameter	Units	PWQQ	CWOG				A	verage					202	1-01-14	20	21-04-08	2021-08-06	20	21-11-01	٩	verage
Total Suspended Solids	ma/l		oniqu	48	1	9	Г	34	1	165	T	16	<	2		4	No Sample ³		4		3
pH	no unit	65-85	6.5-9.0	7.86		8 11	-	8.06		8.06	1	8.03		8 14		8.04	no oumpio		7.97		8 05
Alkalinity	mg/L as CaCO ₂			244		275	1	255		250	1	245		266		261			309		279
Carbonate	mg/L as CaCO ₂			2		3.3	1	3.1		3.0	<	1.0	<	1	<	1		<	1	<	1
Bicarbonate	mg/L as CaCO ₃			243		268	1	250		248		245		266		261			309		279
Total Dissolved Solids	mg/L			638		438		554		469		418		450		440			506		465
Fluoride	mg/L		0.12	0.09		0.11	1	0.11	<	0.10		0.10		0.11		0.09			0.08		0.09
Total Organic Carbon	ma/L			5		3	T	4	1	9	1	6		2		2			2		2
Ammonia+Ammonium (N)	as N mg/L			0.05		0.05	1	0.08		0.27		0.11		0.04		0.04			0.10		0.06
Chloride (Dissolved)	mg/L		120	169		59	T	138		103		75		69		64			48		60
Sulphate (dissolved)	mg/L			33		20	T	21		13		11		21		19			19		20
Bromide (dissolved)	mg/L			0.5	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3		<	0.3	<	0.3
Nitrite (as N)	as N mg/L			0.02		0.01	<	0.01		0.02	<	0.03	<	0.03	<	0.03		<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	2.87		4.37		3.27		2.72		3.74		6.71		5.96			8.74		7.14
Nitrate + Nitrite (as N)	as N mg/L			2.87		4.37		3.27		2.74		3.74		6.71		5.96			8.74		7.14
Mercury (dissolved)	µg/L	0.2	0.026	0.01		0.01	<	0.01	<	0.01		0.01	<	0.01	<	0.01		<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			334		305		300		305		301		363		383			369		372
Silver (total)	µg/L	0.1	0.25	0.04	<	0.10	<	0.10		0.11	<	0.05	<	0.05	<	0.05		<	0.05	<	0.05
Total Aluminum (AI)	µg/L			252		182		685		6200		423		33		85			77		65
Aluminum (0.2µm)	µg/L	75	100	_1		5		54	<	5		16		7		1			5		4
Arsenic (total)	µg/L	100	5	0.6	<	1.0		1.1		1.7		2.0	<	0.2	<	0.2		<	0.2	<	0.2
Barium (total)	µg/L			61.6		48.8	L	58.5		113.5		46.9		50.2		48.0			51.5	L	49.9
Beryllium (total)	µg/L	1100		0.2	<	0.5	<	0.5		0.6		0.018	<	0.007	<	0.007		<	0.007	<	0.007
Boron (total)	µg/L	200	1500	11		16		12		17		16		10		17			45	L	24
Bismuth (total)	µg/L			0.3	<	1.0	<	1.0	<	1.0		0.017	<	0.007		0.007		<	0.010		0.008
Calcium (total)	µg/L			113333		108250	⊢	103000		112250		100467		125000		132000			127000	⊢	128000
Cadmium (total)	µg/L	0.2	0.09	0.04	<	0.10	<	0.10		0.22		0.02		0.01		0.01			0.01	⊢	0.01
Cobalt (total)	µg/L	0.9		0.324	<	0.500	┢	0.608		3.625	_	0.444		0.061		0.089			0.073	⊢	0.074
Chromum (total)	µg/L			2.3	<	5.0	<	5.0		12.3	_	0.89		0.45		0.54			0.45	⊢	0.48
Copper (total)	µg/L	5		1.4	_	1.7	_	1.9	_	7.5	_	1.9		0.7		0.6			0.5	⊢	0.6
Iron (total)	µg/L	300	300	406	_	220	_	4775	_	2095		1907		30		1620		_	1620	⊢	1500
Magnasium (total)	µg/L			2000		11600	+	11500		12500	-	11027		1020		12100			12600	⊢	12900
Manganasa (tatal)	µg/L			12000	-	20	+	11500	-	776	-	603		12/00	_	13100		-	21	-	12000
Molybdenum (total)	µg/L	40	73	0.41	2	29	+	2.03		0.63	-	0.43		0.18	-	0.25			0.10	-	0.21
Sodium (total)	ug/L	+0	15	104933	È	34250	1	79500	1	57500	F	40467		33600	-	32600		1	23100	⊢	29767
Nickel (total)	ug/L	25	25	0.7		1.2	1	14		6.8	1	10		0.2		0.3			03	-	03
Phosphorus (total)	µg/L	10-30		68		35	1	71	1	604	t –	74		19		14		1	21		18
Lead (total)	µa/L	5	7	0.38	<	0.50	1	0.63		5.13	T	0.43		0.09		0.07		<	0.09		0.08
Antimony (total)	µa/L	20		0.3	<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9		<	0.9	<	0.9
Selenium (total)	µg/L	100	1	0.8	<	2.0	<	2.0	<	2.0		0.28		0.35		0.31			0.21		0.29
Tin (total)	µg/L			< 0.5	<	1.0	<	1.0		1.1		0.08		0.14	<	0.06			0.11		0.10
Strontium (total)	µg/L			284		248		263		250		245		291		251			291		278
Titanium (total)	µg/L			< 14		12.98		37.75		287		18.75		1.80		4.65			4.31		3.59
Thallium (total)	µg/L	0.3	0.8	0.02	<	0.05	<	0.05		0.10		0.007	<	0.005	<	0.005		<	0.005	<	0.005
Uranium (total)	µg/L	5	15	1.103		1.103		0.528		0.673		0.487		0.648		0.623			0.957		0.743
Vanadium (total)	µg/L	6		1.35		1.08		2.02		13.06		1.68		0.56		0.70			0.76		0.67
Zinc (total)	µg/L	30	30	4	<	5		6		36		5	<	2		2			2		2
Lead-210	Bq/L			< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02		<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	<	0.03	<	0.04	<	0.04		0.01	<	0.01	<	0.01		<	0.01	<	0.01
Thorium-230	Bq/L			0.04	<	0.06	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02		<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02		<	0.02	<	0.02
Field Parameters											[Ē	
ODO % Sat	%			_2		_2	Ľ	_2		_2	Ĺ	_2		108.1		106.8			94.7	Ĺ	
ORP	mV			_2		_2	L	_2		_2	Ĺ	_2		211.2		137.6			138.6	Ľ	
SPC	µs/cm			_2		_2	L	_2		_2		_2		787		692			794	Ĺ	
Temperature	°C			_ ²		-2	⊢	_2	L	_ ²	L	_ ²	L	4.118		5.22		L	11.094	∟	
Turbidity	FNU			- ²		-2	⊢	-2	L	-2	L	-2	L	1.98		4.78		L	2.06	⊢	
pH	Units			- ²	1	-4	⊢	-2	<u> </u>	-2	L	-2	I	8.06	I	8.21		L	7.9	⊢	
Statf Gauge	cm			-4	1	-4	L	-4	1	-4	1	-4								L	
Note: PWQO = Provincial Water (Quality Obiectives	. Ministrv of	f the Enviro	nment																	

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

Analysis not included in laboratory contract.
 Field parameters included for current sampling year only.
 Insufficient surface water at this location for sample collection

		1		8				BC-	BC-M													
		Crit	eria	2016	1	2017		2018		2019		2020						2021				
Parameter	Units	PWQO	CWQG			-	A	verage					202	21-01-14	20	21-04-08	20	21-08-06	20	21-11-01	Av	/erage
Total Suspended Solids	ma/L			27	T	20	1	26	1	32	Γ	45		6		7		16		7		9
рН	no unit	6.5-8.5	6.5-9.0	7.94		8.18		8.14		8.19	T	8.13		8.17		8.05		7.98		8.02		8.06
Alkalinity	mg/L as CaCO ₃			258		275		280		268		254		263		258		282		290		273
Carbonate	mg/L as CaCO ₃			6		4		4		4	<	1	<	1	<	1	<	1	<	1	<	1
Bicarbonate	mg/L as CaCO ₃			254		270		280		265		254		263		258		282		290		273
Total Dissolved Solids	mg/L			802		482		575		574		545		500		534		660		520		554
Fluoride	mg/L		0.12	0.10	<	0.10	<	0.10	<	0.10		0.08		0.10		0.07		0.07		0.08		0.08
Total Organic Carbon	mg/L			3		3		3		3		3		2		2		6		3		3
Ammonia+Ammonium (N)	as N mg/L			0.06	<	0.05		0.06		0.08		0.06	<	0.04	<	0.04		0.12		0.10		0.08
Chloride (Dissolved)	mg/L		120	151		84		129		135		161		130		120		240		73		141
Sulphate (dissolved)	mg/L			29		21		22		22		23		27		24		21		21		23
Bromide (dissolved)	mg/L			1.5	<	1.0	<	1.0	<	1.0		0.3	۷	0.3	۷	0.3	<	0.3	۷	0.3	<	0.3
Nitrite (as N)	as Nmg/L			< 0.03		0.01		0.01		0.01		0.04	۷	0.03	۷	0.03	<	0.03	۷	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	3.70		4.14		3.81		3.60		4.00		5.09		4.80		2.00		6.80		4.67
Nitrate + Nitrite (as N)	as N mg/L			3.70		4.15		3.82		3.60		4.01		5.09		4.80		2.00		6.80		4.67
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01		0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			351		310		335		360		374		404		412		359		365		385
Silver (total)	µg/L	0.1	0.25	0.03	<	0.10	<	0.10	<	0.10		0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Total Aluminum (Al)	µg/L			281		538		473		635		580		107		96		338		255		199
Aluminum (0.2µm)	µg/L	75	100	-1		5	<	5	<	5		44		15	<	1		5		13		9
Arsenic (total)	µg/L	100	5	1.3		1.5		1.3		1.4		1.5		0.7		0.7		3.2		1.2		1.5
Barium (total)	µg/L			71.4		58.5		68.3		74.8		78.2		68.6		63.2		73.8		52.6		64.6
Beryllium (total)	µg/L	1100		0.1	<	0.5	<	0.5	<	0.5		0.028	<	0.007	<	0.007		0.014		0.019		0.012
Boron (total)	µg/L	200	1500	11		15	<	10		13	_	14		11		13		14		81		30
Bismuth (total)	µg/L			0.3	<	1.0	<	1.0	<	1.0	_	0.032		0.009	<	0.007		0.030	<	0.010		0.014
Calcium (total)	µg/L			116750		108500		110000		115000	-	122500		137000		140000		119000		125000		130250
Cadmium (total)	µg/L	0.2	0.09	0.04	<	0.10	<	0.10	<	0.10	-	0.03		0.02		0.01		0.02		0.02		0.02
Coball (Iolal)	µg/L	0.9		0.376	_	0.553	<	0.500	-	0.533	-	0.435		0.493		0.292		0.207		0.359		0.353
Cannar (tatal)	µg/L	-		2.1	È	5.0	È	5.0	Ì	1.2	-	1.24		1.0		0.72		0.72		0.60		0.75
kop (total)	µg/L	200	200	1.0 550		652		575		790	-	672		125		102		425		222		247
Potossium (total)	µg/L	300	300	1700		1625		1550		1975		2049		1550		1670		425 2650		1670		1960
Magnesium (total)	µg/L			15000		12150		1/250		1/250		16375		1/000		15000		15200		12000		1/1500
Magnesium (total)	ug/L			65		48		50		59	T	72		34		29		51		50		41
Molybdenum (total)	ug/L	40	73	0.34	<	0.50		0.54	<	0.50	1	0.40		0.27		0.32		0.58		0.27		0.36
Sodium (total)	ug/l			77125		48250		75750	-	76000	1	69750		64900		63200		85900		33800		61950
Nickel (total)	ua/L	25	25	0.8	1	1.1		1.1		1.1	İ.	0.8		0.9		0.6		0.9		0.7		0.8
Phosphorus (total)	µg/L	10-30		45		48		46		59	T	52		26		16		57		35		34
Lead (total)	ua/L	5	7	0.46		0.62		0.54		0.57		0.58		0.20		0.08		0.32		0.26		0.22
Antimony (total)	µg/L	20		0.3	<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	0.6	<	2.0	<	2.0	<	2.0		0.17		0.28		0.25		0.13		0.20		0.22
Tin (total)	µg/L			0.3	<	1.0	<	1.0	<	1.0		0.11		0.16	<	0.06		0.10		0.12		0.11
Strontium (total)	µg/L			304		253		280		280		318		350		306		324		281		315
Titanium (total)	µg/L			13.0		32.4		27.9		37.0		28.9		7.8		5.2		17.7		12.9		10.9
Thallium (total)	μg/L	0.3	0.8	0.02		0.05	<	0.05	<	0.05		0.016	۷	0.005	۷	0.005		0.007	۷	0.005		0.006
Uranium (total)	µg/L	5	15	1.85		2.70		2.38		1.98		2.22		4.91		2.92		2.42		2.64		3.22
Vanadium (total)	µg/L	6		1.59		1.90		1.62		2.10		2.00		0.82		0.80		1.69		1.20		1.13
Zinc (total)	µg/L	30	30	4		7	<	5		6		6		2		2		3		3		3
Lead-210	Bq/L			< 0.02		0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1	L	0.02	L	0.03	<	0.04	<	0.04	L	0.01	<	0.01	<	0.01		0.02	<	0.01		0.01
Thorium-230	Bq/L			0.03		0.06	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters					<u> </u>						L											
ODO % Sat	%			-2	<u> </u>	_2	L	-2	L	_2	L	-		103.7		100.2	I	93.7		93.8		
ORP	mV			-4	L			-4			L	-		216.8		120.8		129.1		131.7		
SPC	µs/cm		<u> </u>	-4	<u> </u>	-4	_	-4		-4	L	-		959		825		1132		836		
Temperature	°C			-*	<u> </u>	-*	-	-*	<u> </u>	-1	L	-	-	4.125	-	4.405		18.818	-	10.366		
TURDIAILY	FNU L la ita				┢	2	-		<u> </u>	2	┡		<u> </u>	4.6		4.68	<u> </u>	21.73	<u> </u>	8.11	-	
pn Stoff Course	Units				+		-		┣—		⊢	_		8.23		8.15	_	8.33		88.1	-	
Start Gauge	um	L	L	<u> </u>	1		1	-		-	1			ıö		21				29	1	

Table 54: Surface water quality – Brand Creek – Marsh Road (BC-M)

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 55: Surface Water Quality – Brand Creek – tributary of Brand Creek (BC-T)

									BC-T												
		Crit	eria	2016 2017 2018 2019 2020						2020						2021					
Parameter	Units	PWQO	CWQG				Average					202	21-01-14	20	21-04-08	20	21-08-06	20	21-11-01	A	verage
Total Suspended Solids	ma/L			23	9)	20	1	27		31		8		19		61		4		23
pН	no unit	6.5-8.5	6.5-9.0	8.06	8.	22	8.13		8.23		8.21		8.19		8.16		8.22		8.14		8.18
Alkalinity	mg/L as CaCO ₃			249	28	35	285		270		249		256		267		269	1	297		272
Carbonate	mg/L as CaCO ₃			5	4.	3	3.8		4.3	<	1.0	<	1	<	1	<	1	<	1	<	1
Bicarbonate	mg/L as CaCO ₃			245	28	30	283		265		249		256		267		269		297		272
Total Dissolved Solids	mg/L			825	80)3	958		874		817		950		955		960		894		940
Fluoride	mg/L		0.12	0.10	0.	11	< 0.10	<	0.10		0.10		0.08		0.10		0.08		0.10		0.09
Total Organic Carbon	mg/L			3	5	5	4		3		3		3		3		3		5		4
Ammonia+Ammonium (N)	as N mg/L			0.05	< 0.0)5	0.06		0.12		0.05		0.04	<	0.04	<	0.04		0.04		0.04
Chloride (Dissolved)	mg/L		120	300	28	30	368		323		345		390		380		420	L	270		365
Sulphate (dissolved)	mg/L			38	2	7	29		29		30		50		42	⊢	32		35		40
Bromide (dissolved)	mg/L			0.5	2.	.3	< 1.0	<	5.0		0.3		0.5		0.4	<	0.3	⊢	0.4		0.4
Nitrite (as N)	as N mg/L		40	0.03	< 0.0	01	< 0.01	_	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	1.74	1.4	48	1.43	-	1.37		2.20		1.34		1.52	<u> </u>	2.20	<u> </u>	2.08	┢	1.79
Nitrate + Nitrite (as N)	as N mg/L		0.000	1.74	1.4	48	1.43		1.37		2.20		1.34		1.52	-	2.20	L	2.08		1.79
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.	01	< 0.01	<	0.01	<	401	<	470	<	10.01	<	275	< <u> </u>	272	< <u></u>	425
Silver (total)	Ing/L as CaCO ₃	0.1	0.25	0.03	< 0	10	< 0.10	2	0 10		401	2	470	2	403	<	0.05	<	0.05	2	425
Total Aluminum (Al)	µg/L	0.1	0.25	0.03	< 0. 18	10	< 0.10 714	È	284		830	È	117	È	137	È	1300	È	51	È	401
Aluminum (0.2um)	ug/L	75	100	_1	< F	5	< 5	<	5	1	53		31	-	2	+	4	-	6	┢	11
Arsenic (total)	ua/L	100	5	2.7	5	3	4.2	È	3.3		3.5		1.9		2.0	-	5.2	-	3.1		3.1
Barium (total)	ua/L		-	98.3	87	.5	115.3	t	100.8		112.3		116.0		111.0	t –	125.0	1	86.5		109.6
Beryllium (total)	µg/L	1100		0.1	< 0.	.5	< 0.5	<	0.5		0.027	<	0.007	<	0.007		0.055	<	0.007		0.019
Boron (total)	µg/L	200	1500	11	1	5	12		14		14		11		25		14	1	37		22
Bismuth (total)	µg/L			0.3	< 1.	.0	< 1.0	<	1.0		0.031		0.013		0.013		0.040	<	0.010		0.019
Calcium (total)	µg/L			118750	120	000	132500		122500		131750		157000		164000		121000	1	125000		141750
Cadmium (total)	µg/L	0.2	0.09	0.03	< 0.	10	< 0.10	<	0.10		0.02		0.05		0.03		0.03		0.02		0.03
Cobalt (total)	µg/L	0.9		0.296	< 0.5	00	0.750	<	0.500		0.557		2.080		1.320		0.772		1.400		1.393
Chromium (total)	µg/L			1.9	< 5.	.0	< 5.0	<	5.0		1.61		1.26		0.72		2.67		0.25		1.23
Copper (total)	µg/L	5		1.2	1.	.4	2.1		1.6		2.4		2.3		1.2		2.2		0.9		1.7
Iron (total)	µg/L	300	300	419	28	38	945		378		961		198		198		1550		136		521
Potassium (total)	µg/L			1598	13	48	1700		1675		1840		1460		1740	⊢	1760		1440		1600
Magnesium (total)	µg/L			15580	130	000	16500		16500		17750		19000		18100	⊢	17900		14600		17400
Manganese (total)	µg/L			36	3	9	/3	-	34		63		36		36	<u> </u>		⊢	24	_	43
Molybdenum (total)	µg/L	40	73	0.51	0.0	64 000	0.61	-	0.57	_	0.60		0.49	_	0.62	-	0.60	⊢	0.45	-	0.54
Sodium (total)	µg/L	25	25	156750	1/0	000	232500	-	192500	-	101000		192000	_	197000	-	171000	<u> </u>	133000	⊢	173250
Phosphorus (total)	µg/L	20	25	2.4	1.	0	1.5	È	73		51	-	2.7	-	2.1	-	1.5		2.4	+	30
Lead (total)	µg/L	5	7	0.32	< 0	50	0.90	<	0.50		0.68		0.30		0.18		1 36	<	0.09		0.48
Antimony (total)	ua/L	20		0.3	< 0.	.5	< 0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µa/L	100	1	0.6	< 2	.0	< 2.0	<	2.0		0.13		0.13		0.13		0.10	1	0.14		0.13
Tin (total)	µg/L			0.3	< 1	.0	< 1.0	<	1.0		0.10		0.21	<	0.06		0.09	1	0.08		0.11
Strontium (total)	µg/L			361	34	10	393		353		397		487		439		363		367		414
Titanium (total)	µg/L			15	1	2	40		18		40.62		7.1		8.5		71.9		4.1		22.9
Thallium (total)	µg/L	0.3	0.8	0.02	< 0.	05	< 0.05	<	0.05		0.022	<	0.005	<	0.005		0.021	<	0.005		0.009
Uranium (total)	µg/L	5	15	4	9)	7		6		5		18		10		2		12		10
Vanadium (total)	µg/L	6		1.20	0.	97	1.91		1.12		2.26		0.91		0.79		3.13		0.50		1.33
Zinc (total)	µg/L	30	30	5	< 5	5	8		6		9		5		4		10	L	2		5
Lead-210	Bq/L			< 0.02	< 0.0	02	< 0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	< 0.0	03	< 0.04	<	0.04		0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L			< 0.03	< 0.0)6 26	< 0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Inorium-232	Bd/L			< 0.02	< 0.0	Jþ	< 0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Piela Parameters	0/			2	<u> </u>	2	2	┢	2	⊢	2	-	00	-	05.0		02.4	⊢	07.2	┢	
	70 m\/					2		┢	2	⊢		-	99	-	95.9	├	92.4	┢──	97.3	┢	
SPC	us/cm			- 2		2	- 2	┢	2	⊢	2	-	1706	-	140.4	-	1657	⊢	1/65	┢	
Temperature	ра/спі °С			_2		2	_2	┢	2	⊢	-	-	3 179	\vdash	6.415	-	18 / 70	┢──	9 204	┢	
Turbidity	FNU			2		2	_2	+	_2	\vdash	_2	-	9.58		9.31	<u> </u>	30.56	\vdash	4,89	⊢	
pH	Units			_2		2	_2	t	_2	t	_2		8.1		8.28	<u> </u>	8.38	\vdash	8.19	t	
Staff Gauge	cm			_2	-	2	_ ²	┢	_2	t	_2					<u> </u>		t		t	
Note:								-		•		•						<u> </u>		•	

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

		Crit	eria	BC-M											
				2021/07/08	2021/07/08	2021/07/08	2021/07/08	2021/07/08	2021/07/08						
A mali va ia	l la ita	-		10:30AM	11:30AM	12:30PM	1:30PM	2:30PM	3:30PM						
	Units	PWQO	CWQG	10.007 (11)	71.007.001	12.00110	1.001111	2.001 111	0.001 111						
Total Suspended Solids	mg/L			49	/1	56	56	46	83						
pH	no unit	6.5-8.5	6.5-9.0	8.02	8.00	8.00	7.97	7.95	7.97						
Alkalinity	mg/L as CaCO3			296	281	291	293	261	256						
Carbonate	mg/L as CaCO3			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
Bicarbonate	mg/L as CaCO3			296	281	291	293	261	256						
Total Dissolved Solids	mg/L			637	669	654	637	617	603						
Fluoride	mg/L		0.12	0.11	0.08	0.08	0.08	0.08	0.07						
Total Organic Carbon	mg/L			4	4	4	5	5	5						
Ammonia+Ammonium (N)	as Nmg/L			0.10	0.08	0.10	0.10	0.12	0.11						
Chloride (Dissolved)	mg/L		120	190	190	190	180	180	180						
Sulphate (dissolved)	mg/L			23	23	23	22	21	21						
Bromide (dissolved)	mg/L			< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3						
Nitrite (as N)	as Nmg/L			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03						
Nitrate (as N)	as N mg/L		13	2.32	2.35	2.29	2.16	1.95	1.82						
Nitrate + Nitrite (as N)	as N mg/L			2.34	2.37	2.31	2.19	1.97	1.84						
Mercury (dissolved)	ua/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01						
Hardness	mg/L as CaCO3			407	388	387	383	370	379						
Silver (total)	ug/l	0.1	0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						
Aluminum (total)	ug/L	0.1	0.20	850	632	1270	626	693	1390						
Aluminum (0.2um)	µg/L	75	100	5	4	1210	11	11	6						
	µg/L	100	100	36	4	26	2.4	24	4.1						
Arsenic (total)	µg/L	100	5	04.0	02.1	01.5	3.4 96 E	96.0	4.1						
Banum (total)	µg/L	4400		94.9	0.007	91.5	00.0	00.2	94.0						
Beryllum (total)	µg/L	1100		0.047	0.027	0.048	0.044	0.037	0.073						
Boron (total)	µg/L	200	1500	15	16	15	15	15	1/						
Bismuth (total)	µg/L			0.040	0.020	0.030	0.020	0.020	0.030						
Calcium (total)	µg/L			136000	130000	129000	128000	123000	127000						
Cadmium (total)	µg/L	0.20	0.09	0.042	0.026	0.040	0.033	0.028	0.052						
Cobalt (total)	µg/L	0.9		0.751	0.469	0.747	0.664	0.606	1.07						
Chromium (total)	µg/L			1.38	0.97	2.05	1.17	1.08	1.89						
Copper (total)	µg/L	5		1.9	1.3	1.8	1.8	1.8	2.3						
Iron (total)	µg/L	300	300	1120	758	1410	914	890	1720						
Potassium (total)	µg/L			2030	1980	2110	2010	2290	2500						
Magnesium (total)	µg/L			16100	15700	15900	15300	15300	15200						
Manganese (total)	µg/L			155	99	121	158	122	180						
Molybdenum (total)	µg/L	40	73	0.45	0.51	0.52	0.44	0.44	0.43						
Sodium (total)	µg/L			89700	87300	86300	86200	85600	85900						
Nickel (total)	µg/L	25	25	1.2	0.9	1.5	1.2	1.1	1.6						
Phosphorus (total)	ua/L	10-30		98	75	118	92	95	135						
Lead (total)	ua/L	5	7	1.20	0.63	1.06	1.06	0.96	1.70						
Antimony (total)	ug/l	20	-	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9						
Selenium (total)	ug/l	100	1	0.14	0.16	0.16	0.14	0.18	0.18						
Tin (total)	ug/L	100		0.08	0.10	0.10	0.14	0.10	0.10						
Strontium (total)	rg/L			380	366	368	365	0.10	356						
Titanium (total)	µg/⊑ ug/l			309 A0.6	25.5	62.5	20.2	24.6	60.0						
Thallium (total)	µg/∟ ug/l	0.2	0 0	40.0	0.010	03.5	29.3	0.012	0.020						
	µg/L	0.3	0.0	0.011	0.010	0.014	0.009	0.013	0.020						
Vanadium (total)	µg/∟	3	15	2.32	2.07	2.10	2.11	2.10 0.00	2.31						
Vanadium (total)	µg/L	6		3.21	2.40	3.52	2.82	2.80	4.41						
Zinc (total)	µg/L	30	30	6	/	6	/	6	9						
Lead-210	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02						
Radium-226	Bq/L	1.0		< 0.01	< 0.01	< 0.01	0.03	< 0.01	0.01						
Thorium-230	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02						
Thorium-232	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02						
Field Parameters															
ODO % Sat	mg/L			86	86.8	83.4	83.4	81.7	88.8						
ORP	mV			115.5	96.9	92.5	102.7	101.3	106.3						
SPC	us/cm			1253	1128	1115	1114	1077	1058						
Temperature	°C			14.877	15.088	15.177	15.318	15.516	16.148						
Turbidity	FNU			27.87	22.94	40.58	22.15	32.26	60.57						
pH	Units			8.10	7.83	7.84	7.79	7.73	7.79						
Staff Gauge	cm														
PWOO = Provincial Water O		Ministrys	f the Envir	 nment											
		, wiinsuy o													

Table 56: Storm event sampling – Brand Creek Watershed (BC-M)

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQO or CWQG value

				BC								BC-LO-I	-D							
		Crit	eria	2016 2017 2018 2019 2020							2020				202	21				
Parameter	Units	PWQO	CWQG				A	verage					20	21-06-16	20	21-09-13	20	21-11-03	A	verage
Total Suspended Solids	ma/L			2	T	3	<	1		2	Γ	3		13		2		9		8
pH	no unit	6.5-8.5	6.5-9.0	8.45	1	8.14		8.15		8.21		8.02		8.17		8.11		7.81		8.03
Alkalinity	mg/L as CaCO ₃			94		97		99		95		92		91		93		99		94
Carbonate	mg/L as CaCO ₃			< 2.0		1.3		1.3		1.5	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			94		95		98		93		92		91		93		99		94
Total Dissolved Solids	mg/L			167		185		135		177		185		149		189		183		174
Fluoride	mg/L		0.12	0.12		0.12		0.12		0.10		0.12		0.12		0.11		0.12		0.12
Total Organic Carbon	mg/L			2.4		2.4		2.3		2.1		1.5		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.04	<	0.05	<	0.05	<	0.05		0.06	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (Dissolved)	mg/L		120	24		22		26		23		24		26		24		26		25
Sulphate (dissolved)	mg/L			24		23		31		23		22		22		23		23		23
Bromide (dissolved)	mg/L			< 0.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as Nmg/L			< 0.03	<	0.01	<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as Nmg/L		13	0.25		0.24		0.29		0.26		0.31		0.30		0.31		0.48		0.36
Nitrate + Nitrite (as N)	as Nmg/L			0.25		0.24		0.29		0.26		0.31		0.30		0.31		0.48		0.36
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01		0.01	<	0.01	<	0.01		0.01
Hardness	mg/L as CaCO₃			125		125		130		130		119		125		125		124		125
Silver (total)	µg/L	0.1	0.25	0.003	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L			5		48		18		43		32		4		16		137		52
Aluminum (0.2µm)	µg/L	75	100	-'	<	5.0	<	5.0	<	5.0	<u> </u>	4.0	I	1.0	<	1.0	<	1.0	L	1.0
Arsenic (total)	µg/L	100	5	0.9	<	1.0		2.4	<	1.0	L	0.8	<u> </u>	0.9	⊢	0.8	⊢	1.4	L	1.0
Barium (total)	µg/L			22.0		23.0		22.0		21.0		23.2		22.9		22.3		21.2		22.1
Beryllium (total)	µg/L	1100		< 0.01	<	0.5	<	0.5	<	0.5	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500	29		23		22		23		20		24	ļ	/3	-	16		38
Bismuth (total)	µg/L			< 0.01	<	1.0	<	1.0	<	1.0	-	0.011	<	0.010	<	0.010		0.040		0.020
Calcium (total)	µg/L		0.00	35300		33500		34500		36333		34150		34800	<u> </u>	35800		37200		35933
	µg/L	0.2	0.09	0.006	<	0.100	<	0.100	<	0.100		0.006		0.003	<u> </u>	0.006		0.010		0.006
Cobalt (total)	µg/L	0.9		0.081	<	0.500	<	0.500	<	0.500	_	0.062		0.012	<u> </u>	0.013		0.212		0.079
Chromum (total)	µg/L	F		0.4	<	5.0	<	5.0	<	5.0		0.21		0.24	<u> </u>	0.25		0.39		0.29
kep (total)	µg/L	5 200	200	1.0	/	1.7	/	1.0	<	1.0		0.9	/	0.9	<u> </u>	0.7		174		0.0
Potassium (total)	µg/L	300	300	1625	È	1700	È	1550	`	1533	-	43	`	1620		1520		174		1613
Magnesium (total)	µg/L			8865		8700		8800		8733		8205	-	0260	-	8700		7560		8507
Manganese (total)	µg/L			0000		3.0		3.2		3.4		3 11		9200 1 1 1		1 27		9.74		4.04
Molybdenum (total)	ug/L	40	73	1.4	-	1.2	-	1.2		1.1		1 18		1.11		1.27		1 16	-	1 18
Sodium (total)	µg/L	40	15	13650		13500		17500		1/667		12550		1/100		1/1300		1/100		14167
Nickel (total)	ug/L	25	25	0.6	<	1.0		12	<	14007		0.8		0.6		0.5	-	0.8		0.6
Phosphorus (total)	ug/L	10-30	20	5		8		6	-	1.0		10		15	<	3		17		12
Lead (total)	µg/L	5	7	0.02	<	0.50	<	0.50	<	0.50		0.09	<	0.09	<	0.09		0.16		0.11
Antimony (total)	µg/L	20		0.3	<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	0.15	<	2.0	<	2.0	<	2.0	t i	0.11		0.15	<u> </u>	0.16	-	0.14		0.15
Tin (total)	µg/L			0.03	<	1.0	<	1.0	<	1.0	1	0.09	l I	0.10		0.07	<	0.06		0.08
Strontium (total)	µg/L			176	1	165		170		163	1	184	Ī	191		183		155		176
Titanium (total)	µg/L			1	1	5.10	<	5.00	1	5.70		1.45		0.26		0.76		6.69		2.57
Thallium (total)	µg/L	0.3	0.8	0.007	<	0.050	<	0.050	<	0.050	1	0.008	1	0.005	<	0.005		0.006		0.005
Uranium (total)	µg/L	5	15	0.362		0.350		9.690		0.377		0.351		0.390		0.348		0.615		0.451
Vanadium (total)	µg/L	6		0.20		0.51	<	0.50		0.59		0.25		0.20		0.25		0.52		0.32
Zinc (total)	µg/L	30	30	2.5	<	5.0	<	5.0	<	5.0		3.0	<	2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L			< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	<	0.04	<	0.04	<	0.04		0.01	<	0.01		0.01	<	0.01		0.01
Thorium-230	Bq/L			< 0.02	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																				
ODO % Sat	%			_2		_2		_2		_2		_2		109.2		97.7		98.9		
ORP	mV			_2		_2		_2		-2		- ²		128.4				118.3		
SPC	µs/cm			_2		_2		_2		_2		_2		320.9		304.1		324.2		
Temperature	°C			_2		_2		_2		_2		_2		10.805		13.202		8.207		
Turbidity	FNU			_ ²		_2		_2		_ ²		_ ²	I	0.26		1.69		12.88		
pH	Units			-2		_2		_2		_2		-2	<u> </u>	8.73	\vdash		⊢	7.99		
Staff Gauge	cm			- ²		_ ²		_ ²		_ ²		_ ²	1				L			

Table 57: Surface water – Lake Ontario diffuser (BC-LO-D)

Notes:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

				BC-LC						E							
		Crit	teria	2016	2017	2018	2019	2020		20	21						
Parameter	Units	PWQO	CWQG	CWQG Average						6 2021-09-13	2021-11-03	Average					
Total Suspended Solids	ma/L			2	3	< 1	2	4	42	2	11	18					
pH	no unit	6.5-8.5	6.5-9.0	8.41	8.20	8.18	8.21	8.06	8.2	8.03	7.87	8.03					
Alkalinity	mg/L as CaCO ₃			96	97	98	98	89	102	92	105	100					
Carbonate	mg/L as CaCO ₃			< 2.0	1.4	1.4	1.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0					
Bicarbonate	mg/L as CaCO ₃			95	95	96	94	89	102	92	105	100					
Total Dissolved Solids	mg/L			182	157	113	235	182	129	197	169	165					
Fluoride	mg/L		0.12	0.12	0.11	0.12	0.11	0.13	0.11	0.15	0.11	0.12					
Total Organic Carbon	mg/L			1.6	2.4	2.0	2.1	1.5	2.0	2.0	2.0	2.0					
Ammonia+Ammonium (N)	as N mg/L			< 0.04	< 0.05	< 0.05	< 0.05	0.05	< 0.04	< 0.04	< 0.04	< 0.04					
Chloride (Dissolved)	mg/L		120	24	22	22	23	25	26	24	26	25					
Sulphate (dissolved)	mg/L			24	23	23	23	22	23	23	23	23					
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3					
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03					
Nitrate (as N)	as N mg/L		13	0.24	0.24	0.28	0.27	0.30	0.30	0.31	0.54	0.38					
Nitrate + Nitrite (as N)	as N mg/L			0.24	0.24	0.28	0.27	0.30	0.30	0.31	0.54	0.38					
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Hardness	mg/L as CaCO ₃			128	125	120	130	125	131	121	133	128					
Silver (total)	µg/L	0.1	0.25	0.002	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					
Aluminum (total)	µg/L			6	65	12	35	40	7	12	76	32					
Aluminum (0.2µm)	µg/L	75	100	_1	< 5.0	< 5.0	< 5.0	11.0	2.0	< 1.0	< 1.0	1.3					
Arsenic (total)	µg/L	100	5	0.9	< 1.0	< 1.0	< 1.0	0.9	0.9	0.8	0.9	0.9					
Barium (total)	µg/L			21.6	23.0	22.0	22.7	24.6	24.2	21.6	23.3	23.0					
Beryllium (total)	µg/L	1100		< 0.01	< 0.5	< 0.5	< 0.5	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007					
Boron (total)	µg/L	200	1500	27	23	22	22	22	26	56	17	33					
Bismuth (total)	µg/L			< 0.01	< 1.0	< 1.0	< 1.0	< 0.007	< 0.010	< 0.010	< 0.010	< 0.010					
Calcium (total)	µg/L			36800	34500	32500	36667	36150	36200	34800	39500	36833					
Cadmium (total)	µg/L	0.2	0.09	0.005	< 0.100	< 0.100	< 0.100	0.004	0.005	0.008	0.003	0.005					
Cobalt (total)	µg/L	0.9		0.787	< 0.500	< 0.500	< 0.500	0.059	0.019	0.012	0.089	0.040					
Chromium (total)	µg/L			0.4	< 5.0	< 5.0	< 5.0	0.74	0.27	0.19	0.31	0.26					
Copper (total)	µg/L	5		0.9	2.0	1.4	1.0	1.0	0.9	0.7	0.9	0.8					
Iron (total)	µg/L	300	300	14	120	< 100	< 100	43	9	10	96	38					
Potassium (total)	µg/L			1630	1650	1500	1533	1655	1690	1510	1/10	1637					
Magnesium (total)	µg/L			0030	6600	0000	0933	0250	9940	0.01	6300	00000					
Maligariese (total)	µg/L	40	72	1.2	1.0	< 2.0 1.0	3.0	2.01	1.40	0.91	1.22	1.22					
Sodium (total)	µg/L	40	13	13300	13500	13500	14000	12800	1.24	13700	1/100	1/333					
Nickel (total)	µg/L	25	25	13300	10	10	14000	12000	0.5	13700	14100	14333					
Phosphorus (total)	µg/L	10-30	23	7	11	< 1.0 5	< 1.0 8	8	13	< 3	12	0.0 Q					
Lead (total)	ug/L	5	7	0.03	< 0.50	< 0.50	< 0.50	0.02	< 0.09	< 0.09	0.11	0.10					
Antimony (total)	ug/L	20	<u>'</u>	0.00	< 0.50	< 0.50	< 0.50	< 0.02	< 0.00	< 0.00	< 0.9	< 0.10					
Selenium (total)	ug/L	100	1	0.17	< 2.0	< 20	< 20	0.14	0.15	0.21	0.17	0.18					
Tin (total)	ua/L			0.04	< 1.0	< 1.0	< 1.0	0.09	0.12	0.07	< 0.06	0.08					
Strontium (total)	µa/L			178	165	165	163	205	200	175	176	184					
Titanium (total)	ua/L			_1	5.55	< 5.00	5.25	1.78	0.42	0.41	3.71	1.51					
Thallium (total)	µg/L	0.3	0.8	0.005	< 0.050	< 0.050	< 0.050	0.007	0.005	< 0.005	0.008	0.006					
Uranium (total)	µg/L	5	15	0.452	0.355	0.540	0.380	0.381	0.425	0.317	0.381	0.374					
Vanadium (total)	µg/L	6		0.19	0.58	< 0.50	0.62	0.45	0.22	0.19	0.36	0.26					
Zinc (total)	µg/L	30	30	2.5	< 5.0	< 5.0	< 5.0	< 2.0	< 2.0	< 2.0	3.0	2.3					
Lead-210	Bq/L			< 0.02	< 0.02	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02					
Radium-226	Bq/L	1		0.01	< 0.04	< 0.04	< 0.04	< 0.01	< 0.01	< 0.01	0.01	0.01					
Thorium-230	Bq/L			< 0.02	< 0.07	< 0.07	< 0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02					
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02					
Field Parameters																	
ODO % Sat	%			-2	-2	-2	- ²	-2	107.4	98.5	102.8						
ORP	mV			_2	_2	_2	-2	_2	130.7		118.8						
SPC	µs/cm			_2	_2	_2	-2	_2	313.4	303.8	327.6						
Temperature	°C			_2	_2	_2	-2	_2	9.471	13.349	8.154						
Turbidity	FNU			_2	_2	_2	-2	_2	7.1	0.79	12.33						
pН	Units			_2	_2	_2	-2	_2	8.62		7.98						
Staff Gauge	cm			_2	- ²	_2	-2	_2									

Table 58: Surface water – Lake Ontario diffuser – outside eastern edge of mixing zone (BC-LO-E)

Notes:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 59: Surface water – Lake Ontario diffuser – outside western edge of mixing zone (BC-LO-W)

				BC-LO						BC-LO-	N								
		Crit	eria	2016 2017 2018 2019 2020						2020				202	21				
Parameter	Units	PWQO	CWQG				Average			ļ		20	21-06-16	20	21-09-13	20	21-11-03	A	verage
Total Suspended Solids	ma/l		0	2		4	1	Т	2	T	3	-	6	<	2	-	11		6
pH	no unit	6.5-8.5	6.5-9.0	8.43	8	.18	8.16	-	8.26		8.09		8.23		8.08		7.86		8.06
Alkalinity	mg/L as CaCO₀			93	9	97	98		99		95		93		98		95		95
Carbonate	mg/L as CaCO ₃			< 2.0	1	1.4	1.3		1.6	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			93	9	95	96	1	94	ľ	95		93		98		95		95
Total Dissolved Solids	mg/L			176	1	99	143	1	162	ľ	214		154		177		154		162
Fluoride	mg/L		0.12	0.13	0.	.11	0.13		0.10		0.11		0.11		0.11		0.12		0.11
Total Organic Carbon	mg/L			2.1	2	2.3	2.1		2.3		1.5		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.04	< 0	.05	< 0.05		0.05		0.05	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (Dissolved)	mg/L		120	24	2	22	22		22		24		25		23		25		24
Sulphate (dissolved)	mg/L			24	2	23	24		23		22		22		23		22		22
Bromide (dissolved)	mg/L			< 0.3	< 1	1.0	< 1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0	.01	< 0.01		0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as Nmg/L		13	0.23	0	.23	0.30		0.28		0.30		0.30		0.30		0.38		0.33
Nitrate + Nitrite (as N)	as Nmg/L			0.23	0	.23	0.30		0.28		0.30		0.30		0.30		0.38		0.33
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0	.01	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO3			125	1	25	120		137		125		126		119		144		130
Silver (total)	µg/L	0.1	0.25	0.002	< 0	.10	< 0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L			5	4	45	12		43		50		5		11		259		92
Aluminum (0.2µm)	µg/L	75	100	_1	< 5	5.0	< 5.0	<	5.0		4.5		2.0	<	1.0	<	1.0		1.3
Arsenic (total)	µg/L	100	5	0.8	< 1	1.0	< 1.0	<	1.0		0.9		0.8		0.7		1.0		0.8
Barium (total)	µg/L			21.6	2	2.0	22.5		22.3		23.3		23.2		21.3		26.2		23.6
Beryllium (total)	µg/L	1100		< 0.01	< 0).5	< 0.5	<	0.5	<	0.007	<	0.007	<	0.007		0.008		0.007
Boron (total)	µg/L	200	1500	27	2	24	22		23		20		25		60		21		35
Bismuth (total)	µg/L			< 0.01	< 1	1.0	< 1.0	<	1.0		0.010	<	0.010	<	0.010		0.010		0.010
Calcium (total)	µg/L			35800	33	500	32000		36667		36050		34800		34100		43600		37500
Cadmium (total)	µg/L	0.2	0.09	0.008	< 0.	100	< 0.100	<	0.100		0.007		0.003		0.005		0.015		0.008
Cobalt (total)	µg/L	0.9		0.254	< 0.	500	< 0.500	<	0.500		0.047		0.015	<	0.004		0.158		0.059
Chromium (total)	µg/L	_		0.4	< 5	5.0	< 5.0	<	5.0		0.25		0.22		0.35		0.62		0.40
Copper (total)	µg/L	5		0.8	1	1.7	2.0	<	1.0		1.1		0.8		0.6		1.2		0.9
Iron (total)	µg/L	300	300	11	< 1	00	< 100	<	100		63	<	1		12		317		112
Potassium (total)	µg/L			1610	16	500	1500	_	1533		1640		1630		1510		1940		1693
Magnesium (total)	µg/L			8660	8/	/50	8350	_	9000	-	8385		9520		8320		8620		8820
Manganese (total)	µg/L	40	70	0.7	3	3.8	< 2.0	-	3.0		4.54		0.98		0.83		16.98		6.26
Nolybdenum (total)	µg/L	40	73	1.3	14	000	1.2	+	1.1		1.24		1.24		12000		1.73		1.39
Sodium (total)	µg/L	- 25	- 25	13350	14	000	13500	-	13007		12600		14500		13800		14100		14133
Nickei (total)	µg/L	20	25	0.0	<	n.0	< 1.0	1	1.0	-	0.0		0.5		0.0		21		0.7
Lood (total)	µg/L	10-30	7	5	< 0	50	- 0.50		9	-	9	/	0.00	/	4		0.20		0.16
Antimony (total)	µg/L	20		0.02		.50	< 0.50	È	0.50	/	0.09	-	0.09	~	0.09	/	0.29	/	0.10
Selenium (total)	µg/L	100	1	0.5		2.0	< 2.0	È	2.0	È	0.9	<u>`</u>	0.9	Ì	0.9	-	0.9	Ì	0.9
Tin (total)	µg/L	100	-	< 0.10	< 1	1.0	< 1.0	È	1.0	-	0.13		0.13	٤	0.10	۲	0.20		0.10
Strontium (total)	ug/L			173	1	65	160	È	167		191		190	`	175	-	195		187
Titanium (total)	ua/L			1	< 5	.00	< 5.00	<	5.40	\vdash	2.34		0.18		0.44		12.90		4.51
Thallium (total)	µg/L	0.3	0.8	0.006	< 0.	050	< 0.050	<	0.050	ľ	0.007		0.005	<	0.005		0.008		0.006
Uranium (total)	µg/L	5	15	0.353	0.	355	0.325	+	0.380	ľ	0.353		0.375		0.311		0.391		0.359
Vanadium (total)	µa/L	6		0.20	0	.55	< 0.50	<	0.59		0.31		0.20		0.20		0.78		0.39
Zinc (total)	µa/L	30	30	2.5	< 5	5.0	< 5.0	<	5.0		2.5		3.0	<	2.0		2.0		2.3
Lead-210	Bg/L			0.03	< 0	.02	< 0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	< 0	.04	< 0.04	<	0.04	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L			< 0.02	< 0	.07	< 0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	Ì	l	< 0.02	< 0	.06	< 0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters								T		1		Î		1				1	
ODO % Sat	%			_2	<u> </u>	_2	_2	T	_2	t	_ ²	1	111.3	l –	98.8		100.8	l –	
ORP	mV			_2		2	_2	1	_2	1	- ²	1	130.3	1			118.2	1	
SPC	µs/cm		l	_ ²	· · ·	_2	_2	T	_2	1	_2	1	312.6	l	303.7		308.2	l	
Temperature	°C		l	_ ²	· · ·	_2	_2	T	_2	1	_2	1	9.978	l	13.291		7.903	l	
Turbidity	FNU			<u>_</u> 2		_2	_2	1	_2	1	_2	I	3.24		0.9		12.44		
pH	Units			_ ²		_2	_2		_2		_ ²		8.66				7.96		
Staff Gauge	cm			_ ²		_2	_ ²		_2		_2								

Notes:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

	WC-SW3-02 2016 2017 2018 2019 2020 2021												
		2016	2	2017	2018		2019		2020		2021		
Parameter	Units				Average					2021-05-11	2021-11-16	Average	
Total Suspended Solids	ma/l	11	1	5	190	r	11	r	38	112	52	82	
nH	ng/L	8 26		8 17	8 16		8.07	-	8 10	8.02	7.97	7.05	
Alkolinity		205		205	200	-	265	-	256	554	220	7.95	
Carbonate	mg/L as $CaCO_3$	200		4.2	300		200	-	200	< 1.0	< 1.0	- 10	
Bicarbonate	mg/L as $CaCO_3$	280		300	4.2 300		255	È	256	< 1.0 554	220	< 1.0 387	
Total Dissolved Solids	mg/L as CaCO ₃	371		337	610		1100		1210	2530	674	1602	
Fluoride	mg/L	0.10	<	0.10	< 0.10	<	0.10	<	0.06	0.13	0.10	0.12	
Total Organic Carbon	mg/L	4.6	-	3.5	4 3	È	33	È	3.0	3.0	6.0	4.5	
A mmonia ± A mmonium (NI)	as Nma/l	0.05	/	0.05	0.06	/	0.05	-	0.05	0.05	0.0	0.13	
Chloride (Dissolved)	ma/l	11.4	`	15	90.00	È	385		455	760	160	460	
Sulphate (dissolved)	mg/L	20		25	40		64	-	68	300	64	182	
Bromide (dissolved)	mg/L	0.7	<	1			7	+	8	13.2	21	8	
Nitrite (as N)	as Nmg/L	0.023	<	0.014	< 0.010	<	0.020	<	0.030	2 24	0.09	1 17	
Nitrate (as N)	as Nmg/L	0.51	-	1 41	1 56	-	2 21	-	1 64	2.54	1 45	2.00	
Nitrate + Nitrite (as N)	as Nmg/L	0.52		1.41	1.56		2.23		1.64	4 78	1.40	3 16	
Mercury (dissolved)	ua/l	< 0.02	<	0.01	< 0.01	<	0.01	<	0.01	< 0.01	< 0.01	< 0.10	
Hardness	mg/L as CaCO	304		310	455		780		915	1490	430	960	
Silver (total)		0.08	<	0.10	0.23	<	0.10	<	0.05	0.09	0.05	0.07	
Aluminum (total)	ug/l	192	-	130	3000	· ·	81		69	1100	146	623	
Aluminum (0.2um)	ug/L	_1	<	5	21		6		6	15	6	11	
Arsenic (total)	ug/L	1425	-	830	890		335		430	2070	182	1126	
Barium (total)	ug/l	30		30	81		106		90	318	116	217	
Bervllium (total)	ug/l	0.25	<	0.50	< 0.50	<	0.50	<	0.007	0.028	< 0.007	0.018	
Boron (total)	ug/l	42		32	42		51		63	104	141	123	
Bismuth (total)	ua/L	0.5	<	1.0	5.5	<	1.0		0.3	94.6	1.23	47.9	
Calcium (total)	ug/l	99050		107500	170000		220000		267000	369000	116000	242500	
Cadmium (total)	ug/l	0.05	<	0.10	< 0.10	<	0.10		0.09	4 92	0.071	2.50	
Cobalt (total)	ua/L	5.5		1.4	54.1		3.0		39.0	4370	90.3	2230	
Chromium (total)	ua/L	2.7	<	5.0	< 5.0	<	5.0		0.6	2.95	0.70	1.8	
Copper (total)	ua/L	4.5		1.4	52.6		2.9		22.8	4380	68	2224	
Iron (total)	ua/L	377		200	3150		140		433	5980	361	3171	
Potassium (total)	ua/L	1112		870	1650		2150		1910	6650	4130	5390	
Magnesium (total)	ua/L	12550		13500	20500		51500	1	60200	139000	34200	86600	
Manganese (total)	µg/L	65		58	175		75		212	3880	56	1968	
Molybdenum (total)	µg/L	3.7		2.6	3.2		2.0		2.8	9.51	4.31	6.9	
Sodium (total)	ua/L	28400		23000	36000		53500		57100	257000	31700	144350	
Nickel (total)	µg/L	6.4		3.6	41.7		4.7		26.0	3030	75.6	1553	
Phosphorus (total)	mg/L	0.096		0.040	0.215		0.043		0.009	98	29	64	
Lead (total)	µg/L	0.88	<	0.50	9.75	<	0.50		4.62	1270	14	642	
Antimony (total)	µg/L	5.3		2.5	3.8		2.6		2.5	8.6	3.5	6.1	
Selenium (total)	µg/L	3.1	<	2.0	< 2.0	<	2.0		1.9	0.61	0.35	0.48	
Tin (total)	µg/L	0.5	<	1.0	< 1.0	<	1.0		0.1	0.08	< 0.06	0.07	
Strontium (total)	µg/L	188		200	405		635		803	1110	438	774	
Titanium (total)	µg/L	16		7.6	145		7		2.8	52.4	8.67	30.5	
Thallium (total)	µg/L	0.03	<	0.05	0.05	<	0.05	<	0.005	0.085	0.010	0.048	
Uranium (total)	µg/L	542		450	425		445		528	3610	341	1976	
Vanadium (total)	µg/L	2.7		1.9	7.3		1.5		1.6	4.51	1.31	2.91	
Zinc (total)	µg/L	4		9	22		8		15	710	14	362	
Lead-210	Bq/L	< 0.02		0.03	0.15	<	0.10		0.18	79	0.80	40	
Radium-226	Bq/L	0.11	<	0.04	0.28		0.16		0.08	0.26	0.12	0.19	
Thorium-230	Bq/L	0.05	<	0.07	0.28	<	0.07	<	0.02	0.07	< 0.02	0.05	
Thorium-232	Bq/L	_1	<	0.06	< 0.06	<	0.06	<	0.02	0.09	< 0.02	0.06	
Field Parameters													
ODO % Sat	%	_2		_2	_2		_2		_2	96.1	101 1		
ORP	mV	_2		_2	_2	F	_2		_2	146.7	116.2		
SPC	us/cm	_2		_2	_2	F	_2	F	_2	3070	973		
Temperature	°C	_2		_2	_2		_2	F	_2	9.039	8.413		
Turbidity	FNU	_2		_2	_2	F	_2		_2	47.7	62.97		
pH	Units	_2		_2	_2	F	_2	F	_2	7.86	7.79		
Note:						•		•					
1 Analysis not included in Johana	4												

¹ Analysis not included in laboratory contract.
 ² Field parameters included for current sampling year only. n/a – Not Applicable.
 -- No data.

Table 61: Drainage water quality – PH LTWMF – Location 2 (WC-SW4-02)

					WC-S	SW4-02		
	2016		2017	2018	2019	2020	2021	
Parameter	Units	Δ	ve	rage	No Sample	No Sample	No Sample	No Sample
Total Suspended Solids	ma/l	9		310	no campio	ne campie	no campio	no campio
nH	no unit	8.09		7 92				
Alkalinity		250	_	210				
Carbonate	mg/L as $CaCO_3$	200	_	24				
Bicarbonate	mg/L as $CaCO_3$	2.0	-	300				
Total Dissolved Solids	mg/L as CaCO ₃	452	-	402				
Fluoride	mg/L	432	_	492 < 0.10				
Total Organic Carbon	mg/L	4.6	_	12.0				
Ammonia+Ammonium (N)	as Nma/l	< 0.05		< 0.05				
Chloride (Dissolved)	ma/l	61.0		× 0.00 80				
Sulphate (dissolved)	mg/L	65	-	56				
Bromide (dissolved)	mg/L	< 1.0	-	- 1				
Nitrite (as N)	as Nma/l	< 1.0 0.012	,	< 0.010				
Nitrate (as N)	as Nmg/L	< 0.012	-	< 0.010				
Nitrate \pm Nitrite (as N)	as Ning/L	< 0.10		< 0.10				
Mercury (dissolved)	as ning/L	< 0.10	-	< 0.10				
Hardness	µg/∟ mg/Las CaCO	< 0.01 310	-	360				
Silver (total)		< 0.10	_	< 0.10				
Aluminum (total)	µg/L	< 0.10 36	-	1500				
Aluminum (0.2um)	µg/L	1	-	< 5.0				
Arsenic (total)	µg/L	- 1	-	~ 0.0				
Parium (total)	µg/L	1	_	23				
Barullium (total)	µg/L	< 0.50	_	44				
Boron (total)	µg/L	< 0.30 11	-	< 0.50 10				
Bismuth (total)	µg/L	< 10	-	19				
Calaium (total)	µg/L	11000	0	140000				
Cadmium (total)	µg/L	< 0.10	U	- 0.10				
Cobalt (total)	µg/L	< 0.10	_	< 0.10 6.8				
Chromium (total)	µg/L	< 5.0	-	< 5.0				
Copper (total)	µg/L	< 1.0	-	57				
kon (total)	µg/L	< 1.0 210	-	4400				
Potocoium (total)	µg/L	1700		4400				
Magnesium (total)	µg/L	5800	_	6800				
Manganese (total)	µg/L	7	-	420				
Molybdenum (total)	µg/L	< 0.5	-	420				
Sodium (total)	µg/L	< 0.3 4200	n	48000				
Nickel (total)	µg/L	< 10	5	40000				
Phosphorus (total)	µg/∟ ma/l	< 1.0 0.01	-	0.11				
Lead (total)	ua/l	< 0.01		3 10				
Antimony (total)	µg/L	< 0.50	-	J.10				
Selenium (total)	µg/L	< 2.0	-	< 2.0				
Tin (total)	ug/L	< 1.0	_	< <u>10</u>				
Strontium (total)	ug/L	260	-	330				
Titanium (total)	µg/L	< 5	-	64.0				
Thallium (total)	ug/L	< 0.05		< 0.05				
Uranium (total)	ug/L	1		2				
Vanadium (total)	ug/l	< 0.5		31				
Zinc (total)	ug/L	< 5	-	9				
Lead-210	Ba/I	< 0.02		0.08				
Badium-226	Bq/L	< 0.02		0.00				
Thorium-230	Bq/L	< 0.04		0.31				
Thorium-232	Bq/L	_1		< 0.06				
Field Paramotors	Dq/L		-	0.00				
ODO % Sot	0/.	2	-	2				
OPP	70 m\/	2	-	2				
SPC	us/cm	- 2		- 2				
Temperature	°C	- 2		2				
Turbidity	ENIL	2		2				
	Unite	2		- 2				
Noto	Office	-		-				
¹ A polygio pot instuded in let-	tony contract							
² Eiold parameters included for	urront comiline	oor only						
new parameters included for c	un en sampling y	ear only.						
n/a – Not Applicable.								

		WC-SW5-02										
		2016	2017	2018		2019	2020		2021			
Parameter	Units			Average				2021-05-11	2021-11-16	Average		
Total Suspended Solids	ma/L	7	7	68	1	31	16	66	51	59		
pH	no unit	8.13	8.10	8.16		7.66	8.08	8.09	7.84	7 97		
Alkalinity	mg/Las CaCO	244	245	270		158	302	514	231	373		
Carbonate	mg/L as CaCO	5.4	3.0	3.9	-	2.4	< 1.0	< 10	< 10	< 10		
Bicarbonate	mg/L as CaCO ₂	240	240	260		158	302	514	231	373		
Total Dissolved Solids	mg/L up ou by	315	1347	663		1650	3240	2410	720	1565		
Fluoride	mg/L	0.10	0.18	0.10	<	0.10	0.08	0.15	0.08	0.12		
Total Organic Carbon	ma/L	8	11	6		6	13	2	6	4.0		
Ammonia+Ammonium (N)	as N mg/L	0.05	0.06	0.08		0.10	< 0.04	0.04	0.19	0.12		
Chloride (Dissolved)	mg/L	8.7	330	125		890	810	720	180	450		
Sulphate (dissolved)	mg/L	25	415	81		732	743	290	65	178		
Bromide (dissolved)	mg/L	0.7	< 1.0	2.5		9.5	9.9	12	2	7		
Nitrite (as N)	as N mg/L	0.02	< 0.01	< 0.01		0.02	0.17	1.99	0.07	1.03		
Nitrate (as N)	as N mg/L	0.24	0.34	1.10		0.99	1.51	2.40	1.27	1.84		
Nitrate + Nitrite (as N)	as N mg/L	0.24	0.34	1.10		1.01	1.52	4.40	1.34	2.87		
Mercury (dissolved)	µg/L	< 0.01	< 0.01	< 0.01	<	0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Hardness	mg/L as CaCO ₃	268	795	450		555	833	1460	460	960		
Silver (total)	µg/L	0.06	< 0.10	< 0.10	<	0.10	< 0.05	0.06	< 0.05	0.06		
Aluminum (total)	µg/L	107	150	1590		466	366	793	168	481		
Aluminum (0.2µm)	µg/L	-1	5.5	21	<	7	21	15	3	9		
Arsenic (total)	µg/L	1155	170	585		168	205	1800	240	1020		
Barium (total)	µg/L	29	56	83		81	87	290.0	106.0	198		
Beryllium (total)	µg/L	0.25	< 0.50	< 0.50	<	0.50	0.01	0.018	0.008	0.013		
Boron (total)	µg/L	39	47	42		63	58	99	140	120		
Bismuth (total)	µg/L	0.53	< 1.0	1.6	<	1.0	0.2	87.0	0.89	43.9		
Calcium (total)	µg/L	88500	285000	135000		160000	240000	358000	124000	241000		
Cadmium (total)	µg/L	0.06	< 0.10	< 0.10	<	0.10	0.18	4.46	0.142	2.30		
Cobalt (total)	µg/L	2.3	2.2	19.5		11.5	104.8	3920	163	2042		
Chromium (total)	µg/L	2.7	< 5.0	< 5.0	<	5.0	1.4	2.71	1.53	2.1		
Copper (total)	µg/L	2.5	9.5	20.0		18.4	61.5	3740	60	1900		
Iron (total)	µg/L	192	275	1625		865	903	5120	1740	3430		
Potassium (total)	µg/L	928	6900	2150	_	5750	5930	5990	33300	19645		
Magnesium (total)	µg/L	9950	36000	23500	_	39500	56500	137000	36400	86700		
Manganese (total)	µg/L	30	122	145	-	219	389	3400	352	1876		
Molybdenum (total)	µg/L	3.4	5.0	2.9	_	1.4	5.7	8.55	27.60	18.1		
Sodium (total)	µg/L	25550	132500	54000	-	724500	611300	241000	383000	312000		
Nickel (total)	µg/L	3.3	16.3	16.2	_	35.6	78.2	2700	142	1421		
	mg/L	0.08	0.04	0.09	-	0.05	0.03	/0	47	62		
	µg/L	0.43	< 0.50	4.05	-	1.49	12.94	7.0	17.9	569		
Antimony (total)	µg/L	3.3	1.3	2.3	+	1.3	1.7	7.9	3.1	5.5		
	µg/L	2.0	< 2.0	< 2.0	È	2.0	2.1	0.04	0.40	0.06		
Strentium (total)	µg/L	0.5	< 1.0 570	< 1.0 410	È	500	0.2	1060	< 0.00 495	772		
Titopium (total)	µg/L	7 7	0.1	410	-	25	20	27.9	405	22.0		
Thallium (total)	µg/L	0.03	9.1	- 0.05	-	2.5	20	0.067	7.9	0.030		
Liranium (total)	µg/L	323	< 0.03 460	205	È	246	388	3380	311	1846		
Vanadium (total)	ug/L	22	0.9	3.9	-	1.8	19	3.95	1.39	2 67		
Zinc (total)	ug/L	4	30	15		1.0	20	635	22	329		
Lead-210	Ba/l	0.03	0.02	0.12	-	0.46	0.65	60	0.33	30		
Badium-226	Ba/l	0.00	0.02	0.12		0.36	0.00	0.21	0.00	0.17		
Thorium-230	Bg/L	0.07	< 0.00	0.26		0.00	< 0.02	0.09	< 0.02	0.06		
Thorium-232	Ba/L	_1	< 0.06	< 0.06	<	0.06	< 0.02	< 0.02	< 0.02	< 0.02		
Field Parameters			0.00	0.00		2.50	5.02	2.02	5.02	5.02		
ODO % Sat	%	_2	2	_2		2	_2	100.2	08.7			
ORP	mV	_2	_2	2		2	_2	78.3	130.8			
SPC	us/cm	_2	2	2		2	_2	3206	1121			
Temperature	°C	_2	_2	_2		_2	_2	10 041	6.97			
Turbidity	FNU	_2	_2	_2		_2	_2	36.8	53.46			
pH	Units	_2	_2	_2		_2	_2	8.07	7.85			
Note:												

¹ Analysis not included in laboratory contract.
 ² Field parameters included for current sampling year only.
 n/a – Not Applicable.

								WC-S	SWe	6-02						
		2016		2017		2018		2019		2020				2021		
Parameter	Units		!			Average					20	21-05-11	20)21-11-16	Av	erage
Total Suspended Solids	mg/l	28	Г	19	1	29	T T	7	Г	309	-	54	<u> </u>	104		79
pH	no unit	8.06		8.05		8.04		8.01		7.93		8 11		7.93		8.02
Alkalinity	mg/Las CaCO.	181	+	100	1	100	-	220	1	204		232	┢	181	-	207
	mg/L as $CaCO_3$	4.0		2.0		2.0		220	<	1.0	<	1.0	<	101	<	1.0
Bicarbonate	mg/L as CaCO ₃	178		185		185		215	<u> </u>	294	-	232	<u> </u>	181	<u> </u>	207
Total Dissolved Solids	mg/L as GabO3	236	1	231		315		353	-	549		1080	┢	840	-	960
Fluoride	mg/L	0.11	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<u> </u>	0.06
Total Organic Carbon	mg/L	85	-	5.8		69		7.8	-	2.0	-	3	<u> </u>	3		3.0
Ammonia+Ammonium (N)	as N mg/l	0.05	<	0.05		0.08	<	0.05		0.04	<	0.04		0.04		0.04
Chloride (Dissolved)	ma/L	5.2	-	16		31		36		137	-	360		260		310
Sulphate (dissolved)	mg/L	15		10		16		21		41		68		51		60
Bromide (dissolved)	ma/L	0.7	<	1	<	1	<	1		2		5		4		4
Nitrite (as N)	as N mg/L	0.020	<	0.010	<	0.010	<	0.010	<	0.030	<	0.03	<	0.03		0.03
Nitrate (as N)	as N mg/L	0.14		0.45		0.50		0.72		1.97		2.06		0.96		1.51
Nitrate + Nitrite (as N)	as N mg/L	0.14	1	0.45		0.50		0.72		1.97		2.06		0.96		1.51
Mercury (dissolved)	µg/L	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	205		210		250		280		520		859		652		756
Silver (total)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05		0.05
Aluminum (total)	µg/L	156		340		129		50		4780		439		669		554
Aluminum (0.2µm)	µg/L	_1		6.0		6.5		6.0		9.0		4		5		5
Arsenic (total)	µg/L	176		81		126		83		43		55.5		70.7		63
Barium (total)	µg/L	30		29		32		37		137		134		97		115
Beryllium (total)	µg/L	0.26	<	0.50	<	0.50	<	0.50		0.17		0.016		0.038		0.027
Boron (total)	µg/L	35		26		25		24		34		49		47		48
Bismuth (total)	µg/L	0.5	<	1.0	<	1.0	<	1.0		0.0		0.090		0.010		0.1
Calcium (total)	µg/L	71450		75000		78500		89000		177500		262000		212000	2	237000
Cadmium (total)	µg/L	0.07	<	0.10	<	0.10	<	0.10		0.02		0.01		0.012		0.01
Cobalt (total)	µg/L	0.3	<	0.5	<	0.5	<	0.5		2.7		1.9		0.9		1
Chromium (total)	µg/L	2.9	<	5.0	<	5.0	<	5.0		6.8		1.01		0.95		1.0
Copper (total)	µg/L	1.2	<	1.1	<	1.0	<	1.1		7.9		2		2		2
Iron (total)	µg/L	321		415		295		140		5200		541		803		672
Potassium (total)	µg/L	790		710		685		890		2750		2240		1280		1760
Magnesium (total)	µg/L	5635		6150		7100		8100		18700		49900		30000		39950
Manganese (total)	µg/L	32		25		30		18		182		77		131		104
Molybdenum (total)	µg/L	1.8		1.2		1.3		1.2		1.3		1.77		1.42		1.6
Sodium (total)	µg/L	8705		7850		10200		13000		21300		31800		25100		28450
Nickel (total)	µg/L	1.5	<	1.0		1.1	<	1.0		4.4		3.2		1.1		2
Phosphorus (total)	mg/L	0.07		0.04		0.04		0.04		0.26		39		169		104
Lead (total)	µg/L	1.29		0.87		0.80	<	0.50		2.11		0.73		0.75		1
Antimony (total)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.9	<	0.9		0.9
Selenium (total)	µg/L	1.2	<	2.0	<	2.0	<	2.0		1.2		2.98	L	1.02		2.00
Tin (total)	µg/L	0.6	<	1.0	<	1.0	<	1.0		0.2		0.08	<	0.06	<u> </u>	0.07
Strontium (total)	µg/L	123		125		130		160		402		659	⊢	427		543
Titanium (total)	µg/L	6		16.4		9	<	5	_	256		24		27		25.6
Thallium (total)	µg/L	0.03	<	0.05	<	0.05	<	0.05		0.06		0.009		0.007		0.008
Uranium (total)	µg/L	61		42		57		75	_	66		457		193		325
Vanadium (total)	µg/L	1./	-	1.4	_	1.3	_	1.0	_	10.8		2.3	_	2.3		2.34
Zinc (total)	µg/L	14	<	5	<	5	<	5	_	14		/5	_	4	<u> </u>	40
Lead-210	Bq/L	0.02		0.02	<	0.10	<	0.10	<	0.02		0.02	<	0.02		0.02
Radium-226	Bq/L	0.03	<	0.04	<	0.04	<	0.04		0.01		0.02	<	0.01		0.02
Thorium-230	Bq/L	0.05	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	-	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters		2		2		2		2		2						
ODO % Sat	%	-4		-4		-4		-4		-4		85.2		99.1	<u> </u>	
OKP	mV	-4				-4		-4		-4		131.3		95.7	<u> </u>	
SPC	us/cm	-4	<u> </u>	-		-4		-4		-4		405.9	F	1170	<u> </u>	
Temperature	°C	-4		-4		-4		-4		-4		12.529		3.223	<u> </u>	
Turbidity	FNU	-4		-4		-4		-4		-4	_	18.5		104.37	<u> </u>	
рН	Units	-		-	L	-		-		-		8.14	L	8.20		
Noto																

¹ Analysis not included in laboratory contract.
 ² Field parameters included for current sampling year only.
 n/a – Not Applicable.

												Г-3							
		Crit	eria		2018		2019		2020						2021				
Analysis	Units	PWQO	CWQG			A	verage			20	21-01-13	20	21-05-12	20	21-07-22	20	21-10-19	A١	/erade
Total Suspended Solids	ma/l				12	1	12	1	13		9		4	-	3	-	4		5
nH	ng/L	65.85	65.90		8 20		8.21		8.24		8 1/		8 21		8.22		8 22		8 20
Alkalinity		0.0 0.0	0.0 0.0		258		2/18		248		2/2		230		261		244		247
Carbonate	mg/L as CaCO ₃				3.8		37	<	1.0	~	10	٢	1.0	۲	1.0	~	10	ć	1.0
Bicarbonate	mg/L as CaCO ₃				258		243	È	248	È	242	È	239	È	261	È	244	`	247
Total Dissolved Solids	mg/L as 0a003				560		584		570	-	590		609	-	61/		61/		607
Fluoride	mg/L		0.12	/	0.10	-	0.11		0.06	/	0.06	/	0.06	/	0.06	/	0.06	/	0.06
Total Organia Carbon	mg/L		0.12	-	0.10		0.11	+	0.00	È	0.00	È	0.00	È	0.00	<u>`</u>	0.00	`	0.00
A mmonia + A mmonium (NI)	ng/L				2		2	-	0.04	-	2	/	2	-	2	/	0.04		2
Chlorida (Dissolved)	as in ing/L		120		145		150	-	172	-	170	È	200	È	200	È	170		195
Chloride (Dissolved)	mg/L		120	-	145		150	-	1/2		170		200	-	200		170		105
Supriate (dissolved)	mg/L				24		25		24		25		24		24		24		24
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L		10	<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.34		3.43	_	3.83		4.32		4.08		4.01		4.01		4.11
Nitrate + Nitrite (as N)	as N mg/L				3.34		3.43	_	3.83		4.32		4.08		4.02		4.01		4.11
Mercury (dissolved)	µg/L	0.2	0.026	<	0.01	<	0.01	_	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃				313		330	_	355		360		351		360		368		360
Silver (total)	µg/L	0.1	0.25	<	0.1	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L		L	<u> </u>	82	<u> </u>	68	L	111	I	29	I	18	L	37	L	25		27
Aluminum (0.2µm)	µg/L	75	100		6		5		3		3		4		4		3		4
Arsenic (total)	µg/L	100	5	<	1.0	<	1.0		0.4		0.3		0.3		0.5		0.4		0.4
Barium (total)	µg/L				120		115		123		127		143		131		134		134
Beryllium (total)	μg/L	1100		<	0.500	<	0.500		0.009	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500		33		32		30		31		40		35		28		34
Bismuth (total)	μg/L			<	1.0	<	1.0		0.008	<	0.007	<	0.010	<	0.010		0.030		0.014
Calcium (total)	μg/L				99000		99250		112250		113000		109000		115000		116000		113250
Cadmium (total)	µg/L	0.2	0.09	<	0.10	<	0.10		0.012		0.004		0.006		0.010		0.005		0.006
Cobalt (total)	µg/L	0.9		<	0.50	<	0.50		0.102		0.073		0.052		0.075		0.058		0.065
Chromium (total)	µg/L			<	5.0	<	5.0		1.92		1.78		1.25		1.20		1.24		1.37
Copper (total)	µg/L	5		<	1.0	<	1.1		1.1		0.5		0.3		0.7		0.3		0.5
Iron (total)	µg/L	300	300		170		138		168		94		53		196		87		108
Potassium (total)	µg/L				1125		1150		1250		1260		1250		1660		1490		1415
Magnesium (total)	µg/L				18750		17750		18200		18800		19000		17900		18800		18625
Manganese (total)	µg/L				18.3		16.0		17.2		14.0		9.1		13.1		15.0		12.8
Molybdenum (total)	µg/L	40	73	<	0.50	<	0.50		0.24		0.22		0.20		0.18		0.20		0.20
Sodium (total)	µg/L				85500		80500		83400		81600		82500		86600		87800		84625
Nickel (total)	ua/L	25	25	<	1.0	<	1.0		0.4		0.4		0.3		2.3		0.3		0.8
Phosphorus (total)	ma/L	10-30			18		17		19		10		8		21		12		13
Lead (total)	ua/L	5	7		0.54		0.51		0.34		0.34		0.12		0.23		0.13		0.21
Antimony (total)	µa/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	ua/L	100	1	<	2.0	<	2.0		0.34		0.33		0.30		0.26		0.28		0.29
Tin (total)	µg/L			<	1.0	<	1.0	t	0.09	l I	0.22	<	0.06		0.09		0.07		0.11
Strontium (total)	ua/L			t	230	İ –	228	t	248	t	279	1	295	1	254		276		276
Titanium (total)	µa/L			t	5.70	ŀ	6,13	t	4,11		1.23		0.70	ŀ	1.40		1.26		1.15
Thallium (total)	µa/L	0.3	0.8	<	0.050	<	0.050	t	0.006	<	0.005	<	0.005	ŀ	0.005		0.005		0.005
Uranium (total)	µa/L	5	15	1	1.07	İ –	1.03	t	0,99	t	1.15		1.26		0.97		0.89		1.07
Vanadium (total)	ua/L	6		1	0.94	1	0.90	t	0.89	1	0.80		0.68	1	0.66		0.63		0.69
Zinc (total)	ug/L	30	30	<	5	<	5		4		3	<	2		3		2		3
Lead-210	Ba/l		00	~	0.10	2	0.10	<	0.02	۲	0.02	· ~	0.02	۲	0.02	~	0.02	ć	0.02
Radium-226	Bq/L Bg/l	1		2 Z	0.10	~	0.10	Ż	0.02	۔ ح	0.02	Ż	0.02	È	0.02	<u>`</u>	0.02	<u>`</u>	0.02
Thorium-230	Bq/L Bg/l			Ż	0.07	~	0.07	2	0.01	۔ ح	0.01	2 Z	0.01	٢	0.02	2	0.02	e	0.02
Thorium 232	Bq/L Bg/l				0.06	2	0.07	È	0.02	2	0.02		0.02		0.02		0.02	-	0.02
	DY/L			È	0.00	<u> </u>	0.00	È	0.02	È	0.02	È	0.02	È	0.02	È	0.02	<u> </u>	0.02
				-	1	-	1	┢	1		00.0	-	00 5	-	00 5	-	00		
ODO % Sat	IIIg/L			-	-' 1	┢	-'	┢	-` 1	⊢	89.9	<u> </u>	98.5	<u> </u>	98.5	<u> </u>	98	<u> </u>	
				-	-' 1	-		+		-	144.4		142.4		110.7		148		
580	µs/cm			<u> </u>	 _1		-'	┢	-'	<u> </u>	8//	<u> </u>	1000		1059		1077		
Temperature				<u> </u>	-'	<u> </u>	-'	⊢	-'	<u> </u>	5.668	<u> </u>	11.461	┣	14.056	<u> </u>	10.271		
Turbidity	FNU			<u> </u>	-'	<u> </u>	-'	⊢	-'	<u> </u>	-2.46	<u> </u>	1.23	┣	1.67	<u> </u>			
рн	Units				_'				_'		8.21		8.33		8.00		8.13		
Staff Gauge	cm				-1		_1	1	_1										
PM/00 - Provincial Water (Quality Objectives	Miniatry	fthe Envir	~ n m	ont														

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Gujectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only.

Table 65: Surface water quality – Brewery Creek – downstream – (GRT-3B)

		Crit	eria		2018		2019		2020						2021				
Analysis	Units	PWQO	CWQG			A	verage			20	21-01-13	20	21-05-12	20	21-07-22	20	21-10-19	A	verage
Total Suspended Solids	ma/L				1		6	1	2		2	<	2		2		2		2
pH	no unit	6.5-8.5	6.5-9.0		8.09		8.17		8.18		8.11		8.22		8.07		8.08		8.12
Alkalinity	mg/L as CaCO ₃				253		233		244		244		234		219		240		234
Carbonate	mg/L as CaCO ₃				2.9		3.3	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				248		228		244		244		234		219		240		234
Total Dissolved Solids	ma/L				551		535		565		610		620		580		583		598
Fluoride	mg/L		0.12	<	0.10	<	0.10		0.06		0.07	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L		•		2		3		2		2		2		3		2		2
Ammonia+Ammonium (N)	as N mg/l				0.09		0.11		0.05		0.05	<	0.04		0.05	-	0.07		0.05
Chloride (Dissolved)	mg/l		120		145		145		166	-	170		200		180		170	-	180
Sulphate (dissolved)	mg/L		120		38		23		23		24		23		22		23	-	23
Bromide (dissolved)	mg/L			۲	1.0	~	1.0	<	0.3	ć	03	<	0.3	<	0.3	۲	0.3	<	0.3
Nitrite (as N)	as N mg/L			È	0.02	`	0.01	È	0.03	-	0.03		0.03	<u> </u>	0.03	2	0.03	È	0.03
Nitrate (as N)	as Ning/L		12		2 71		2.67	È	3.40	<u>`</u>	4 10	È	3 71		2.04	<u>`</u>	3.44	È	3.55
Nitrate + Nitrite (as N)	as Ning/L		13		2.71		2.07	-	2.40		4.10		2.71		2.34		2.44	-	3.55
Moreury (disselved)	as Ning/L	0.2	0.026	/	2.72	/	2.00	-	0.01	/	4.10	-	0.01	-	2.97	/	0.01	-	0.01
	µy/L	0.2	0.020	Ì	205	<u>`</u>	0.01	-	0.01	`	0.01	<u>`</u>	0.01	Ì	242	`	244	È	0.01
Hardness	Ing/L as CaCO ₃	0.4	0.05	-	305	-	0.1	-	352		302	-	327	-	0.05	-	0.05	-	343
	µg/L	0.1	0.25	`	0.1	`	0.1	<	0.1	<	0.05	`	0.05	`	0.05	<	0.05	Ś	0.05
Aluminum (total)	µg/L	75	400	-	17	<u> </u>	/1	┢	15		20	<u> </u>	10		5	_	3	 	10
Aluminum (0.2µm)	µg/L	/5	100	<	5		5	-	4		3		3	<	1	-	3	-	3
Arsenic (total)	µg/L	100	5	<	1.0	<	1.0	-	0.4		0.3		0.3		0.4		0.5	-	0.4
Barium (total)	µg/L				110		109	<u> </u>	118		129	<u> </u>	138	<u> </u>	120		122	<u> </u>	127
Beryllium (total)	µg/L	1100		<	0.500	<	0.500	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500		34		35	_	35		33		42		34		31		35
Bismuth (total)	µg/L			<	1.0	<	1.0	<	0.007	<	0.007	<	0.010		0.010	<	0.010		0.009
Calcium (total)	µg/L				92750		95000		110825		114000		101000		107000		108000	L	107500
Cadmium (total)	µg/L	0.2	0.09	<	0.10	<	0.10		0.005		0.005		0.008		0.003		0.003	L	0.005
Cobalt (total)	µg/L	0.9		<	0.50	<	0.50		0.051		0.058		0.051		0.067		0.043		0.055
Chromium (total)	µg/L			<	5.0	<	5.0		0.93		1.27		1.04		0.77		0.87		0.99
Copper (total)	µg/L	5			1.0		1.1		0.9		0.5		0.2		0.3	<	0.2		0.3
Iron (total)	µg/L	300	300		100		193		44		70		48		239		36		98
Potassium (total)	µg/L				1173		1300		1328		1360		1240		1300		1570		1368
Magnesium (total)	µg/L				18500		17250		18375		19100		18000		18100		17600		18200
Manganese (total)	µg/L				25.0		42.0		13.6		23.3		15.4		13.4		9.8		15.5
Molybdenum (total)	µg/L	40	73	<	0.50	<	0.50		0.21		0.19		0.18		0.18		0.22		0.19
Sodium (total)	µg/L				83750		80750		83425		80500		76500		86100		82500		81400
Nickel (total)	µg/L	25	25	<	1.0	<	1.0		0.2		0.3		0.2		1.3		0.2		0.5
Phosphorus (total)	mg/L	10-30			7		22		6		13	<	3		13		8		9
Lead (total)	µg/L	5	7	<	0.50		0.60		0.05		0.17	<	0.09	<	0.09	<	0.09		0.11
Antimony (total)	µg/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	<	2.0	<	2.0		0.26		0.34		0.31		0.23		0.22		0.28
Tin (total)	µg/L			<	1.0	<	1.0		0.07		0.14	<	0.06		0.13	<	0.06		0.10
Strontium (total)	µg/L				223		213		250		289		275		251		265		270
Titanium (total)	µg/L			<	5.00		6.33		0.52		0.81		0.43		0.26		0.31		0.45
Thallium (total)	µg/L	0.3	0.8	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (total)	µg/L	5	15		1.85		1.85		1.56		1.80		1.99		1.18		1.01		1.50
Vanadium (total)	µg/L	6			0.74		0.88		0.64		0.72		0.62		0.54		0.53		0.60
Zinc (total)	µg/L	30	30		5	<	5		3		2	<	2		2	<	2		2
Lead-210	Bq/L			<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.04	<	0.04		0.01	<	0.01	<	0.01		0.02	<	0.01		0.01
Thorium-230	Bq/L		l	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	1	1		1				t	-			l –				l –	-	F	
ODO % Sat	ma/L				_1		_1	t	_1		91.5		124 2		124 8	1	113.3	<u> </u>	
ORP	mV			-	_1	-	_1	┢	_1	-	149.2	-	159.2	-	99.3		175.3	 	
SPC	us/cm			-	_1	<u> </u>	_1	\vdash	_1	-	836	1	97/	1	1007	1	10/18	1	
Temperature	°C				_1	-	_1	\vdash	_1	-	3 03		13 506		17 656		11 352	⊢	
Turbidity				-	_1	-	_1	┢	1	-	-3 50	-	0 / 1	-	1.000	-		┣──	
	Libite	ł		-	-	-	-	⊢	1	-	-0.09	-	0.41	-	7.90	-	7.09	┣──	
Pri Staff Cause	Units				-	-	-	┢	-	-	0.00	-	0.32	-	1.02		1.90	┣—	
			L	<u> </u>	-	L	-	L	-	L		I		L		I		L	
PWQO = Provincial Water G	≀uality Objectives	s, Ministry c	of the Enviro	onm	ent														

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

Table 66: Surface water quality – Highland Drive South Creek – downstream – (HC-D)

											н	C-D)						
		Crit	eria		2018	2	2019		2020						2021				
Analysis	Units	PWQO	CWQG			Av	erage			202	1-01-19	20	21-05-17	20	21-09-07	20	21-11-09	A١	verage
Total Suspended Solids	mg/L				2		8		5	<	2		2		2	<	2		2
pH	no unit	6.5-8.5	6.5-9.0		8.14		8.19		8.17		8.12		8.16		8.17		8.21		8.17
Alkalinity	mg/L as CaCO ₃				295		280		279		275		273		275		287		278
Carbonate	mg/L as CaCO ₃				3.8		4.1	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				293		275		279		275		273		275		287		278
Total Dissolved Solids	mg/L				670		673		659		711		711		663		669		689
Fluoride	ma/L		0.12		0.14		0.11		0.13		0.11		0.11		0.13		0.12		0.12
Total Organic Carbon	ma/L				2		3		3		2		3		2		2		2
Ammonia+Ammonium (N)	as N mɑ/L				0.10		0.11		0.08		0.13	<	0.04	<	0.04		0.05		0.07
Chloride (Dissolved)	ma/L		120		175		173		195		190		200		190		190		193
Sulphate (dissolved)	ma/L				35		32		34		37		35		36		32		35
Bromide (dissolved)	ma/L			<	1.0		1.25	<	0.30	<	0.30	<	0.30	<	0.30	<	0.30	<	0.30
Nitrite (as N)	as N mɑ/L				0.02		0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.54		3.16		3.79		4.19		3.77		3.53		3.73		3.81
Nitrate + Nitrite (as N)	as N mg/L				3.56		3.19		3.79		4.19		3.77		3.55		3.73		3.81
Mercury (dissolved)	ua/L	0.2	0.026	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃				400		395		448		444		412		399		467		431
Silver (total)	µg/L	0.1	0.25	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L		1	1	16		40	l –	31	1	5		7		10	<	1		6
Aluminum (0.2µm)	µg/L	75	100	1	5	<	5	1	2	1	4		4		7		2		4
Arsenic (total)	ua/L	100	5		7.9		8.4		8.0		5.7		6.6		8.2		7.7		7.1
Barium (total)	ua/L				195		180		208		191		192		216		209		202
Bervllium (total)	ua/L	1100		<	0.500	<	0.500		0.016	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	ua/L	200	1500		460		458		484		379		417		536		421		438
Bismuth (total)	ua/L			<	1.0	<	1.0		0.010	<	0.007		0.010		0.030		0.020		0.017
Calcium (total)	ua/L				120000		117500		137250	1	136000		125000		121000		142000		131000
Cadmium (total)	ua/L	0.2	0.09	<	0.10	<	0.10		0.006		0.007		0.004	<	0.003		0.012		0.007
Cobalt (total)	ua/L	0.9		<	0.50	<	0.50		0.221		0.135		0.125		0.098		0.184		0.136
Chromium (total)	ua/L			<	5.0	<	5.0		0.48		0.81		0.50		0.40		0.41		0.53
Copper (total)	ua/L	5		<	1.0	<	1.0		1.1		0.5		0.3		0.2		0.3		0.3
Iron (total)	ua/L	300	300		228		315		290		244		220		133		272		217
Potassium (total)	ug/L				3025		3175		3833		3470		3060		2930		3700		3290
Magnesium (total)	ug/L				25250		24000		25450		25700		24300		23300		27500		25200
Manganese (total)	ua/L				37.0		52.0		38.2		40.6		32.4		12.0		46.3		32.8
Molybdenum (total)	ua/L	40	73		0.94		0.67		2.21		0.62		0.71		0.57		0.64		0.64
Sodium (total)	ua/L				80250		88250		87625		82400		79000		73200		89300		80975
Nickel (total)	µg/L	25	25		1.2	<	1.0		1.1		1.1		0.9		0.8		0.9		0.9
Phosphorus (total)	µg/L	10-30			8		17		35		4		13		12		9		10
Lead (total)	ua/L	5	7	<	0.50	<	0.50		0.39		0.12	<	0.09	<	0.09		0.17		0.12
Antimony (total)	ua/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	<	2.0	<	2.0		0.65		0.59		0.37		0.24		0.30		0.38
Tin (total)	µg/L			<	1.0	<	1.0		0.12		0.19		0.06	<	0.06		0.08		0.10
Strontium (total)	ua/L				313		298		347		366		382		336		383		367
Titanium (total)	µg/L			<	5.0		5.40	İ –	3.01		0.43		0.38		0.44		0.26		0.38
Thallium (total)	ua/L	0.3	0.8	<	0.050	<	0.050		0.023	<	0.005	<	0.005		0.009	<	0.005		0.006
Uranium (total)	µg/L	5	15		36.3		33.8		35.3		39.4		40.9		25.1		26.0		32.9
Vanadium (total)	µg/L	6			0.55		0.74		0.53		0.52		0.36		0.30		0.31		0.37
Zinc (total)	µg/L	30	30	<	5		5		3		3	<	2	<	2		11		5
Lead-210	Bq/L			<	0.10		0.11	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.04	<	0.04		0.01	<	0.01	<	0.01	<	0.01		0.02		0.01
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02		0.03	<	0.02	<	0.02		0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				Í				1		I									
ODO % Sat	mg/L			1	_ ¹		_1	İ –			96.5		103.8		102.9		99.8		
ORP	mV			1	_1		_1	İ			173.5		132.7				129.6		
SPC	µs/cm			1	_1		_1	l –		1	981		1146		1149		1184		
Temperature	°C			1	_1		_1	l –		1	3.308		12.901		15.44		8.117		
Turbidity	FNU			1	_1		_1	İ –			3.71		1.46		1.51		1.44		
pH	Units			1	_1		_1	İ –		1	8.08		8.16				7.97		
Staff Gauge	cm			1	_1		_1	İ –		1	20		20		20		19		
PWQO = Provincial Water C	uality Objectives	. Ministrv a	f the Enviro	onm	ent					-			-	•	-		-		

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

Table 67: Surface water quality – Highland Drive South Creek – upstream – (HC-U)

										HC-L	J						
		Crit	eria		2018		2019	2020					2021				
Analysis	Units	PWQO	CWQG			A	verage		2021-01-19	20	21-05-17	202	21-09-07	20	21-11-09	٩	verage
Total Suspended Solids	mg/L				5		6	9	4		5		6		3		5
рН	no unit	6.5-8.5	6.5-9.0		8.07		8.17	8.05	7.96		8.09		8.07		8.01		8.03
Alkalinity	mg/L as CaCO ₃				295		278	277	274		282		272		285		278
Carbonate	mg/L as CaCO ₃				3.2		3.9	< 1.0	< 1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				288		275	277	274		282		272		285		278
Total Dissolved Solids	mg/L				666		695	693	671		743		657		651		681
Fluoride	mg/L		0.12		0.13		0.12	0.14	0.10		0.10		0.10		0.13		0.11
Total Organic Carbon	mg/L				3		3	2	2		2		2		2		2
Ammonia+Ammonium (N)	as N mg/L				0.07		0.06	0.05	0.06	<	0.04		0.05		0.04		0.05
Chloride (Dissolved)	mg/L		120		152		173	213	190		200		200		200		198
Sulphate (dissolved)	mg/L				30		35	36	37		36		38		34		36
Bromide (dissolved)	mg/L			<	1.0		2.25	< 0.30	< 0.30	<	0.30	<	0.30	<	0.30	<	0.30
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	< 0.03	< 0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.75		3.64	3.99	4.41		4.10		3.90		3.92		4.08
Nitrate + Nitrite (as N)	as N mg/L				3.75		3.64	3.99	4.41		4.10		3.90		3.92		4.08
Mercury (dissolved)	µg/L	0.2	0.026	<	0.01	<	0.01	< 0.01	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃				398		393	450	427		429		449		440		436
Silver (total)	µg/L	0.1	0.25	<	0.10	<	0.10	< 0.05	< 0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L				35		34	27	11		17		44		65		34
Aluminum (0.2µm)	µg/L	75	100		8	<	5	4	2		3		2		3		3
Arsenic (total)	µg/L	100	5		4.6		2.9	3.9	2.7		3.4		5.6		6.3		4.5
Barium (total)	µg/L				200		190	217	188		203		233		212		209
Beryllium (total)	µg/L	1100		<	0.500	<	0.500	0.010	< 0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500		490		433	462	346		356		491		394		397
Bismuth (total)	µg/L			<	1.0	<	1.0	0.018	< 0.007		0.020	<	0.010	<	0.010		0.012
Calcium (total)	µg/L				125000		122500	138500	129000		131000		138000		133000		132750
Cadmium (total)	µg/L	0.2	0.09	<	0.10	<	0.10	0.008	0.005		0.007	<	0.003		0.013		0.007
Cobalt (total)	µg/L	0.9		<	0.50	<	0.50	0.229	0.134		0.135		0.155		0.235		0.165
Chromium (total)	µg/L			<	5.0	<	5.0	0.63	0.97		0.62		0.63		1.09		0.83
Copper (total)	μg/L	5		<	1.0	<	1.0	1.5	0.5		0.4		0.4		0.5		0.5
Iron (total)	µg/L	300	300		503		445	452	382		401		673		1720		794
Potassium (total)	µg/L				2675		2550	3515	2750		2570		2510		2760		2648
Magnesium (total)	µg/L				26250		25000	25350	25400		24500		25500		26300		25425
Manganese (total)	µg/L				52.3		47.0	54.0	41.5		37.1		70.9		75.4		56.2
Molybdenum (total)	µg/L	40	73		0.69		0.65	8.47	0.62		0.87		0.53		0.58		0.65
Sodium (total)	µg/L				81250		84500	96300	80200		78200		78400		83600		80100
Nickel (total)	µg/L	25	25		1.2		1.1	1.1	1.0		0.9		0.8		1.0		0.9
Phosphorus (total)	µg/L	10-30			11		14	37	3		13		29		30		19
Lead (total)	µg/L	5	7	<	0.50	<	0.50	0.18	0.19		0.16		0.53		0.62		0.38
Antimony (total)	µg/L	20		<	0.5	<	0.5	< 0.9	< 0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	<	2.0	<	2.0	1.82	0.60		0.33		0.33		0.38		0.41
Tin (total)	µg/L			<	1.0	<	1.0	0.17	0.22		0.09		0.06		0.07		0.11
Strontium (total)	µg/L				315		300	340	347		388		363		351		362
Titanium (total)	µg/L				5.2		5.13	2.60	0.69		0.85		2.14		3.60		1.82
Thallium (total)	µg/L	0.3	0.8	<	0.050	<	0.050	0.015	< 0.005		0.005		0.009		0.007		0.007
Uranium (total)	µg/L	5	15		8.7		8.8	8.7	10.2		10.6		7.2		8.2		9.1
Vanadium (total)	µg/L	6			0.67		0.74	0.57	0.58		0.48		0.56		0.95		0.64
Zinc (total)	µg/L	30	30	<	5		5	4	4		2		4		11		5
Lead-210	Bq/L			<	0.10	<	0.10	< 0.02	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.04	<	0.04	0.01	< 0.01		0.02		0.02	<	0.01		0.02
Thorium-230	Bq/L			<	0.07	<	0.07	0.03	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.06	< 0.02	< 0.02		0.04	<	0.02	<	0.02		0.03
Field Parameters														Ĺ			
ODO % Sat	mg/L				_1		_1		89.5		91.3		88.8		90.2		
ORP	mV				_1		_1		28.9		120.9				124.9		
SPC	µs/cm			1	_1		_1		988		1156		1159	L	1166		
Temperature	°C			I	_1		_1		4.643		11.568		12.931	L	9.528		
Turbidity	FNU			I	_1		_1		3.18		3.97		2.93	L	1.88		
pН	Units				_1		_1		7.93		8.11				7.84		
Staff Gauge	cm				_1		_1							L			
PWQO = Provincial Water 0	Quality Objectives	, Ministry d	of the Enviro	onn	nent												

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

			Cri	teria					:-D				
		PS	QG	CC	ME		2010		2012	2018	2019	2020	2021
Parameter	Units	LEL	SEL	ISQG	PEL					Ave	rage		
Water Soluble Boron	µg/g						_1		8.8	No Sample	No Sam ple	No Sam ple	No Sample
Mercury	µg/g	0.2	2	0.17	0.486		_1		0.07				
Silver	µg/g					<	0.20	<	0.20				
Aluminum	µg/g						3500		3800				
Arsenic	µg/g	6.0	33	5.9	17		27		28				
Barium	µg/g						150		150				
Beryllium	µg/g						0.20		0.20				
Bismuth	µg/g					<	1.0		_1				
Boron	µg/g						21		_ 1				
Cadmium	µg/g	0.6	10	0.6	3.5		0.20		0.38				
Calcium	µg/g						120000		120000				
Cobalt	µg/g						3.9		4.4				
Copper	µg/g	16	110	35.7	197		10		12				
Chromium	µg/g	26	110				14		15				
Iron	µg/g						13000		14000				
Lithium	µg/g						_1		_ 1				
Manganese	µg/g						720		810				
Magnesium	µg/g	460	1100				3100		3400				
Molybdenum	µg/g					۷	0.50		0.59				
Nickel	µg/g	16	75				5.3		6.0				
Lead	µg/g	31	250	35	91.3		21		24				
Phosphorus	µg/g						740		760				
Potassium	µg/g						440		420				
Antimony	µg/g						0.40		0.81				
Selenium	µg/g						1.2		1.6				
Sodium	µg/g						260		300				
Strontium	µg/g						130		140				
Thallium	µg/g						0.06		0.10				
Tin	µg/g					<	5.0		_ 1				
Titanium	µg/g						_1		_ 1				
Uranium	µg/g						23		29				
Vanadium	µg/g						18		19				
Zinc	µg/g	120	820				110		120				
Lead-210	Bq/g						0.10	<	0.50				
Radium-226	Bq/g						0.03		0.10				
Thorium-230	Bq/g						0.01		0.10				
Thorium-232	Bq/g						0.03	<	0.01				

Table 68: Sediment quality – Highland Drive South Creek (HC-D)

Note:

PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life,

ISQG = Interim Sediment Quality Guidelines, PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCME value.

¹ Analysis not included in laboratory contract.

			Crit	toria	HC-U																
		DC	00		ME	-	2010	1	2012	1	2019	1	2040		2020				2024		
D	11-14-	15		1000			2010		2012	A.v.	2018		2019		2020	20	21 05 17	20	2021	Δ.	
Parameter	Units	LEL	SEL	ISQG	PEL		1	1	0.0	AV	erage	1	0.7	r –	1.0	202	21-03-17	20.	21-11-09	A	neraye
Water Soluble Boron	µg/g						-'		3.9		0.4		0.7		1.2	<	0.5	<	0.5	<	0.5
Mercury	µg/g	0.2	2	0.17	0.486			<	0.05	<	0.05	<	0.05		0.05	<	0.05	<	0.05	<	0.05
Silver	µg/g					<	0.20	<	0.20	<	0.20	<	0.20		0.05	<	0.05	<	0.05	<	0.05
Aluminum	µg/g						1500		1700		1500		1950		2500		1500		1400		1450
Arsenic	µg/g	6.0	33	5.9	17		11		23		6		10		32		6.8		9.7		8.3
Barium	µg/g						34		79		28		39		98		31		31		31
Beryllium	µg/g					<	0.20	<	0.20	<	0.20	<	0.20		0.16		0.06		0.07		0.07
Bismuth	µg/g					<	1.0		_ ¹	<	1.0	<	1.0	<	0.09	<	0.09	<	0.09	<	0.09
Boron	µg/g						7		_1	<	5	<	5		6		2		2		2
Cadmium	µg/g	0.6	10	0.6	3.5	<	0.10		0.16	<	0.10	<	0.10		0.11	<	0.02	<	0.05		0.04
Calcium	µg/g						65000		65000		71000		67000		102000		58000		60000		59000
Cobalt	µg/g						1.6		2.2		1.2		1.4		2.6		1.1		1.3		1.2
Copper	µg/g	16	110	35.7	197		3.8		5.7		1.7		2.3		5.2		1.1		1.7		1.4
Chromium	µg/g	26	110				7.0		10		5.3		6.1		11.2		4.5		4.8		4.7
Iron	µg/g						8600		13000		8650		8900		18850		6200		6800		6500
Lithium	µg/g						_1		_1		2.2		2.7		3.5		2.0	<	2.0		2.0
Manganese	µg/g						250		500		135		195		470		140		150		145
Magnesium	µg/g	460	1100				3000		3200		2700		3350		3750		2900		2900		2900
Molybdenum	µg/g					<	0.50	<	0.50	<	0.50	<	0.50		1.20		0.20		0.20		0.20
Nickel	µg/g	16	75				2.4		3.5		2.0		2.3		4.0		1.8		2.2		2.0
Lead	µg/g	31	250	35	91.3		6.0		9.5		4.0		4.5		9.7		3.4		3.6		3.5
Phosphorus	µg/g						690		700		630		675		590		610		600		605
Potassium	µg/g					<	200	<	200	<	200		245		320		170		180		175
Antimony	µg/g					<	0.20		0.38	<	0.20	<	0.20	<	0.80	<	0.80	<	0.80	<	0.80
Selenium	µg/g					<	0.50		0.62	<	0.50	<	0.50	<	0.70	<	0.70	<	0.70	<	0.70
Sodium	µg/g						110		140	1	86		175		155		120		150		135
Strontium	µg/g						95		110		100		93		137		90		110		100
Thallium	µg/g					<	0.05		0.25	<	0.05	<	0.05		0.05	<	0.02	<	0.02	<	0.02
Tin	µg/g					<	5.0		_1	<	1.0		2.8		2.4	<	0.5		1.1		0.8
Titanium	µg/g						_1		_1		245		255		170		190		170		180
Uranium	µq/q						0.71		1.10		0.46		0.64		1.18		0.48		0.39		0.44
Vanadium	µq/q						11		12	1	11		11		14		8		8		8
Zinc	µq/q	120	820				26		37		17		18		71		12		16		14
Lead-210	Bq/q					<	0.10	<	0.50	<	0.05	<	0.05		0.12	<	0.20		0.04		0.12
Radium-226	Ba/a						0.04	<	0.10	1	0.08	<	0.05		0.04	<	0.04	<	0.02		0.03
Thorium-230	Ba/a						0.02	<	0.10	t	0.45	<	0.40	F	0.17	<	0.03	<	0.10		0.07
Thorium-232	Ba/a					-	0.03	<	0.01	<	0.04	<	0.04		0.01		0.01		0.01		0.01
Note:	- 9' 9						0.00		0.01	-	0.0.	Ľ.	0.0.		0.0.	-	5.5.		5.5.	-	5.01

Table 69: Sediment quality – Highland Drive South Creek (HC-U)

PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life, ISQG = Interim Sediment Quality Guidelines, PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCME value.

¹Analysis not included in laboratory contract.

		Crit	eria						HC	-D					
				202	1/09/22	20)21/09/22	202	21/09/22	20	21/09/22	20	21/09/22	20	21/09/22
Analysis	Units	PWQO	CWQG	9	MA00		10:00AM	1.	1:00AM	1	2:00PM		1:00PM		2:00PM
Total Suspended Solids	ma/L		0		6		4	· ·	2		3		3		5
nH	no unit	6.5-8.5	6.5-9.0		8 17		8 18		8 18		8 19		8 17		8 18
Alkalinity	mg/L as CaCO3	0.0 0.0	0.0 0.0		275		284		276		277		276		276
Carbonate	mg/L as CaCO3			<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO3				275		284		276		277		276		276
Total Dissolved Solids	ma/L				637		669		700		637		654		649
Fluoride	ma/L		0.12		0.11		0.09		0.09		0.09		0.09		0.10
Total Organic Carbon	ma/L				2.0		2.0		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mo/L			<	0.04	<	0.04	<	0.04	<	0.04	<	0.04		0.04
Chloride (Dissolved)	ma/L		120		220		210		210		220		210		210
Sulphate (dissolved)	ma/L		.=+		37		36		36		35		36		35
Bromide (dissolved)	ma/L			<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.63		3.58		3.55		3.52		3.45		3.40
Nitrate + Nitrite (as N)	as N mg/L				3.63		3.58		3.55		3.52		3.45		3.40
Mercury (dissolved)	ua/L	0.2	0.026	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO3				426		393		407		399		416		383
Silver (total)	ug/l	0.1	0.25	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	ua/L	•	0.20		23		7		9		12		13		16
Aluminum (0.2um)	ua/L	75	100		2		2		2		2		2		4
Arsenic (total)	ua/L	100	5		10.1		8.6		8.7		8.8		9.2		8.8
Barium (total)	ug/l				208		199		210		206		205		200
Beryllium (total)	ug/l	1100		<	0.007	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	ug/L	200	1500		419		417	-	449	-	452	-	470	-	438
Bismuth (total)	µg/=				0.020	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (total)	ug/L				130000	Ì	120000	`	124000	`	122000	-	128000	`	117000
Cadmium (total)	ug/L	0.2	0.09		0.008	<	0.003		0.005		0.003		0.003		0.012
Cobalt (total)	ug/L	0.2	0.05		0.000	`	0.000		0.000		0.000		0.000		0.012
Chromium (total)	ug/L	0.0			0.34		0.100		0.102		0.100		0.32		0.57
Copper (total)	ug/L	5			51		0.40		13		1 1		0.02		1.9
lrop (total)	µg/L	300	300		321		102		200		23/		262		254
Potassium (total)	µg/L	300	300		3350		3070		3200		3260		3400		3210
Magnesium (total)	µg/L				24800		22600		23500		23000		23500		22100
Manganese (total)	µg/L			-	24000	-	16.8		16.6		2000		23300		22100
Malybdenum (total)	µg/L	40	73		0.65		0.64		0.60		0.60		0.60		0.60
Sodium (total)	µg/L	40	15		81300		7/300		76600		7/1000		75300		72000
Nickel (total)	µg/L	25	25		1.0		0.0		0000		0.8		1.0		0.0
Phosphorus (total)	µg/L	10-30	25		10		6.0		5		7		7		4
Lead (total)	µg/L	5	7		0.20		0.10		0 11		0.16		0.16		0.21
Antimony (total)	µg/L	20	'	/	0.20	/	0.10	/	0.11	/	0.10	/	0.10	/	0.21
Selenium (total)	µg/L	100	1	-	0.3	È	0.9	-	0.3	`	0.3	`	0.3	`	0.3
Tin (total)	µg/L	100			0.3		0.0		0.2		0.3		0.3		0.0
Strontium (total)	µg/L				3/19		314		328		327		337		311
Titanium (total)	µg/L				1.26	-	0.37		0.70		0.50		0.64		0.70
Thallium (total)	µg/L	0.2	0.0	/	0.005	/	0.01	/	0.79	/	0.005	/	0.04		0.75
Liranium (total)	µg/L	0.3 5	15	`	27 1	È	25.3	<u> </u>	25.9	`	26.3	-	25.4		24.9
Vanadium (total)	µg/L	6	15		0.46		0.35		0.35		0.40		0.40		0.40
Zinc (total)	µg/L	30	30		0.40	-	3		0.00		3		5		3
	µg/∟ mog/l	30	30	-	4	-	11.16		11.52		11.22		11.60		10.01
	meq/L				12.10	-	10.44	-	10.05		10.52	-	10.00	-	10.01
	meq/L				12.03	L	12.41		12.20		12.53		12.24		12.22
Anion-Cation Balance	% difference				-1.55		-5.30		-2.99		-5.05		-2.35		-5.68
lon Ratio					0.97		0.90		0.94		0.90		0.95		0.89
Lead-210	Bq/L			<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.01	<	0.01		0.02		0.02		0.01		0.02
Thorium-230	Bq/L			<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.02	<	0.02	<	0.02	۷	0.02	۷	0.02	۷	0.02
Field Parameters															
ODO % Sat	mg/L				96.7		96.6		96.5		96.4		96.2		96.3
ORP	mV														
SPC	us/cm				1152		1151		1150		1144		1135		1131
Temperature	°C				14.814		14.777		14.763		14.77		14.78		14.82
Turbidity	FNU				2.57		1.67		1.41		1.61		2.21		2.11
рН	Units			I											
Staff Gauge	cm			Î.	24		24		23		22	1	21		20
PWQO = Provincial Water C	uality Objectives	, Ministrv o	f the Enviro	onme	nt							-			
CWQG= Canadian Water O	uality Guidelines	for Protecti	on of Anua	tic I i	fe										
Bold values indicate an exc	eedance of a PW	20 or CWO	Gvalue		-										

Table 70: 2021 Storm event sampling – Highland Drive South Creek watershed

Tuble 711 Surface Mater quality / Texanaci Sicer appendum (//S 1/	Table 71: Surface water	quality – Alexander	Creek – upstream	(AC-1)
---	-------------------------	---------------------	------------------	--------

											AC	-1							
		Crit	eria		2018		2019		2020						2021				
Analysis	Units	PWQO	CWQG			7	Average			20	21-01-13	20	21-05-12	20	21-07-22	20	21-10-19	A١	verage
Total Suspended Solids	ma/L				22	Γ	32		30		11		15		15		9		13
pH	no unit	6.5-8.5	6.5-9.0		8.00		8.09	Γ	8.02		7.94		7.94		8.03		7.97		7.97
Alkalinity	mg/L as CaCO ₃				295		278		277		270		273		275		280		275
Carbonate	mg/L as CaCO ₃				2.7	F	3.2	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				288		278	Γ	277		270		273		275		280		275
Total Dissolved Solids	ma/L				711	F	713	1	697		710		789		774		700		743
Fluoride	ma/L		0.12	<	0.10	<	0.10		0.06	<	0.06	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	ma/L				2.3		2.2		1.8		2.0		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mɑ/L				0.06	F	0.06	1	0.05	<	0.04	<	0.04		0.04		0.05		0.04
Chloride (Dissolved)	ma/L		120		193		190		213		220		250		250		210		233
Sulphate (dissolved)	mg/L				31		30		30		32		32		31		30		31
Bromide (dissolved)	ma/L			<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		4.04		3.95		4.22		4.76		4.24		4.13		4.22		4.34
Nitrate + Nitrite (as N)	as N mg/l				4 04		3.95		4 22		4 76		4 24		4 14		4 22		4.34
Mercury (dissolved)	ua/l	0.2	0.026	<	0.010	<	0.010		0.013	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010
Hardness	mg/L as CaCO ₂				400		408		438		434		403	1	433		429		425
Silver (total)	ua/l	0.1	0.25	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	ug/l	•	0.20		183		164		251		90		43		181		96		103
Aluminum (0.2µm)	µg/L	75	100	<	5	<	5	F	3		5	F	2	-	2		3		3
Arsenic (total)	µg/L	100	5		2.0	-	19	1	22		13	-	11	-	19		17		15
Barium (total)	ug/L	100	Ť		138	⊢	130		140		146	-	154	-	138		149		147
Beryllium (total)	µg/L	1100		<	0.50	<	0.50		0.01		0.007	<	0.007		0.009	<	0.007		0.008
Boron (total)	ug/L	200	1500	-	53	È	51		53		52	<u> </u>	69	-	48	È	51		55
Bismuth (total)	ug/L	200	1000	<	1.0	<	10		0.028		0.018	-	0.020	-	0.010		0.020		0.017
Calcium (total)	µg/L			-	120000	<u> </u>	125000	-	136750		134000	-	125000	1	137000		135000		132750
Cadmium (total)	µg/L	0.2	0.09	<	0.10	<	0.10	-	0.01		0.006	-	0.006		0.010		0.006		0.007
Cobalt (total)	µg/L	0.2	0.05	è	0.10	Ż	0.10	+	0.01		0.000	-	0.000		0.010		0.000		0.007
Chromium (total)	µg/L	0.5		-	5.0	È	5.0	┢	17	-	1 /0	-	0.075	-	0.110		1.24		1 12
Copper (total)	µg/L	5		<u>`</u>	1.0	Ì	1.0		1.7		0.8	-	0.04	_	0.91		0.5		0.6
Iron (total)	µg/L	300	300		348	È	303	+	419		10/	-	0.0		261		100		187
Potassium (total)	µg/L				1425	-	1500	-	1580		1690	-	1370	-	1680		10/0		1670
Magnesium (total)	µg/L				23750	-	22500	-	23450		24000	-	22400		22200		22500		22775
Manganese (total)	µg/L				25.8		25.0		32.4		14.4	F	10.9		21.3		22.000		17.2
Molybdenum (total)	µg/L	40	73	<	0.50	<	0.50	1	0.20		0.21	-	0.24	-	0.18		0.20		0.21
Sodium (total)	ug/l				93000		90750		94975		96800		87700		95800		98000		94575
Nickel (total)	ug/l	25	25	<	10	<	10		0.5		0.4		0.3	1	14		0.4		0.6
Phosphorus (total)	µg/L	10-30			38		34		46		22		16		44		32		29
Lead (total)	µa/L	5	7		0.80		0.69		0.69		0.56		0.30		0.44		0.28		0.40
Antimony (total)	µa/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	<	2.0	<	2.0		0.83		0.92	-	0.90		0.84		0.80		0.87
Tin (total)	µg/L		-	<	1.0	<	1.0	T	0.07		0.24	<	0.06		0.10		0.08		0.12
Strontium (total)	µa/L				288		278		310		341		339	-	303		323		327
Titanium (total)	ua/L				11.4		10.9		11.5		4.2		2.3		2.6		4.2		3.3
Thallium (total)	ua/L	0.3	0.8	<	0.05	<	0.05	1	0.01	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (total)	µa/L	5	15		3.05		3.30		2.95		3.52		3.62	-	2.95		2.64		3.18
Vanadium (total)	ua/L	6			1.23		1.25		1.24		1.02		0.74		0.94		0.90		0.90
Zinc (total)	ua/L	30	30		5	F	6	1	4		3		3		4		3		3
Lead-210	µa/L			<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Ba/L	1		<	0.04	<	0.04		0.01	<	0.01		0.01		0.01	<	0.01		0.01
Thorium-230	Ba/L			<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters								1											
ODO % Sat	ma/l				_1		_1		-		90.2		85.4		82.6		84.3		
ORP	m\/				_1		_1		-		153.8		155		121.3		114.9		
SPC	us/cm				_1	⊢	_1	┢	-		972	—	1195	<u> </u>	1244		1248		
Temperature	°C				_1	┢	_1	┢	-	\vdash	5 537	-	12 472	⊢	13 911	\vdash	11 689		
Turbidity	FNU				_1	┢	_1	┢	-	\vdash	2 24	-	2 19	<u> </u>	4 4 1	\vdash			
nH	Units				_1	⊢	_1	┢	-		7.88	—	7.97	<u> </u>	7.63		7 81		
staff Gaure	cm			-	_1	⊢	1	┢	-	-	1.50	⊢	1.01	—	1.00	-	1.01		
BMOO = Browingial Motor	Quality Objections	Miniatras	f the Ender		-	<u>ــــ</u>	-	1		I		<u>ــــ</u>		<u> </u>		L		L	
CWQG= Canadian Water (Quality Guidelines	for Protecti	on of Aqua	tic I	.ife														

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only. -- - No data.

Table 72: Surface Water Quality – Alexander Creek – downstream (AC-3)

											AC	-3							
		Crit	eria		2018		2019	20)20					20	021				
Analysis	Units	PWQO	CWQG			A	verage			20	21-01-13	20	21-05-12	2021	1-07-22	2021-	10-19	Av	erage
Total Suspended Solids	ma/L				14		20	1	39		10		7		11		33		15
pH	no unit	6.5-8.5	6.5-9.0		8.17		8.21		8.24		8.16		8.19		8.22	8	3.27		8.21
Alkalinity	mɑ/L as CaCO₃				288		270		270		268		269		291		271		275
Carbonate	mg/L as CaCO ₃				4.0		4.1	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				283		265		270		268		269		291		271		275
Total Dissolved Solids	ma/L				675	-	656		647		630		694		680		60		666
Fluoride	ma/L		0.12	<	0.10	<	0.10		0.07	<	0.06	<	0.06	<	0.06	< (0.06	<	0.06
Total Organic Carbon	ma/L		-		2.1		2.7		1.8		2.0		2.0		2.0		1.0		1.8
Ammonia+Ammonium (N)	as N mɑ/L				0.06		0.08		0.05		0.04	<	0.04		0.04	< (0.04	<	0.04
Chloride (Dissolved)	ma/L		120		163		165		184		180		220		220		180		200
Sulphate (dissolved)	mg/L				31		32		31		32		32		31		31		32
Bromide (dissolved)	ma/L			<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mɑ/L			<	0.01	<	0.01	< 1	0.03	<	0.03	<	0.03	<	0.03	< (0.03	<	0.03
Nitrate (as N)	as N mɑ/L		13		3.67		3.65		3.81		4.37		3.86		3.74	3	3.79		3.94
Nitrate + Nitrite (as N)	as N mɑ/L				3.67		3.65		3.81		4.37		3.86		3.75	3	3.79		3.94
Mercurv (dissolved)	ua/L	0.2	0.026	<	0.010	<	0.010	< (0.010	<	0.010	<	0.010	< (0.010	< 0	.010	<	0.010
Hardness	mg/L as CaCO ₃				403		405		437		428		392		438		120		420
Silver (total)	ua/L	0.1	0.25	<	0.10	<	0.10	< 1	0.05	<	0.05	<	0.05	<	0.05	< (0.05	<	0.05
Aluminum (total)	ua/L	-			125		177		229		77		71		142		363		163
Aluminum (0.2um)	ua/L	75	100		5	<	5		5		3		3		1		4		3
Arsenic (total)	ua/L	100	5		2.3		2.4		3.0		1.7		1.6		2.3		3.7		2.3
Barium (total)	ua/L		-		140		138		155		146		154		146		151		149
Beryllium (total)	ua/L	1100		<	0.50	<	0.50		0.01		0.007	<	0.007	(0.009	0	.012		0.009
Boron (total)	ua/L	200	1500		47		47		51		46		58		42		42		47
Bismuth (total)	ua/L			<	1.0	<	1.0	C	0.030		0.013		0.020	(0.030	0	.040		0.026
Calcium (total)	µg/L				117500		122500	1:	36250		132000		121000	1	39000	13	2000		131000
Cadmium (total)	ug/l	0.2	0.09	<	0.10	<	0.10		0.02		0.011	<	0.003	(0.005	0	019		0.010
Cobalt (total)	µg/L	0.9	0.00		0.50	<	0.50		0.26		0.141		0.089		0.232	0	.384		0.212
Chromium (total)	µg/L	0.0		<	5.0	<	5.0		1.4		1.15		1.02		0.99	2	2.08		1.31
Copper (total)	ua/L	5			1.6		1.7		1.7		0.8		0.7		0.8		1.3		0.9
Iron (total)	ua/L	300	300		540		375		554		239		171		271		726		352
Potassium (total)	ua/L				1400		1500		1573		1730		1340		1700	1	930		1675
Magnesium (total)	ua/L				23250		22750	2	3350		24000		22000	:	22400	2	2100		22625
Manganese (total)	ua/L				26.3		29.8		58.9		22.0		16.4		19.6		8.0		34.0
Molybdenum (total)	ua/L	40	73	<	0.50	<	0.50		0.25		0.24		0.29		0.26	(.29		0.27
Sodium (total)	ua/L				73500		73000	7	7275		77400		69700		78400	7	1900		75100
Nickel (total)	ua/L	25	25		1.1		1.3		0.6		0.5		0.4		1.6		0.9		0.9
Phosphorus (total)	ua/L	10-30			26		37		46		23		16		38		67		36
Lead (total)	ug/L	5	7		0.63		0.99		1.17		0.77		0.43		0.64		.23		0.77
Antimony (total)	ua/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	ua/L	100	1	<	2.0	<	2.0		0.72		0.89		0.78		0.82	().79		0.82
Tin (total)	ua/L				3.5	<	1.0		0.10		0.20		0.06		0.19	(0.06		0.13
Strontium (total)	ua/L				275		270		306		323		327		303		311		316
Titanium (total)	ug/L				8.5		11.7		10.6		3.4		3.4		6.3		6.1		7.3
Thallium (total)	ua/L	0.3	0.8	<	0.05	<	0.05		0.01	<	0.005	<	0.005	(0.005	0	.007		0.006
Uranium (total)	µg/L	5	15		7.10		8.78		7.03		7.80		7.43		5.35	4	.47		6.26
Vanadium (total)	ua/L	6			0.99	-	1.15		1.22		0.87		0.74		0.98		.51		1.03
Zinc (total)	ua/L	30	30		5		6		7		5		4		5		6		5
Lead-210	ua/L			<	0.10	<	0.10		0.03	<	0.02	<	0.02	<	0.02	< (0.02	<	0.02
Radium-226	Ba/L	1		<	0.04	<	0.04		0.02	<	0.01	<	0.01		0.02	(0.03		0.02
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	< (0.02	<	0.02
Thorium-232	Ba/L			<	0.06	<	0.06	< 1	0.02	<	0.02	<	0.02	<	0.02	< (0.02	<	0.02
Field Parameters																			
ODO % Sat	ma/L				_1		_1		-		97.1		97.7		97.2	8	9.1		
ORP	mV				_1		_1		-		147.4		150.3		115.6		8.3		
SPC	us/cm				_1		_1		-		920		1104		1138		141		
Temperature	°C				_1		_1		-		5.275		13,249	1	15.122	1.	.383		
Turbidity	FNU				_1		_1		-		5,62		17.94		13.26				
Ha	Units				_1		_1		-		8,12		8.28		8.05	8	3.16		
Staff Gauge	cm				_1		_1		-										
PW00 = Provincial Water C	uality Objectives	Ministry	f the Envir	- - - nm	ent					·						I			
CWOG= Canadian Water O	uality Guidelines	for Protecti	on of Anus	tic I	ife														
Bold values indicate an evo	eedance of a DM/	$\Omega \cap \alpha \cap \Omega \cup \Omega \cup \Omega$	G value	u L															

¹ Field parameters included for current sampling year only.

Table 73: Surface water quality – Lake Ontario Port Hope Harbour – Location 1 (PHH-1)

										PHH-1	1									
		Crit	teria	2016	2	017		2018		2019		2020				202	21			
Parameter	Units	PWQO	CWQG				A	verage					20	21-06-16	20	21-09-13	20	21-11-03	A	verage
Total Suspended Solids	mg/L			6	1	11		5		3		4		3		7	<	2		4
pH	no unit	6.5-8.5	6.5-9.0	8.39		8.29		8.36		8.38		8.36		8.30		8.41		8.37		8.36
Alkalinity	mg/L as CaCO₃			188		205		203		200		197		175		194		222		197
Carbonate	mg/L as CaCO ₃			8.5		3.8		4.3		4.4		3.5	<	1.0		11.0		7.0		6.3
Bicarbonate	mg/L as CaCO ₃			179		205		203		193		194		175		184		215		191
Total Dissolved Solids	mg/L			236		326		207		245		270		209		266		294		256
Fluoride	mg/L		0.12	0.08		0.10	<	0.10	<	0.10		0.07	<	0.06		0.06	<	0.06		0.06
Total Organic Carbon	mg/L			1.7		4.8		3.2		2.8		2.0		2.0		2.0		3.0		2.3
Ammonia+Ammonium (N)	as N mg/L			0.05		0.06	<	0.05		0.16		0.10	<	0.04		0.06	<	0.04		0.05
Chloride (Dissolved)	mg/L		120	14		15		22		14		15		17		14		20		17
Sulphate (dissolved)	mg/L			15		13		15		13		13		14		14		14		14
Bromide (dissolved)	mg/L			< 0.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as Nmg/L			< 0.03		0.01	<	0.01		0.02	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.58		0.71		1.09		0.77		0.66		0.55		0.65		1.32		0.84
Nitrate + Nitrite (as N)	as Nmg/L			0.58		0.72		1.09		0.79		0.66		0.55		0.65		1.32		0.84
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			219		225		220		237		218		199		209		255		221
Silver (total)	µg/L	0.1	0.25	0.003	<	0.1	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L			16		162		75		44		68		41		48		32		40
Aluminum (0.2µm)	µg/L	75	100	_1		7.5	<	5.0		6.0		8.0		1.0		2.0	<	1.0		1.3
Arsenic (total)	µg/L	100	5	0.6	<	1.0	<	1.0	<	1.0		0.7		0.6		0.5		0.3		0.5
Barium (total)	µg/L			57.4		59.5		51.3		53.7		65.0		62.6		57.6		58.0		59.4
Beryllium (total)	µg/L	1100		< 0.01	<	0.5	<	0.5	<	0.5	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	µg/L	200	1500	20		17		15		15		17		18		45		11		25
Bismuth (total)	µg/L			< 0.01	<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (total)	µg/L			67300	1	73000		66000		70000		68700		58400		63700		84600		68900
Cadmium (total)	µg/L	0.2	0.09	0.01	<	0.1	<	0.1	<	0.1		0.006		0.004		0.010	<	0.003		0.006
Cobalt (total)	µg/L	0.9		0.235	<	0.500	<	0.500	<	0.500		0.064		0.066		0.046		0.046		0.053
Chromium (total)	µg/L			0.45	<	5.0	<	5.0	<	5.0		0.70		0.33		0.26		0.30		0.30
Copper (total)	µg/L	5		2.6		1.5		1.1	<	1.0		0.8		0.5		0.3		0.3		0.4
Iron (total)	µg/L	300	300	109		290		167		117		141		107		111		127		115
Potassium (total)	µg/L			1085		1550		1083		1013		1155		963		1090		1390		1148
Magnesium (total)	µg/L			12450		11000		10700		11667		11350		12800		12200		10600		11867
Manganese (total)	µg/L			18.1		32.0		22.3		22.7		22.6		19.9		17.4		17.1		18.1
Molybdenum (total)	µg/L	40	73	0.57	<	0.50		0.51	<	0.50		1.09		0.48		0.46		0.45		0.46
Sodium (total)	µg/L			8425		9650		9833		9533		8290		9170		9090		11000		9753
Nickel (total)	µg/L	25	25	0.3	<	1.0	<	1.0	<	1.0		0.2		0.1		0.2		0.1		0.1
Phosphorus (total)	µg/L	10-30		15		39		16		37		22		20		15		14		16
Lead (total)	µg/L	5	7	0.14	<	0.50	<	0.50	<	0.50		0.14		0.20		0.13	<	0.09		0.14
Antimony (total)	µg/L	20		0.2	<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µg/L	100	1	0.12	<	2.0	<	2.0	<	2.0		0.09		0.10		0.06		0.13		0.10
Tin (total)	µg/L			0.01	<	1.0	<	1.0	<	1.0	1	0.09		0.09	<	0.06	<	0.06	1	0.07
Strontium (total)	µg/L			174		170		160		163		202		183		173		191		182
Titanium (total)	µg/L		1	_1	1	9.00		6.43		5.70	T	2.81	1	2.02		1.32		1.48	1	1.61
Thallium (total)	µg/L	0.3	0.8	< 0.01	<	0.05	<	0.05	<	0.05		0.006	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (total)	µg/L	5	15	0.76		0.75		0.84		0.74		0.78		0.89		0.68		0.74		0.77
Vanadium (total)	µg/L	6		0.61		1.11		0.72		0.95		0.88		0.71		0.72		0.47		0.63
Zinc (total)	µg/L	30	30	2	<	5	<	5	<	5		2		2	<	2	<	2		2
Lead-210	Bq/L			0.02		0.03	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		< 0.01	<	0.04	<	0.04	<	0.04	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L			< 0.02	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																				
ODO % Sat	%			_2	1	_2		_2		_2	t	_2		109.1		104.1		103.3		
ORP	mV			_2	1	_2		_2		_2		_2		122.9				123.5		
SPC	us/cm			_2	İ.	_2		_2	1	_2	t	_2		414.4		427.5	1	491.5	l –	
Temperature	°C		1	_2	1	_2		_2		_2	\vdash	_2		19.076		16.842		6.643		
Turbidity	FNU		1	_2	1	_2		_2	1	_2	1	_2		6.94		5.44		3.8		
pH	Units		l	_2	1	_2		_2		_2	1	_2		8.58	-		-	8.36	1	
Staff Gauge	cm			2	1	2	-	2	-	2	1	2	-		-		-			
Start Gauge	No.11	I	I	· ·	1	-	L	-		-	1	-	I		I		I			

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 74: Surface water quality – Lake Ontario Port Hope Harbour – Location 2 (PHH-2)

								PHH-2					
		Crit	eria	2016	2017	2018		2019	2020		203	21	
Parameter	Units	PWQO	CWQG			Averag	e			2021-06-16	2021-09-13	2021-11-03	Average
Total Suspended Solids	ma/L			3	5	18		2	4	5	7	3	5
pH	no unit	6.5-8.5	6.5-9.0	8.05	8.22	8.25	;	8.32	8.19	8.14	8.29	8.18	8.20
Alkalinity	mg/Las CaCO			153	185	190		150	188	156	181	214	184
Carbonate	mg/L as CaCO			< 20	2.9	32		2.9	< 10	< 10	< 10	< 10	< 10
Bicarbonate	mg/L as CaCO			152	185	187		147	188	156	181	214	184
Total Dissolved Solids				223	270	215	_	200	270	206	2/0	214	248
Fluoride	mg/L		0.12	0.10	210	210		200	< 0.06	0.07	0.07	0.08	0.07
Total Organic Carbon	mg/L		0.12	0.10	< 0.10 3.5	< 0.10 3.8		27	< 0.00 3.0	3.0	2.0	3.0	0.07
	ng/L			0.10	0.10	0.00		2.1	3.0	5.0	2.0	0.04	2.7
Chlorida (Disselved)	as in ing/L		400	0.12	0.12	0.00	,	10	0.04	< 0.04	0.00	0.04	0.05
Chloride (Dissolved)	mg/L		120	19	10	20	_	19	15	21	16	22	20
Supnate (dissolved)	mg/L			19	14	16	_	18	13	16	16	14	15
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.0	<	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	0.02	< 0.01	_	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.40	0.57	0.94		0.49	0.47	0.43	0.59	1.34	0.79
Nitrate + Nitrite (as N)	as N mg/L			0.40	0.58	0.94		0.51	0.47	0.44	0.59	1.34	0.79
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	<	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO₃			182	200	203		193	224	181	200	230	204
Silver (total)	µg/L	0.1	0.25	< 0.002	< 0.1	< 0.1	<	< 0.1	< 0.05	< 0.05	< 0.05	0.09	0.06
Aluminum (total)	µg/L			14	84	157		40	158	45	30	41	39
Aluminum (0.2µm)	µg/L	75	100	_1	< 5.0	< 5.0		5.3	10.0	2.0	1.0	< 1.0	1.3
Arsenic (total)	µg/L	100	5	1.9	2.0	3.0		2.5	2.3	6.3	1.6	17.4	8.4
Barium (total)	µg/L			47.2	52.5	52.0	_	40.7	65.5	54.9	52.5	55.2	54.2
Beryllium (total)	µg/L	1100		< 0.01	< 0.5	< 0.5	^	< 0.5	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	µg/L	200	1500	24	23	18		20	18	21	83	13	39
Bismuth (total)	µg/L			0.03	< 1.0	< 1.0	<	< 1.0	0.009	0.110	0.040	1.070	0.407
Calcium (total)	µg/L			54450	62500	6300	0	53000	71100	52800	60300	75700	62933
Cadmium (total)	ua/L	0.2	0.09	0.00	< 0.1	< 0.1	<	< 0.1	0.005	0.003	0.007	0.005	0.005
Cobalt (total)	ua/L	0.9		0.095	< 0.500	< 0.500	0 <	< 0.500	0.129	0.116	0.057	0.771	0.315
Chromium (total)	ua/L			0.43	< 5.0	< 5.0	<	< 5.0	0.54	0.32	0.27	0.25	0.28
Copper (total)	ua/L	5		1.3	2.4	2.3	<	< 1.5	0.8	0.8	0.5	2.0	1.1
Iron (total)	ug/l	300	300	75	185	297	<	< 100	253	145	80	133	119
Potassium (total)	ug/L			1370	1600	1267	7	1333	1280	1220	1160	1340	1240
Magnesium (total)	ug/l			11180	10500	1036	7	10267	11200	12000	11900	9970	11290
Magnesian (total)	ug/L			20.8	31.0	40.3	í l	16.7	50.6	29.8	16.2	18.5	21.5
Molybdenum (total)	ug/L	40	73	0.95	0.56	0.56		0.76	0.48	0.71	0.65	0.68	0.68
Sodium (total)	ug/L	40	75	10830	11500	1083	3	12333	8660	11000	10400	11200	10867
Nickel (total)	µg/L	25	25	0.3	11000	1000	5	12000	0000	0.5	0.3	16	0.8
Phosphorus (total)	µg/L	10.20	25	17	< 1.0 30	< 1.0 42	-	23	0.3	28	0.3	1.0	10
Filospholus (total)	µg/L	10-30	-	0.24	30	42		2.0 50	2.5	1.00	0.46	12.04	19
Lead (Iotal)	µg/L	5	(0.24	0.57	1.37		< 0.50	0.35	1.30	0.40	12.04	4.03
Antimony (total)	µg/L	20		< 0.2	< 0.5	< 0.5		< 0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Jelenium (lotal)	µg/L	100	1	0.13	< 2.U	< 2.0		<u> </u>	0.10	0.11	0.19	0.10	0.13
Chronitium (total)	µg/L			< 0.01 470	< 1.0 100	\$ 1.0	-	< I.U	0.12	0.09	0.07	< 0.06	0.07
Suontium (total)	µg/L			1/2	160	163	_	167	190	186	1/5	1/5	1/9
Titanium (total)	µg/L			-	6.95	10.3	/ <	5.00	0.53	2.44	1.56	2.02	2.01
I nailium (total)	µg/L	0.3	0.8	< 0.01	< 0.05	< 0.05	<	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	µg/L	5	15	1.77	3.80	2.70)	2.30	1.67	7.01	1.98	97.06	35.35
Vanadium (total)	µg/L	6		0.49	0.91	0.91		0.84	0.96	0.68	0.57	0.61	0.62
Zinc (total)	µg/L	30	30	2	< 5	< 5	<	< 5	3	3	< 2	< 2	< 2
Lead-210	Bq/L			< 0.02	< 0.02	< 0.10) <	< 0.10	< 0.02	< 0.02	< 0.02	0.02	< 0.02
Radium-226	Bq/L	1		0.02	< 0.04	0.05	i <	< 0.04	0.03	0.02	0.01	0.19	0.07
Thorium-230	Bq/L			< 0.02	< 0.07	0.10) <	< 0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	<	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters													
ODO % Sat	%			_2	_2	_2		_2	_2	104.2	94.6	105.2	
ORP	mV			-2	-2	-2		_2	-2	130.6		125.7	
SPC	µs/cm			_ ²	_2	_2		_2	_2	395.7	411.7	511	
Temperature	°C			_ ²	-2	_2		_2	_2	18.437	16.56	6.476	
Turbidity	FNU			_2	_2	_2		_2	_2	5.68	3.46	3.43	
pH	Units			_2	_ ²	_2		_2	_2	8.38		8.21	
Staff Gauge	cm			_2	_2	_2		_2	_2				

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 75: Surface water quality – Lake Ontario Port Hope Harbour – Location 3 (PHH-4)

								PHH-4	PHH-4											
		Crit	teria	2016		2017		2018		2019		2020				202	21			
Parameter	Units	PWQO	CWQG				A	verage	-				20	21-06-16	20	21-09-13	20	21-11-03	Α	verage
Total Suspended Solids	ma/L			2	1	1	Г	2		2	1	3		2	<	2		3		2
, Ha	no unit	6.5-8.5	6.5-9.0	8.37		8.18		8.34		8.31	1	8.15		8.07	1	8.19	t -	7.86		8.04
Alkalinity	mɑ/L as CaCO₃			126		94		144		122	1	96		92	1	93	t -	93		93
Carbonate	mg/L as CaCO ₃			4.5		1.3		3.4		2.2	<	: 1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			123		93		143		118	1	96		92	1	93	t	93		93
Total Dissolved Solids	ma/L			193		255		158		185	1	180		131	T	171	t	151		151
Fluoride	ma/L		0.12	0.11		0.13		0.11	<	0.10	1	0.11		0.12	T	0.12	t	0.12		0.12
Total Organic Carbon	ma/L			1.3		2.3		2.6		2.4	1	1.5		2.0	T	2.0	t	2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			0.06	<	0.05	<	0.05		0.05	1	0.05	<	0.04	<	0.04	<	0.04	<	0.04
Chloride (Dissolved)	ma/L		120	21		22		20		21	1	24		27	1	23	†	24		25
Sulphate (dissolved)	mg/L			21		23		19		20	1	21		23	1	22	†	22		22
Bromide (dissolved)	mg/L			< 0.3	<	1.0	<	1.0	<	1.0	<	: 0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/l			< 0.03	<	0.01	<	0.01		0.01	<	: 0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.35		0.20		0.50		0.36		0.29		0.30	t-	0.25		0.38		0.31
Nitrate + Nitrite (as N)	as N mg/L			0.35		0.20		0.50		0.36		0.29		0.30	t –	0.25	t –	0.38		0.31
Mercury (dissolved)	ua/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	<	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₂			159		120		165		160		126		123	t	122		144		130
Silver (total)	ua/L	0.1	0.25	< 0.002	<	0.1	<	0.1	<	0.1	<	: 0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µa/L			16		20		26		76		45		3	t	4		65		24
Aluminum (0.2um)	µg/L	75	100	_1	<	5.0	<	5.0	<	5.3	1	4.5		3.0	<	1.0		2.0		2.0
Arsenic (total)	µg/L	100	5	0.8	<	1.0	<	1.0		1.0	1	0.9		0.9	È	0.7		0.9		0.8
Barium (total)	µa/L		-	34.1		21.5		36.0		27.7	1	25.6		22.0	1	21.3		24.8		22.7
Beryllium (total)	µa/L	1100		< 0.01	<	0.5	<	0.5	<	0.5	<	: 0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	ug/l	200	1500	25		21		19		21	1	22		25	È	33	-	20		26
Bismuth (total)	ua/l			< 0.01	<	10	<	10	<	10	<	: 0.007	<	0.010	<	0.010	<	0.010	<	0.010
Calcium (total)	ug/l			47000		32500		45500		45333	1	36550		34100	È	35100	<u> </u>	43100		37433
Cadmium (total)	ug/l	0.2	0.09	0.01	<	0.1	<	0.1	<	0.1	1	0.005		0.010	t	0.006		0.007		0.008
Cobalt (total)	ug/l	0.9	0.00	0 157	<	0.500	<	0.500	<	0.500	1	0.036		0.009	t	0.004		0.039		0.017
Chromium (total)	ug/l	0.0		0.49	<	5.0	<	5.0	<	5.0	1	0.74		0.26	t	0.26		0.28		0.27
Copper (total)	ug/l	5		0.9		1.6		11	<	11	1	0.9		1.0	t	0.6		0.9		0.8
Iron (total)	µg/L	300	300	47	<	100		105	<	163	Ť	49	<	7	<	7	-	79		31
Potassium (total)	ug/l			1415		1500		1200		1400	1	1635		1650	È	1520		1980		1717
Magnesium (total)	ug/l			9985		8500		9100		9100	1	8295		9150	1	8470		8940		8853
Manganese (total)	ug/l			10.0	<	2.0		13.0		12.3	1	2.8		0.6	1	0.4		4.5		1.8
Molybdenum (total)	µa/L	40	73	1.43		1.10		0.75		0.93		1.86		1.32	t –	1.37	t –	1.57		1.42
Sodium (total)	ug/l			12100		13500		11500		13333		12200		13800		13500		14900		14067
Nickel (total)	µa/L	25	25	0.5	<	1.0	<	1.0	<	1.0		0.6		0.6	t	0.6		0.6		0.6
Phosphorus (total)	µa/L	10-30		8		6		9		10		8		10	<	3		14		9
Lead (total)	µa/L	5	7	0.07	<	0.50	<	0.50	<	0.50		0.06	<	0.09	<	0.09		0.10		0.09
Antimony (total)	µa/L	20		< 0.2	<	0.5	<	0.5	<	0.5	<	< 0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	µa/L	100	1	0.15	<	2.0	<	2.0	<	2.0	1	0.12		0.15	t	0.16		0.18		0.16
Tin (total)	µa/L			< 0.01	<	1.0	<	1.0	<	1.0	1	0.18		0.09	<	0.06	<	0.06		0.07
Strontium (total)	µg/L			181		160		160		163	T	205		191	1	182	<u> </u>	198	1	190
Titanium (total)	µg/L			_1	<	5.00		5.20	<	5.00		1.87		0.18	t	0.20		3.04		1.14
Thallium (total)	µg/L	0.3	0.8	0.01	<	0.05	<	0.05	<	0.05	T	0.006	<	0.005	<	0.005	<u> </u>	0.006	1	0.005
Uranium (total)	µa/L	5	15	0.66		0.35		0.62		0.45	1	0.40		0.40	T	0.31	t	0.46		0.39
Vanadium (total)	µa/L	6		0.36	<	0.50		0.54		0.77	1	0.46		0.20	T	0.19	t	0.39		0.26
Zinc (total)	µa/L	30	30	< 2	<	5	<	5	<	5	<	: 2	<	2	<	2	<	2	<	2
Lead-210	Ba/L			< 0.02		0.11	<	0.10	<	0.10	<	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Ba/L	1		0.01	<	0.04	<	0.04	<	0.04	<	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Ba/L			< 0.02	<	0.07	<	0.07	<	0.07	<	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L			< 0.02	<	0.06	<	0.06	<	0.06	<	< 0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				0.02	t	0.00	H	0.00	F	0.00	t	0.02		0.02	H	0.02	÷	0.02	t	0.02
ODO % Sat	%			_2	+	_2	\vdash	_2	\vdash	_2	+	_2	-	98	\vdash	100.6	-	102.4	1	
ORP	mV			_2	\vdash	_2	⊢	_2	⊢	_2	+	_2	-	128 1	\vdash		-	119.9	1	
SPC	us/cm			2	+	2	⊢	2	⊢	2	+	_2	-	313.6	\vdash	301.5	<u> </u>	307.1	+	
Temperature	PC.			_2	+	2	⊢	2	⊢	2	+	2	-	9468	⊢	15.84	<u> </u>	7 810		
Turbidity	FNU			_2	┢	2	⊢	2	⊢	2	+	2		1/18	\vdash	0.36	-	5 11	\vdash	
nH	Linite			_2	┢	_2	⊢	_2	⊢	_2	+	_2		8.63	⊢	0.00	├	8.02	\vdash	
Staff Gauge	cm			_2	┢	2	⊢	2	⊢	2	+	2		0.00	\vdash		-	0.02	\vdash	
Journ Oungo	1800		•		1		1		1		1	-		-	1	-	1		1	

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Page 176 of 246

Table 76: Surface water quality – Lake Ontario Port Hope Harbour – During Dredging Activities (PHH-1a)

		Crit	eria									PH	H-1a							
Analysis	Units	PWQO	CWQG	2021-06-30	2021-07-16 ¹	2021-07-091	2021-07-231	2021-08-05	202	21-09-16	2021-09-21	2021-09-29	2021-10-13	2021-10-18	2021-10-28	2021-11-03	2021-11-09	2021-11-15	2021-11-23	2021-11-29
Total Suspended Solids	mg/L			13	No Sample	No Sample	No Sample	25		3	6	12	5	8	4	< 2	2	10	4	10
Hardness	mg/L as CaCO3							222		201	190	206	225	272	274	255	249	250	261	242
Silver (total)	µg/L	0.1	0.25	< 0.05				< 0.05	<	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	µg/L			102				181		82	48	110	53	123	46	32	29	105	36	97
Arsenic (total)	µg/L	100	5	0.7				0.6		0.6	0.5	0.5	0.4	0.5	0.3	0.3	0.4	0.5	0.3	0.4
Barium (total)	µg/L			60.3				70.8		63.9	59.4	63.4	66.6	64.5	58.2	58.0	62.4	57.9	61.4	58.7
Beryllium (total)	µg/L	1100		< 0.007				< 0.007	<	0.007	< 0.007	0.008	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	µg/L	200	1500	21				15		18	16	22	23	20	15	11	18	24	25	11
Bismuth (total)	µg/L			0.01				< 0.01		0.03	0.02	< 0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.06
Calcium (total)	µg/L			66200				68800		61100	58700	66200	71200	91700	91400	84600	80000	82000	84600	77900
Cadmium (total)	µg/L	0.2	0.09	0.006				0.010		0.005	< 0.003	0.015	0.005	0.007	< 0.003	< 0.003	0.011	0.006	0.003	< 0.003
Cobalt (total)	µg/L	0.9		0.083				0.130		0.084	0.045	0.105	0.060	0.088	0.067	0.046	0.096	0.088	0.059	0.072
Chromium (total)	µg/L			0.52				1.26		0.55	0.24	0.40	0.35	0.44	0.18	0.30	0.30	0.54	0.48	0.44
Copper (total)	µg/L	5		0.5				1.0		0.4	0.3	0.5	0.5	0.5	0.4	0.3	0.8	0.5	0.7	0.3
Iron (total)	µg/L	300	300	201				389		180	123	223	129	206	143	127	169	200	149	161
Potassium (total)	µg/L			1240				1060		1180	1040	1190	1350	1950	1570	1390	1180	1890	1330	1160
Magnesium (total)	µg/L			11400				12300		11600	10500	10000	11300	10400	11200	10600	11900	11100	12100	11500
Manganese (total)	µg/L			26.0				35.2		21.9	15.6	25.4	15.6	23.2	17.8	17.1	24.2	26.1	20.6	22.9
Molybdenum (total)	µg/L	40	73	0.51				0.42		0.50	0.43	0.68	0.45	0.38	0.36	0.45	0.44	0.34	0.42	0.46
Sodium (total)	µg/L			9340				9870		8940	8020	12500	10900	11800	13100	11000	11000	13800	15400	23800
Nickel (total)	µg/L	25	25	0.2				0.7		0.2	0.3	0.2	0.4	0.3	0.3	0.1	< 0.1	0.3	0.5	< 0.1
Phosphorus (total)	µg/L	10-30		28				50		33	22	33	14	33	6	14	15	25	12	8
Lead (total)	µg/L	5	7	0.70				0.91		0.83	0.23	0.34	0.20	0.18	0.10	< 0.09	0.25	0.16	0.09	0.19
Antimony (total)	µg/L	20		< 0.9				< 0.9	<	0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	µg/L	100	1	0.10				0.12		0.08	0.08	0.17	0.11	0.13	0.11	0.13	0.10	0.14	0.09	0.13
Tin (total)	µg/L			0.11				0.17		0.07	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.06	< 0.06	< 0.06	< 0.06
Strontium (total)	µg/L			180				181		175	173	166	203	213	207	191	201	186	199	199
Titanium (total)	µg/L			5.15				8.79		3.84	2.36	7.15	2.00	5.42	5.08	1.48	1.40	6.34	2.41	2.36
Thallium (total)	µg/L	0.3	0.8	< 0.005				< 0.005	<	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	µg/L	5	15	0.67				0.64		0.71	0.82	0.81	0.88	0.78	0.88	0.74	0.79	0.98	1.05	0.97
Vanadium (total)	µg/L	6		1.0				0.96		0.85	0.59	0.85	0.72	0.84	0.65	0.47	0.43	0.65	0.46	0.40
Zinc (total)	µg/L	30	30	14				6		2	2	< 2	< 2	3	2	< 2	12	< 2	3	< 2
Radium-226	Bq/L	1		< 0.005				0.009	<	0.005	< 0.005	< 0.005	0.019	< 0.005	< 0.005	< 0.010	0.027	< 0.005	< 0.005	< 0.005
PWQO = Provincial Water G CWQG= Canadian Water Q	Quality Objectives uality Guidelines	, Ministry o for Protecti	of the Enviro	onment tic Life																

Bold values indicate an exceedance of a PWQO or CWQG value

¹ No Sample due to logistical isssues

Page 177 of 246

Table 77: Surface water quality – Lake Ontario Port Hope Harbour – During Dredging Activities (PHH-2a)

		Crit	eria	1							PHH-2a	1							
Analysis	Units	PWQO	CWQG	2021-06-16 ²	2021-07-09 ^{1,2}	2021-07-16 ^{1,2}	2021-07-23 ^{1,2}	2021-08-05 ²	2021-09-16	2021-09-21	2021-09-29	2021-10-13	2021-10-18	2021-10-28	2021-11-03	2021-11-09	2021-11-15	2021-11-23	2021-11-29
Total Suspended Solids	mg/L			66	No Sample	No Sample	No Sample	14	7	22	8	5	6	10	3	3	21	5	7
Hardness	mg/L as CaCO ₃							211	175	167	208	236	276	220	230	258	254	257	252
Silver (total)	µg/L	0.1	0.25	< 0.05				< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	0.09	< 0.05	< 0.05	< 0.05	0.09
Aluminum (total)	µg/L			199				115	63	185	81	89	104	70	41	34	143	72	95
Arsenic (total)	µg/L	100	5	7.1				78.4	5.3	4.6	5.7	22.2	20.2	2.8	17.4	21.8	13.7	39.2	29.2
Barium (total)	µg/L			76.8				67.0	50.6	50.1	63.9	68.0	66.9	45.3	55.2	62.8	59.0	63.0	62.2
Beryllium (total)	µg/L	1100		0.010				< 0.007	< 0.007	0.010	< 0.007	0.009	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	µg/L	200	1500	33				25	20	22	24	24	20	16	13	15	23	28	10
Bismuth (total)	µg/L			0.11				2.64	0.51	0.33	0.56	1.55	0.69	0.15	1.07	1.98	0.34	1.63	2.09
Calcium (total)	µg/L			66300				65400	52700	51600	66600	75100	94000	70900	75700	83000	82900	82900	80600
Cadmium (total)	µg/L	0.2	0.09	0.013				0.005	0.004	0.007	0.013	< 0.003	0.006	< 0.003	0.005	0.011	0.007	0.006	0.006
Cobalt (total)	µg/L	0.9		0.242				1.420	0.253	0.252	0.340	0.661	0.368	0.146	0.771	0.923	0.393	1.280	1.090
Chromium (total)	µg/L			0.60				0.59	0.40	0.51	0.52	0.18	0.54	0.30	0.25	0.39	0.79	0.39	0.47
Copper (total)	µg/L	5		1.2				4.5	1.1	1.1	1.2	1.6	1.2	0.8	2.0	2.0	1.0	3.0	2.4
Iron (total)	µg/L	300	300	434				290	142	322	182	161	198	165	133	193	239	168	183
Potassium (total)	µg/L			1580				1650	1290	1340	1330	1410	2110	1580	1340	1280	1990	1380	1260
Magnesium (total)	µg/L			11600				11600	10600	9370	10200	11800	10100	10500	9970	12300	11400	12100	12200
Manganese (total)	µg/L			83.6				41.8	18.3	32.3	25.1	22.6	26.4	17.8	18.5	29.1	29.8	25.9	28.8
Molybdenum (total)	µg/L	40	73	0.70				1.06	0.75	0.74	0.66	0.75	0.58	0.80	0.68	0.65	0.50	0.76	0.73
Sodium (total)	µg/L			11200				13600	9970	9860	13200	11600	11700	12900	11200	11800	14200	15600	25600
Nickel (total)	µg/L	25	25	0.7				3.7	0.7	0.7	0.9	1.4	1.1	0.7	1.6	1.6	1.0	2.7	1.6
Phosphorus (total)	µg/L	10-30		58				24	16	49	34	36	36	15	17	19	28	18	26
Lead (total)	µg/L	5	7	2.40				20.7	3.0	2.8	5.7	10.5	5.4	2.3	12.0	19.1	4.9	24.5	32.2
Antimony (total)	µg/L	20		< 0.9				1.1	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	1.1	1.0
Selenium (total)	µg/L	100	1	0.13				0.12	0.12	0.11	0.09	0.07	0.15	0.11	0.10	0.09	0.20	0.09	0.09
Tin (total)	µg/L			0.08				0.13	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.07	< 0.06	< 0.06	< 0.06
Strontium (total)	µg/L			203				194	173	182	173	209	216	197	175	213	191	196	195
Titanium (total)	µg/L			8.32				6.02	3.14	9.12	3.84	3.76	4.55	3.55	2.02	1.74	7.27	2.41	2.35
Thallium (total)	µg/L	0.3	0.8	< 0.005				0.005	< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	µg/L	5	15	6.26				222	6.68	8.44	26.5	60.9	53.8	8.2	97.06	101	74.3	220	147
Vanadium (total)	µg/L	6		1.16				1.19	0.66	0.80	0.83	0.94	0.93	0.53	0.61	0.56	0.79	0.80	0.55
Zinc (total)	µg/L	30	30	5				5	3	3	2	< 2	< 2	3	< 2	11	< 2	2	< 2
Radium-226	Bq/L	1		0.045				0.462	< 0.005	0.010	0.136	0.282	0.680	0.047	0.190	0.291	0.154	0.510	0.492
PWQO = Provincial Water Q CWQG= Canadian Water Q Bold values indicate an exc ¹ No Sample due to logistical	Quality Objectives uality Guidelines eedance of a PW	s, Ministry o for Protecti QO or CWQ	f the Enviro on of Aqua (G value	onment tic Life															

² Sample location PHH-2

Appendix C PORT HOPE GROUNDWATER MONITORING RESULTS

Table 78: WC-IW93-22

	Crite	əria																
		COPC	Table 3	2016		2017		2018		2019		2020				2021		
Parameter	Units						A	verage					20	21-05-19	202	21-12-14	A	verage
pH	pH			8.14		8.26		8.24	Γ	8.23		8.30		8.33		8.36		8.35
Alkalinity	mg/L as CaCO ₃			97		100		100		98		99		100		105		103
Carbonate	mg/L as CaCO3			1.7		1.7		1.6		1.6		1.5		2.0		2.0		2.0
Bicarbonate	mg/L as CaCO3			96		98		99		96		98		98		103		101
Total Dissolved Solids	mg/L			91		131		78		80		127		134		106		120
Fluoride	mg/L	1.5		0.33		0.33		0.30		0.32		0.33		0.32		0.34		0.33
Total Organic Carbon	mg/L			0.87		0.49		0.57		0.62	<	1.00		1.0	<	1.0		1.0
Dissolved Organic Carbon	mg/L			0.53		0.43		0.52		0.59	<	1.00		1.0	<	1.0		1.0
Ammonia+Ammonium (N)	as N mg/L			0.26		0.16		0.26		0.20		0.18		0.19		0.21		0.20
Chloride (dissolved)	mg/L			0.8	<	1.0	<	1.0	<	1.0		0.6		0.50		0.60		0.55
Sulphate (dissolved)	mg/L			9.0		8.9		9.1		9.2		9.8		10		11		10
Bromide (dissolved)	mg/L			1.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.30	<	0.30	<	0.30
Nitrite (as N)	as Nmg/L			< 0.010	<	0.010	<	0.010		0.012	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as Nmg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	۷	0.01	۷	0.01	۷	0.01	۷	0.01
Hardness	mg/L as CaCO3			75		76		75		75		78		83.5		86.2		84.9
Silver (dissolved)	µg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	۷	0.05	<	0.05	<	0.05	۷	0.05
Aluminum (dissolved)	µg/L			3.0	<	5.0	<	5.0	<	5.0		4.0		1		3		2
Arsenic (dissolved)	µg/L	25	1900	1.4		1.3		1.4		1.3		1.6		1.4		1.5		1.5
Barium (dissolved)	µg/L	1000	29000	51		52		54		54		57		58.5		57.0		57.8
Beryllium (dissolved)	µg/L		67	0.25	<	0.50	<	0.50	<	0.50	۷	0.01	۷	0.007	۷	0.007	۷	0.007
Boron (dissolved)	µg/L	5000	45000	73		70		73		73		70		73		55		64
Bismuth (dissolved)	µg/L			0.5	<	1.0	<	1.0	<	1.0	۷	0.007	۷	0.010	۷	0.010	۷	0.010
Calcium (dissolved)	µg/L			11450		12000		12000		12000		13400		13600		12900		13250
Cadmium (dissolved)	µg/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10	۷	0.00	۷	0.003	۷	0.003	۷	0.003
Cobalt (dissolved)	µg/L		66	0.50	<	0.50	<	0.50	<	0.50		0.01		0.009		0.031		0.020
Chromium (dissolved)	µg/L		810	2.7	<	5.0	<	5.0	<	5.0		0.4		0.2		0.3		0.3
Copper (dissolved)	µg/L	1000	87	0.3	<	1.0	<	1.0	<	1.0	<	0.2	<	0.20		0.30		0.25
Iron (dissolved)	µg/L			71	<	100	<	100	<	100		33		29		36		33
Potassium (dissolved)	µg/L			620		595		610		580		612		619		617		618
Magnesium (dissolved)	µg/L			11100		11500		11000		11000		11300		11800		11400		11600
Manganese (dissolved)	µg/L			1.8	<	2.0	<	2.0	<	2.0		1.8		1.44		1.54		1.49
Molybdenum (dissolved)	µg/L		9200	1.8		1.8		1.9		1.9		1.8		1.80		2.00		1.90
Sodium (dissolved)	µg/L			14100		15000		14000		14000		14000		15000		14900		14950
Nickel (dissolved)	µg/L		490	0.6	<	1.0	<	1.0	<	1.0	<	0.1	<	0.10	<	0.10	<	0.10
Phosphorus (dissolved)	µg/L			19		11		9		8		3	<	3	<	3	<	3
Lead (dissolved)	µg/L	10	25	0.26	<	0.50	<	0.50	<	0.50		0.01	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L			0.6	<	1.0	<	1.0	<	1.0	<	0.1	<	0.06		0.08		0.07
Strontium (dissolved)	µg/L			494		480		490		490		589		572		453		513
Titanium (dissolved)	µg/L			2.5	<	5.0	<	5.0	<	5.0		0.1	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	µg/L		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	0.06	<	0.10	<	0.10	<	0.10		0.03		0.065		0.006		0.036
Vanadium (dissolved)	µg/L		250	0.26	<	0.50	<	0.50	<	0.50		0.01	<	0.01		0.05		0.03
Zinc (dissolved)	µg/L		1100	3.5	<	5.0	<	5.0	<	5.0	<	2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02		0.06	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Kadium-226	Bq/L	0.49		0.03	<	0.03	<	0.04	<	0.04	-	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		< 0.01 1	<	0.04	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bd/L	0.60		-	⊢	-	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters						•						_	_					
ODO % Sat	%			-2		-2		-2		-2		-2		32.1		31.6		
ORP	mV			- ²		- ²		_2		- ²		_ ²		71.6				
SPC	µs/cm			_2	Γ	_ ²		_2		_2		_2		229.4		208.9		
Temperature	°C			_2		_2		_2		_2		_2		10.747		9.157		
Turbidity	FNU			_2	F	_2	İ	_2	F	_2		_2		5.73		10.21		
рН	Units			_2	t	_2		_2	t	_2		_2		8.57				
r														0.01				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

	Criteria							WC-MW1-02								
		COPC	Table 3	2016	2017	2018	2019	2020	2021							
Parameter	Units				Average			No Sample								
pH	pH			8.27	8.26	8.31		Well Damage	d							
Alkalinity	mg/L as CaCO₂			155	160	200		r Ť								
Carbonate	mg/L as CaCO ₃			5.4	2.7	3.8										
Bicarbonate	mg/L as CaCO ₂			146	155	200										
Total Dissolved Solids	mg/L			195	197	200										
Fluoride	ma/l	1.5		0.80	0.68	0.76										
Total Organic Carbon	ma/l	1.0		1.67	1.08	1 10										
Dissolved Organic Carbon	mg/L			0.83	0.83	0.78										
Ammonia+Ammonium (N)	as Nmg/l			0.57	0.63	0.60										
Chloride (dissolved)	ma/L			7.9	8.8	8.1										
Sulphate (dissolved)	mg/L			10.0	9.0	9.3										
Bromide (dissolved)	ma/l			0.7	< 1.0	< 10										
Nitrite (as N)	as Nmg/l			0.010	< 0.010	< 0.010										
Nitrate (as N)	as Nmg/L			< 0.010	< 0.010	< 0.010										
Nitrate + Nitrite (as N)	as Nmg/L			< 0.10	< 0.10	< 0.10										
Mercury (dissolved)	ug/l	1	0.29	0.06	< 0.10	< 0.10										
Hardness	mg/L as CaCO	-	0.25	59	59	54										
Silver (dissolved)			15	0.05	< 0.10	< 0.10										
Aluminum (dissolved)	ug/L		1.5	7.5	44.5	16.0										
Arsenic (dissolved)	µg/L	25	1900	0.6	< 1.0	< 10.0										
Barium (dissolved)	µg/L	1000	20000	0.0	78	< 1.0 81										
Beryllium (dissolved)	µg/L	1000	23000	0.25	/0	< 0.50										
Boron (dissolved)	µg/L	5000	45000	270	270	< 0.50 250										
Biomuth (dissolved)	µg/L	3000	43000	210	210	230										
Coloium (dissolved)	µg/L			11500	12000	11000										
Calcium (dissolved)	µg/L	-	27	0.05	12000	- 0.10										
Caumium (dissolved)	µg/L	3	2.7	0.05	< 0.10	< 0.10										
Cobait (dissolved)	µg/L		00	0.04	< 5.0	< 5.0										
Copper (dissolved)	µg/L	1000	010	2.7	< 1.0	< 1.0										
kep (dissolved)	µg/L	1000	0/	0.J 54	< 1.0	< 1.0										
Potosoium (dissolved)	µg/L			2020	> 100	> 100										
Magnesium (dissolved)	µg/L			2920	6800	2000										
Mangapese (dissolved)	µg/L			1255	6.3	20										
Maligariese (dissolved)	µg/L		0200	2.4	0.5	2.3										
Sodium (dissolved)	µg/L		9200	Z.4 /0050	40500	47000										
Nickel (dissolved)	µg/L		/00	49900	< 1.0	< 10										
Phosphorus (dissolved)	µg/L		450	67	270	160										
Lood (dissolved)	µg/L	10	25	0.26	270	100										
A ptimopy (dissolved)	µg/L	10	25	0.20	< 0.50	< 0.50										
Colonium (dissolved)	µg/L	0	20000	0.35	< 0.50	< 0.50	-	-								
Tip (discolved)	µg/L	10	63	1.1	< 2.0	< 2.0										
Strontium (dissolved)	µg/L			0.5	760	770										
Titanium (dissolved)	µg/L			094	/ 50	110										
Thallium (dissolved)	µg/L		E10	2.5	< 0.050	< 0.050										
Liranium (dissolved)	µg/L	20	420	0.028	0.050	< 0.050										
Vanadium (dissolved)	µg/L	20	420	0.00	0.14	< 0.10	-	-								
Zine (discelued)	µg/L		250	0.20	< 0.50	< 0.50										
Lood 210	µg/L Ba/l	0.20	1100	3.5	< 0.02	< 0.10										
Padium 226	Bq/L	0.20		0.02	< 0.02	< 0.10										
Thorium 220	Bq/L	0.49		0.030	< 0.040	< 0.040										
Thorium 222	Bq/L	0.65		1	< 0.070	< 0.070										
	Bq/L	0.60		- '	0.060	< 0.060										
Field Parameters				-												
ODO % Sat	%			- ²	-2	-2	-2									
ORP	mV			- ²	_2	_ ²	- ²									
SPC	µs/cm			- ²	_2	-2	- ²									
Temperature	°C			_ ²	_2	_ ²	_ ²									
Turbidity	FNU			_2	_2	_2	_2									
Hq	Units			_2	_2	_2	_2									

Table 79: WC-MW1-02

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract. ² Field parameters included for current sampling year only.

Table 80: WC-MW1-03

	Crite	eria				1-03												
		COPC	Table 3	2016		2017		2018		2019		2020			:	2021		
Parameter	Units						A	verage					202	21-05-18	202	21-11-26	٩	verage
pH	рН			7.94	1	7.90	1	7.62		7.70		7.52		7.28	-	7.20		7.24
' Alkalinity	ng/Las CaCO₂			494		430		450		400		460		389		409		399
Carbonate	mg/L as CaCO			3.0		3.2		1.8		2.0	<	1.0	<	10	<	1.0	<	10
Bicarbonate	mg/L as CaCO			494		425		450		400		460		389		409		399
Total Dissolved Solids	mg/L do babby			595	1	496		678		648		715		900		751		826
Fluoride	ma/l	1.5		0.25		0.24		0.21		0.19		0.25		0.20		0.21		0.21
Total Organic Carbon	mg/L			8.6		9.0		3.7		4.2		2.5		3.0		3.0		3.0
Dissolved Organic Carbon	mg/L			2.9	1	3.4		27		2.3		2.5		3.0		3.0		3.0
Ammonia+Ammonium (N)	as N mg/L			< 0.05		0.1		0.09		0.09		0.06	<	0.04		0.04		0.04
Chloride (dissolved)	ma/l			43		51		61		85		115		150		180		165
Sulphate (dissolved)	ma/l			30		16		71		67		104		95		56		76
Bromide (dissolved)	mg/L			0.7	<	10	<	10	<	1.0		0.3		0.40		1.00		0.70
Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.40	<	0.03	<	0.03
Nitrate (as N)	as Nmg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Nitrate + Nitrite (as N)	as Nmg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Mercury (dissolved)	ug/l	1	0.29	0.06	<	0.10	<	0.10	<	0.10	-	0.00	<	0.00	<	0.01	<	0.01
Hardness	mg/L as CaCO	-	0.25	520	Ľ	455		560	-	540		524	-	621	-	609	-	615
Silver (dissolved)			15	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
	ug/L		1.5	3.0	1	132.5	2	31.0	~	5.0		1.5	-	2.0	-	1.0		1.5
Arsenic (dissolved)	ug/L	25	1900	< 1.0		12.5	È	1.3	È	1.2		0.9		1.2		0.8	_	1.0
Barium (dissolved)	ug/L	1000	29000	110		115		140		160		140		161		171		166
Beryllium (dissolved)	µg/L	1000	67	0.25	<	0.50	<	0.50	<	0.50	۲	0.01	۲	0.007	~	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	45	È	26	È	38	È	20	`	24	<u>`</u>	21	`	20	È	25
Bismuth (dissolved)	ug/L	3000	43000		<	1.0	<	1.0	<	1.0	۲	0.007	۲	0.010	٢	0.010	<	0.010
Calcium (dissolved)	µg/L			133000	È	130000	È	160000	È	155000	`	111100	-	178000	`	186000	-	182000
Cadmium (dissolved)	µg/L	E	27	0.05	-	0.10	/	0.10	/	0.10		0.00	/	0.003	/	0.003	/	0.003
Califium (dissolved)	µg/L	5	2.7	1 13	È	0.10	È	0.10	2	0.10		0.00	`	0.003	`	0.003	-	0.003
Cobait (dissolved)	µg/L		810	27	<	5.0	<	5.0	~	5.0		0.15		0.070		0.103	_	0.433
Copper (dissolved)	ug/L	1000	87	0.3	Ż	1.0	~	1.0	~ Z	1.0		0.4		0.50	٢	0.20	-	0.10
Iron (dissolved)	ug/L	1000		224	È	750	È	1510	È	560		25		1670	-	2520		2095
Potassium (dissolved)	µg/L			2130	-	1030	-	1500		2200		2135		1750		1860	-	1805
Magnesium (dissolved)	µg/L			44400		32000		38500		37500		25200		40400		37600	-	39000
Manganese (dissolved)	ug/L			88	-	94		127		145		35		128		278.00		203.00
Maligarieee (discorred)	ug/L		9200	8.5	-	54		1.0		3.7		10.0		3.0		2.5		3.2
Sodium (dissolved)	ug/L		5200	31700	-	33000		33500		36000		29350		37600		39200		38400
Nickel (dissolved)	ug/L		490	1.8		1 7		14	<	1.0		0.6		1.6		0.6		1 1
Phosphorus (dissolved)	ug/L		450	120	-	1450		185	-	182	<	3		14		23		19
Lead (dissolved)	ug/L	10	25	0.26	1	0.51	<	0.50	<	0.50	-	0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	ug/L	6	20000	0.25	<	0.50	~	0.50	~	0.50	<	0.02	~	0.00	· <	0.00	· ·	0.00
Selenium (dissolved)	ug/L	10	63	1.0	Ż	2.0	<	2.0	~	2.0	-	0.00	-	0.06	`	0.00	-	0.07
Tin (dissolved)	ug/L	10	03	0.5	2	1.0	~	1.0	~	1.0		0.0	~	0.06	<	0.06	<	0.06
Strontium (dissolved)	ug/L			784	È	550	Ì	670	-	755		762	-	1080	-	1130	-	1105
Titanium (dissolved)	ua/L			2.5	F	7.5	<	5.0	<	5.0		0.1		0.14	<	0.05		0.10
Thallium (dissolved)	ug/l		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ug/L	20	420	9.0	1	7.6	-	4 2	-	4.9		5.6	-	67	-	3.4	-	5.1
Vanadium (dissolved)	ug/l		250	12		0.8	<	0.5		1.0		12		0.14		0.17		0.16
Zinc (dissolved)	ug/l		1100	4.0	<	5.0	<	5.0	<	5.0		3.0		2.0	<	2.0		2.0
Lead-210	Ba/l	0.20		< 0.02		0.05	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		< 0.02	<	0.00	<	0.10	<	0.04		0.02	<	0.02	<	0.02	<	0.02
Thorium-230	Ba/L	0.65		< 0.01	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L	0.60		_1	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters					F	0.00	1	2.00										
	0/			2		2	-	2		2		2		25.6		30.6	-	
	70			-		-		-		-		-	_	20.0		59.0	-	
UKP	mv			-		-		-		-		-	_	-/1.8		-52.0		
SPC	µs/cm			-4		-4		-4		-4		-2		1215		1384.0		
Temperature	°C			- ²		- ²		_ ²		- ²		- ²		10.275		9.323		
Turbidity	FNU			_ ²		_ ²		_2		_ ²		- ²		67.22		23.82		
pH	Units			_2		_2		_2		_2		- ²		7.22		6.97		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.
		Crit	eria			WC-M	W2-02		
		COPC	Table 3	2016	2017	2018	2019	2020	2021
Parameter	Units					WELL NO	T FOUND		
pН	pН								
Alkalinity	mo/L as CaCO ₃								
Carbonate	mg/L as CaCO ₃								
Bicarbonate	mg/L as CaCO ₃								
Total Dissolved Solids	mg/L								
Fluoride	mg/L	1.5							
Total Organic Carbon	mg/L								
Dissolved Organic Carbon	mg/L								
Ammonia+Ammonium (N)	as Nmq/L								
Chloride (dissolved)	mg/L								
Sulphate (dissolved)	mg/L								
Bromide (dissolved)	mg/L								
Nitrite (as N)	as Nmg/L								
Nitrate (as N)	as N mg/L								
Nitrate + Nitrite (as N)	as N mg/L								
Mercurv (dissolved)	ua/L	1	0.29						
Hardness	mg/L as CaCO ₂								
Silver (dissolved)	ua/L		1.5						
Aluminum (dissolved)	ua/L								
Arsenic (dissolved)	ug/l	25	1900						
Barium (dissolved)	ug/l	1000	29000						
Beryllium (dissolved)	ug/l	1000	67						
Boron (dissolved)	ug/l	5000	45000						
Bismuth (dissolved)	ug/L	5000	43000						
Calcium (dissolved)	ug/l								
Cadmium (dissolved)	ug/l	5	2.7						
Cobalt (dissolved)	ug/l		66						
Chromium (dissolved)	ug/L		810						
Conner (dissolved)	ug/L	1000	87						
Iron (dissolved)	ug/L	1000	0/						
Potassium (dissolved)	ug/L				1		-		
Magnesium (dissolved)	µg/L								
Magnesiam (dissolved)									
Molybdenum (dissolved)	ug/L		9200						
Sodium (dissolved)	ug/L		5200						
Nickel (dissolved)	µg/L		/19/1						
Phosphorus (dissolved)	µg/L		430						
Lead (dissolved)	µg/L	10	25						
Antimony (dissolved)	ug/L	- 10	20000						
Selenium (dissolved)	ug/L	10	62						
Tin (discolved)	µg/L	10	05						
Strontium (discolved)	µg/L								
Titanium (dissolved)	µg/L								
Thallium (dissolved)	µg/L		E10						
Iranium (dissolved)	µg/L	20	420			1			
Vanadium (dissolved)	µg/L	20	420			1			
Zina (dissolved)	µg/L		1100						
	Pg/L Rg/I	0.20	1100						
Dedium 226	Bq/L Bg/l	0.20							
Thorium 220	Bq/L Bg/l	0.45							
Thorium 232	Bq/L	0.05							
Field Parameters		0.60							
	0/								
ODO % Sat	%								
ORP	mV								
SPC	µs/cm								
Temperature	°C								
Turbidity	FNU								
nH	Linits								
CORC = Contominants of	Detential Care	a oritoria f	or Dotable	Croundart	or Cordition	a darived free	Dort Har	Sereening D	onort
COPC = Contaminants of I	-otential Conceri	i criteria fe	or Potable	Groundwat	er Condition	s derived from	Port Hope	Screening R	eport.

Table 81: WC-MW2-02

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

		Crit	eria						1	w	C-MW3A-	11R	3						
		COPC	Table 3	2015	2016		2017		2018		2019		2020	Γ			2021		
Parameter	Units						Ave	raç	je					20	021-04-28	20	21-12-17	A	verage
pН	pН			7.61	7.50		7.63		7.64		7.65		7.64		7.48		7.42		7.45
Alkalinity	mg/L as CaCO3			142	123		130		140		145		152		150		160		155
Carbonate	mg/L as CaCO ₃			< 2.0	1.5	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	۷	1.0	۷	1.0
Bicarbonate	mg/L as CaCO3			142	123		130		140		145		152		150		160		155
Total Dissolved Solids	mg/L			3695	7445		7980		4210		4010		4885		4620		3950		4285
Fluoride	mg/L	1.5		0.37	0.28		0.28		0.29		0.37		0.49		0.46		0.57		0.52
Total Organic Carbon	mg/L			< 1.0	1.1		1.5		1.5		1.4		1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L			-1	0.95		0.90		1.23		0.87		1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mg/L			-1	7.2		4.9		4.5		4.0		4.4		4.13		3.89		4.0
Chloride (dissolved)	mg/L			1900	4150		2800		2300		2050		2600		2700		2200		2450
Sulphate (dissolved)	mg/L			8	27		12	<	2	<	10		1	<	2	<	2	<	2
Bromide (dissolved)	mg/L			25	54		35		38		32		34		33		31		32
Nitrite (as N)	as N mg/L			-1	< 0.010	<	0.010	<	0.010	<	0.010	<	0.300	<	0.30	<	0.30	۷	0.30
Nitrate (as N)	as N mg/L			-1	< 0.10	<	0.10	<	0.10	<	0.10	<	0.60	<	0.06	۷	0.60		0.33
Nitrate + Nitrite (as N)	as N mg/L			-1	< 0.10	<	0.10	<	0.10	<	0.10	<	0.60	<	0.30	<	0.60		0.45
Mercury (dissolved)	µg/L	1	0.29	< 0.01	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO₃			1178	3350		2300		1850		1600		2220		2120		2240		2180
Silver (dissolved)	µg/L		1.5	0.030	0.25	<	0.10	<	0.10	<	0.10		0.28	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			5	13	<	5	<	5		33		9	<	1		2		2
Arsenic (dissolved)	µg/L	25	1900	13.5	2.6	<	1.0	<	1.0	<	1.0		1.4	<	0.2	<	0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000	1615	6180		3550		2800	L	2650		3060		2990		3370		3180
Beryllium (dissolved)	µg/L		67	< 0.01	1.25	<	0.50	<	0.50	<	0.50		0.04	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	217	457		440		380	L	455		453		418		449		434
Bismuth (dissolved)	µg/L			0.02	2.5	<	1.0	<	1.0	<	1.0		0.039	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L			279000	706000		485000		390000	L	340000		513500		503000		651000		577000
Cadmium (dissolved)	µg/L	5	2.7	< 0.003	0.25	<	0.10	<	0.10	<	0.10		0.02	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L		66	0.32	2.53	<	0.50	<	0.50	<	0.50		0.04		0.05		0.10		0.07
Chromium (dissolved)	µg/L		810	0.06	12.7	<	5.0	<	5.0	<	5.0		0.6		1.0		0.2		0.6
Copper (dissolved)	µg/L	1000	87	2.8	1.3	<	1.0	<	1.0	<	1.0		1.1	<	0.2	<	0.2	<	0.2
Iron (dissolved)	µg/L			536	1155		800		440		520		656		675		771		723
Potassium (dissolved)	µg/L			18100	33900		26500		22000		19500		21100		19800		20900		20350
Magnesium (dissolved)	µg/L			159500	385000		270000		215000		180000		213500		192000		198000		195000
Manganese (dissolved)	µg/L			17	51		46		34		23		29		23.5		19.4		21
Molybdenum (dissolved)	µg/L		9200	1.9	1.8		0.7		0.5	<	0.5	_	0.5		0.1		0.3		0.2
Sodium (dissolved)	µg/L			600000	1106500		850000		665000		605000		636500		583000		628000		605500
Nickel (dissolved)	µg/L		490	2.6	2.6	<	1.0	<	1.0	<	1.0		0.6	<	0.1		0.2		0.2
Phosphorus (dissolved)	µg/L			75	50		81		34		50	_	17		10		23		17
Lead (dissolved)	µg/L	10	25	0.03	1.20	<	0.50	<	0.50	<	0.50	-	0.06	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.65	1.35	<	0.50	<	0.50	<	0.50	_	4.95	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	57.0	5.0	<	2.0	< -	2.0	<u> </u>	2.0	-	0.2	<	0.04		0.07		0.00
Strontium (discolved)	µg/L ug/l			22850	60350	È	1.0	È	32500	È	31000		35350	Ì	37800		38000		37000
Titopium (dissolved)	µg/L			22030	12	-	42000		52500		51000	-	0.2		0.00		0.05		0.07
Thallium (dissolved)	µg/L ug/l		E10	0.5	0.128	È	0.050	È	0.050	È	0.050	/	0.028	/	0.005	/	0.005	/	0.07
Iranium (dissolved)	µg/∟ ug/l	20	420	0.000	0.120	È	0.030	È	0.030	È	0.030	È	0.020	È	0.005	<u>`</u>	0.005	`	0.003
Vanadium (dissolved)	µg/L	20	250	0.0	2.6	È	0.1	~	0.1	2	0.1	-	0.0		0.003		0.013		0.010
Zinc (dissolved)	µg/L		1100	17.5	13.5	~	5.0	2	5.0	2	5.0	-	11.0		3.0		5.0		4.0
	µg/∟ Ba/l	0.20	1100	< 0.02	< 0.02	~	0.02	È	0.10	Ì	0.10	<	0.02	<	0.02	<	0.02	<	4.0
Radium-226	Bq/L Bq/l	0.20		0.02	0.02	È	0.02	2	0.10	È	0.10	-	0.02	-	0.02	`	0.02	`	0.02
Thorium-230	Bq/L Ba/l	0.45		< 0.04	0.10	<	0.07	~	0.04	<	0.07	<	0.02	<	0.04	<	0.02	<	0.07
Thorium-232	Ba/l	0.60		_1	_1	<	0.06	<	0.06	~	0.06	<	0.02	<	0.02	、 <	0.02	、 <	0.02
Field Parameters	Dq/L	0.00		_	_	È	0.00	È	0.00	È	0.00	È	0.02	È	0.02	-	0.02	-	0.02
	0/			2	2		2		2		2		2		10		27.0		
odo % Sal	70			-	-	-			-	-		-	-		19	H	37.8	H	
OKP	mv			-	-		-*		-		-*		-		-54		1//.7		
SPC	μs/cm			-4	-2		-4		-4		-2		-2		7213		5239.9		
Temperature	°C			- ²	_ ²		- ²		_ ²		_ ²		_ ²		10.181		8.749		
Turbidity	FNU			- ²	_ ²		_2	L	_2	L	<u>-</u> 2	L	_2		50.93		22.91		
pH	Units			_2	_2		_2		_2	Γ	_2		_2		7.50		6.23		

Table 82: WC-MW3A-11R

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

--- No data.

³ Installation took place in 2011 to replace WC-MW3A-02.

Page	183	of	2

Table 83: WC-MW3B-02

		Crit	eria							WC-M	W3	B-02						
		COPC	Table 3	2016		2017	1	2018		2019		2020				2021		
Parameter	Units							Average					203	21-04-29	202	21-12-08	A١	verage
pH	pH			No Sample		8.19	<u> </u>	8.24	1	8.29		8.36	20.	8.35	201	8.31		8.33
Alkalinity	mg/L as CaCO					120		140		150		383		169		480		325
Carbonate	mg/L as CaCO ₂					1.8		2.3		2.8		2.5		3.0	<	1.0		2.0
Bicarbonate	mg/L as CaCO					120		140		145		381		165		480		323
Total Dissolved Solids	mg/L as savey							480		480		280		140		475		308
Fluoride	mg/L	1.5				0 44		0.38		0.43		0.45		0.42		0.44		0.43
Total Organic Carbon	mg/L	2.00						1.9		9.2		1.0		10		10		1.0
Dissolved Organic Carbon	mg/L							0.75		1.35		1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mo/l							0.230		0.062		0.055	<	0.04		0.07		0.06
Chloride (dissolved)	ma/l					25	1	2.1		4.3		2.9	-	21		24		2.3
Sulphate (dissolved)	mg/L					14		13		18		14		11		12		12
Bromide (dissolved)	mg/L				<	10	<	1.0	<	10	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as Nimo/I				2	0.010	~	0.010	-	0.011	~	0.030	2	0.030	2	0.030	2	0.030
Nitrate (as N)	as Nimg/L				~	0.010	~	0.010	<	0.011	Ż	0.000	~	0.000	`	0.000	`	0.000
Nitrate + Nitrite (as N)	as Nmg/L				· <	0.10	~	0.10	· <	0.10	· c	0.06	2	0.06		0.07		0.07
Mercury (dissolved)	ug/l	1	0.29		~	0.10	~	0.10	~	0.10	Ż	0.00	~	0.00	۲	0.01	٢	0.01
Hardness	mg/L as CaCO.	-	0.25		-	53	-	55	-	56		0.01	-	87	-	1310	-	600
Silver (dissolved)			15		<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
	ug/L		1.5		~	5.0	~	5.0	È	5.5	È	3.0	~	1.0	-	115	-	58
Arsenic (dissolved)	µg/L	25	1900		<u> </u>	1.2	~	1.0		1.4		1.4	`	1.0		14		12
Barium (dissolved)	µg/L	1000	20000		-	3/	-	30		34	-	30		28		32		30
Bervillium (dissolved)	µg/L	1000	23000		<	0.50	<	0.50	<	0.50	<	0.01	~	0.007		0.011		0.000
Boron (dissolved)	µg/L	5000	45000		-	0.30	-	0.00	È	110	-	100	`	0.007		87		0.003
Doron (uissoiveu)	µg/L	5000	45000		/	97	/	90	/	1.0	/	0.007	/	94	/	0.010	/	91
Coloium (dissolved)	µg/L				`	11000	<u>`</u>	12000	È	12400	Ì	16450	`	12500	`	19700	`	16100
Calcium (dissolved)	µg/L	-	2.7		/	0.10	/	0.10	/	0.10	-	0.01		0.017	/	0.002		0.010
Caumum (dissolved)	µg/L	5	2.7		<	0.10	<	0.10	<	0.10	_	0.01		0.017	< <u> </u>	0.003		0.010
Cobait (dissolved)	µg/L		00		-	0.50	-	0.00	È	0.00	-	0.04		0.004		0.210		0.111
Copper (dissolved)	µg/L	1000	010		-	1.0	-	1.0	È	3.0	_	0.3		0.2		0.4		0.3
kop (dissolved)	µg/L	1000	87		-	1.0)	1.0	/	3.0	-	10	/	0.2		172		0.2
Potossium (dissolved)	µg/L				`	020	<u>`</u>	960	È	915	_	040	`	750		652		90 702
Magnasium (dissolved)	µg/L					920	-	6200	-	615	-	940		6020		6740		6270
Magnesium (dissolved)	µg/L				/	2.0		4.2		2 1		0200		0.1		12.6		6370
Mahyanese (uissoiveu)	µg/L		0200		<u>`</u>	2.0		4.Z 0	-	2.1 12	_	5.2		5.70		7 22		0.0
Sodium (dissolved)	µg/L		9200			37000		24000	-	26000	_	20050		20200		27000		24050
Nickel (dissolved)	µg/L		400		/	1.0	/	1.0	-	1 1	_	0.2	/	0.1		37900		0.2
Phoephorus (dissolved)	µg/L		490		`	1.0	<u>`</u>	1700	-	1.1	_	0.Z 5	` `	2		16		10
Filosphorus (dissolved)	µg/L	10	25		/	0.50	/	0.50	/	2200	_	0.02	` `	0.00		0.17		0.12
Leau (dissolved)	µg/L	10	25		<	0.50	`	0.50	<	0.50	_	0.02	<	0.09		0.17		0.13
Anumony (dissolved)	µg/L	10	20000		/	3.4	/	1.3	/	1.0	/	1.1	<	0.9	<	0.9	<	0.9
Tip (dissolved)	µg/L	10	05		-	2.0	-	2.0	È	2.0	Ì	0.0	`	0.04	`	0.04	`	0.04
Tin (dissolved) Streptium (dissolved)	µg/L				<	240	< <u> </u>	270	< <u> </u>	250	_	202		272		0.13		270
Titanium (dissolved)	µg/L				-	540	-	570	-	500	-	390		0.00		7.24		370
Thallium (dissolved)	µg/L		510		~	5.0	~	5.0	~	5.0	_	0.005		0.09		7.34		3.72
Inallium (dissolved)	µg/L	20	510		<	0.050	`	0.050	< <u> </u>	0.050	< <u> </u>	0.005		0.005	`	0.005		0.005
Vanadium (dissolved)	µg/L	20	420			0.49		0.45		0.71	_	0.31		0.19		0.44		0.32
Zine (discelued)	µg/L		250		-	0.5	-	0.7 E.O	-	T.0 E 0	-	0.2		0.10		0.62		0.49
	µg/L Ra/l	0.20	1100		<	0.02	<	5.0	/	0.10	/	2.5	<	2.0	<	2.0	<	2.0
Leau-210 Dedium 226	Dq/L Da/l	0.20			_	0.03	<	0.10	< -	0.10	< -	0.02	<	0.02	`	0.02	<	0.02
Thorium 220	Bq/L Bg/l	0.49			<	0.04	<	0.04	-	0.04		0.01	~	0.01	/	0.01	/	0.01
Thorium 222	Bq/L Bg/l	0.65			\ _	0.07		0.07		0.07	È	0.02	~	0.02	~	0.02	~	0.02
	Bq/L	0.60			<	0.06	<	0.06	<	0.06	<	0.02	`	0.02	`	0.02	`	0.02
Field Parameters						4						4						
ODO % Sat	%			-'		-'		-'		-'		-'		54.9		58.4		
ORP	mV			-1		_1		_1		-1		-1		83.6				
SPC	µs/cm			_1		_1		_1		-1		_1		268.7		262.1		
Temperature	°C			_1		_1		_1		_1		_1		9.893		7.232		
Turbidity	FNU			_1		_1		_1		_1		_1		8027.2		2125.0		
рН	Units			_1		_1		_1		_1		_1		8 79				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

Page 184 of 24

-		Crit	eria							WC-N	/W	3C-02						
		COPC	Table 3	2016		2017		2018		2019		2020				2021		
Parameter	Units						A	verage	-				20	21-04-29	20	21-12-08	A	verage
pН	pН			8.17		8.19		8.23		8.21		7.95		7.83		8.03		7.93
Alkalinity	mg/L as CaCO ₃			194		180		180		195		722		337		350		344
Carbonate	mg/L as CaCO3			5.3		2.5		2.9		2.9	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO3			190		175		175		190		722		337		350		344
Total Dissolved Solids	mg/L			294		195		210		273		473		406		320		363
Fluoride	mg/L	1.5		0.38		0.29		0.26		0.30		0.25		0.24		0.24		0.24
Total Organic Carbon	mg/L			1.2		1.4		4.2		2.0		2.5		3.0		3.0		3.0
Dissolved Organic Carbon	mg/L			0.8		0.8		0.8		1.4		3.0		3.0		3.0		3.0
Ammonia+Ammonium (N)	as Nmg/L			0.16		0.26		0.34		0.09		0.13		0.25		0.21		0.23
Chloride (dissolved)	mg/L			2.3		2.2		2.4		3.0		19.5		15		14		15
Sulphate (dissolved)	mg/L			29		25		24		25		22		20		21		21
Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as Nmg/L			< 0.010		0.031	<	0.010	<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L			0.16	<	0.10	<	0.10	<	0.11		0.12	<	0.06	<	0.06	۷	0.06
Nitrate + Nitrite (as N)	as N mg/L			0.16	<	0.10	<	0.10	<	0.11		0.13		0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			123		130		135		140		1675		1180		465		823
Silver (dissolved)	µg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			4	<	5	<	5	<	5		22		9		3		6
Arsenic (dissolved)	µg/L	25	1900	6.1		4.4		4.4		3.0		4.3		4.0		1.8		2.9
Barium (dissolved)	µg/L	1000	29000	77		82		97		95		116		149		209		179
Beryllium (dissolved)	µg/L		67	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	43		48		38		38		44		42		38		40
Bismuth (dissolved)	µg/L			0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L			18600		20000		19500		21000		26700		38800		52100		45450
Cadmium (dissolved)	µg/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10	<	0.00		0.007	<	0.003		0.005
Cobalt (dissolved)	µg/L		66	0.51	<	0.50	<	0.50	<	0.50		0.07		0.130		0.179		0.155
Chromium (dissolved)	µg/L		810	2.7	<	5.0	<	5.0	<	5.0		0.4		0.2		0.1		0.2
Copper (dissolved)	µg/L	1000	87	0.3	<	1.0	<	1.0	<	1.0		0.3		1.5	<	0.2		0.9
Iron (dissolved)	µg/L			55	<	100	<	100	<	100		23		33		42		38
Potassium (dissolved)	µg/L			1410	_	1500		1350		1400		1565		1470		1870		1670
Magnesium (dissolved)	µg/L			18030	_	19500		20500		20500		22300		27600		35800		31700
Manganese (dissolved)	µg/L			1./	_	5.9		5.9		3.7		3.3		8.2		15.5		11.9
Molybdenum (dissolved)	µg/L		9200	16.9	_	10.3		6.2		11.6		6.7		2.90		4.81		3.86
Sodium (dissolved)	µg/L			44150		34500		24500		35500		63900		66500		77200		71850
Nickel (dissolved)	µg/L		490	0.6	<	1.0	<	1.0	<	1.0		0.2	-	0.60		0.80	_	0.7
Phosphorus (dissolved)	µg/L			0.00	-	2		4		2	_	5	<	3	<	3	<	3
Lead (dissolved)	µg/L	10	25	0.20	<	0.50	<	0.50	<	0.50	<	0.01	<	0.09	<	0.09	<	0.09
Solonium (dissolved)	µg/L	6 10	20000	0.50	/	0.60		0.50	/	0.55	< <u> </u>	0.90	< <u> </u>	0.90	\ _	0.90	< <u> </u>	0.9
Tip (discolved)	µg/L	10	03	0.5	È	1.0	È	1.0	È	2.0		0.1	/	0.05	È	0.04	/	0.05
Strontium (dissolved)	µg/L			420	È	440	È	460	È	435		572	<u>`</u>	762	È	808	<u>`</u>	830
Titanium (dissolved)	ug/L			25	<	5.0	<	5.0	2	5.0	-	0.6		0.77	~	0.05	-	0.41
Thallium (dissolved)	ug/l		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ug/l	20	420	2.30		1.35		0.76		1 67		2 16		2 50		2 60		2 55
Vanadium (dissolved)	ua/L		250	1.7		1.1		0.6		1.7		1.0		1.13		1.57		1.35
Zinc (dissolved)	ua/L		1100	3.5	<	5.0	<	5.0	<	5.0		3.0	<	2.0	<	2.0	<	2.0
Lead-210	Ba/L	0.20		< 0.02		0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Ba/L	0.49		0.025	<	0.040	<	0.040	<	0.040		0.025		0.01		0.01		0.01
Thorium-230	Bq/L	0.65		0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2		_2		_2		_2		_2		64.2		43.5		
ORP	m\/			_2		_2		2		_2		_2		119				
SPC	us/cm			2	\vdash	2	\vdash	2		2		2		611		574.0		
Termereture				- 2	\vdash	-	⊢	- 2	⊢	-	-	- 2		10.007	-	7 700	-	
remperature	-0			-	\vdash		-	-				-		10.297		7.762		
Turbidity	FNU			-4		-	-	-4		-4		-4		640.04		766.2		
pH	Units			-2		- ²		_ ²		- ²		_ ²		7.90				

Table 84: WC-MW3C-02

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

--Nodata.

		Crit	eria							WC-N	IW:	3D-02						
		COPC	Table 3	2016	1	2017	1	2018	I	2019		2020	<u> </u>			2021		
Parameter	Unito												20	21 04 20	201	21 12 09	•	
				8.08	1	8.24	Ê	8 11	<u> </u>	8.00		7 71	20.	7 11	202	7.68	A.	7 56
pri Alkalinity	pn			310	-	310		445		510		788		765		605		7.30
Carbonato	mg/L as $CaCO_3$			10.0	-	4.0		445 5.4	-	47	/	1.0	/	1.0	/	1.0	/	1.0
Bicarbonate	mg/L as $CaCO_3$			300	-	300		440		4.7 500	`	788	<u>`</u>	765	`	605	`	730
Total Dissolved Solids	mg/L as CaCO ₃			383		201		440		600		700		846		820		833
Fluoride	mg/L	1 5		0.31	-	0.20		490		0.10		0.18	_	040		020		033
Total Organia Carbon	mg/L	1.5		1.0	-	2.23		6.0		0.13		0.10		0.17		10.0		0.10
Dissolved Organic Carbon	mg/L			1.0	-	2.4		5.0		7.6		9.0		9.0		10.0		9.5
Ammonia + Ammonium (N)	ng/L			- 1	-	0.065		0.120		0.074		0.5		9.0		0.12		9.5
Chloride (dissolved)	as in ing/L			-	-	15		25	-	33		63		65		70		72
Sulphate (dissolved)	mg/L			32	-	23		18		14		16	-	15		17		16
Bromida (dissolved)	mg/L			0.2	/	1.0	/	10	/	14		0.0		10		0.0		0.0
Nitrite (as N)	ng/L			0.3	È	0.010	~	0.010	È	0.010	/	0.030	/	0.03	/	0.9	/	0.9
Nitroto (as N)	as Nimg/L			- 1	È	0.010	<u>`</u>	0.010	È	0.010	`	0.030	-	0.03	`	0.03	`	0.030
Nitrate + Nitrite (as N)	as Nimg/L			- 1	-	0.13		0.17		0.17		0.20		0.10		0.31		0.25
Mercury (dissolved)	as Ning/L	1	0.20	- 0.06	/	0.13	/	0.17	/	0.17	/	0.20	/	0.10	/	0.01	/	0.23
Hardness	µg/∟ mg/Las CaCO	-	0.29	157	È	160	`	240	È	285	`	1071	`	1450	`	660	`	1055
Silver (dissolved)			1 5	0.05	-	0.10	/	0.10	/	203	/	0.05	/	0.05	/	0.05	/	0.05
Aluminum (dissolved)	µg/L		1.5	0.05	È	26.5	-	5.0	È	5.0	`	0.05)	1.0	-	1.05	` `	0.05
Arcenic (dissolved)	µg/L	25	1000	3.0	-	20.5	`	3.0	È	2.8		0.5	<u>`</u>	1.0	`	1.0	`	1.8
Parium (dissolved)	µg/L	1000	20000	4.5	-	4.4	-	140		155		209		224		202		250
Banullium (dissolved)	µg/L	1000	29000	0.25	-	0.50	/	0.50	/	0.50	/	200	/	0.007	/	0.007	/	0.007
Beren (dissolved)	µg/L	5000	45000	0.23	È	52	<u>`</u>	10	È	0.30 51	`	52	<u>`</u>	54	`	52	`	54
Bismuth (dissolved)	µg/L	5000	45000	47	-	1.0	/	40	/	10	/	0.007	/	0.010	/	0.010	/	0.010
Calcium (dissolved)	µg/L			20750	È	20500	`	31500	È	36500	`	56450	`	78600	`	0.010	`	87400
Cadmium (dissolved)	µg/L	-	27	20750	/	20300	/	0.10	/	0.10		0.01		0.000		90200		0.007
Caumum (dissolved)	µg/L	5	2.7	0.03	È	0.10	~	0.10	È	0.10		0.01	-	0.009		0.005		0.007
Cobait (dissolved)	µg/L		00 910	0.52	È	0.00	-	0.00 E 0	È	0.00		0.22		0.440		0.570		0.000
Copper (dissolved)	µg/L	1000	010	0.3	È	1.0	~	1.0	È	1.0		0.3		0.3		0.2		0.2
lron (dissolved)	µg/L	1000	07	58	È	1.0	2	1.0	È	1.0		158		22		12		17
Potassium (dissolved)	µg/L			1030	È	1950	`	2300	È	2450		3120		3110		3420		3265
Magnesium (dissolved)	µg/L			25400	-	26500		30500	-	47000		62350		81000		04600		87800
Magnesium (dissolved)	µg/L			23400		10.1		80		17.7		10.6		13.0		11.0		12.5
Molybdenum (dissolved)	µg/L		9200	9.5	-	6.2		4.9		5.0	-	5.1		3.0		4.8		12.5
Sodium (dissolved)	µg/L		5200	75850	-	87500		97500	-	120000		110300		90400		97200		93800
Nickel (dissolved)	µg/L		/90	0.7	<	1.0	<	1.0	<	1 1		1.0		1.8		1 0		1 9
Phosphorus (dissolved)	µg/L		450	450	È	256	-	350	-	665		32	۲	3	۲	3	<	3
Lead (dissolved)	ua/l	10	25	0.26	<	0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	ug/L	6	20000	0.55	<u> </u>	0.58	-	0.61	· ·	0.75		1.35	<	0.00		1.20	-	1 1
Selenium (dissolved)	ug/L	10	63	1.0	<	2.0	۲	2.0	<	2.0		0.2	-	0.00		0.32		0.28
Tin (dissolved)	ug/L	10	05	0.5	<	1.0	<	1.0	<	1.0	<	0.2	<	0.25		0.02		0.20
Strontium (dissolved)	ug/l			723		685		1075		1200		1730	-	2470		3010		2740
Titanium (dissolved)	ug/l			2.5		5.5	<	5.0	<	5.0		0.6		0.36		0.15		0.26
Thallium (dissolved)	ug/l		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ug/l	20	420	2.6	· ·	3.1		2.6		3.4	-	3.2	-	3 40		3 15	-	3.28
Vanadium (dissolved)	ug/l		250	12		14		1.6		0.8		22		2.90		4 64		3.77
Zinc (dissolved)	ug/l		1100	3.5	<	5.0	<	5.0	<	5.0		2.0	<	2.0	<	2.0	<	2.0
Lead-210	Ba/L	0.20	1100	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Ba/L	0.49		0.025	<	0.040	<	0.040	<	0.040		0.020	<	0.01	<	0.01	<	0.01
Thorium-230	Ba/L	0.65		0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L	0.60		_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters		0.00			É	0.000		0.000	È	0.000	Ē	0.020		0.02		0.02		0.02
	0/_			2	1	2	-	2	-	2		2		55.2		_3	-	
	70			- 2	-	-		2		-	-	2	_	404.0	-	-		
UKP	mv			-		-		-		-		-		134.6		-		
SPC	μs/cm			-4		-4		-4		-2		-4		1385		-"		
Temperature	°C			_ ²		- ²		_2		- ²		- ²		9.907		-3		
Turbidity	FNU			_ ²		- ²		_2		_ ²		- ²		684.84		- ³		
nH	Unite			2		2		2		2		2		7 38		3		

Table 85: WC-MW3D-02

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria. ¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Insufficient volume of groundwater for field parameters

		Crite	eria							WC-N	1W4	A-02						
		COPC	Table 3	2016		2017		2018		2019		2020				2021		
Parameter	Units						A	verage	-				202	21-05-05	20	21-12-08	A	verage
рН	pH			7.99		8.09	É	7.92	1	8.07		7.96	20.	7.97	20.	8.22		8.10
Alkalinity	mg/Las CaCO			190		190		190		180		216		336		194		265
Carbonate	mg/L as CaCO ₃			1.00		22		1.5		2.0	<	10	<	1.0	<	10	<	1.0
Bicarbonate	mg/L as CaCO ₂			190		190	-	185		180		216	-	336	-	194	-	265
Total Dissolved Solids	mg/L			233		224		233		215		243		266		220		243
Fluoride	mg/L	1.5		0.20		0.19		0.17		0.16		0.21		0.19		0.20		0.20
Total Organic Carbon	mg/L	1.0		0.84		0.77		0.78		1 19	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/l			0.61		0.60		0.56	<	0.50		1.00	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/l			0.062		0.078		0.093		0.078		0.075	<	0.04		0.06		0.05
Chloride (dissolved)	ma/l			5		6		6		14		6	-	6.4		6.3		6.4
Sulphate (dissolved)	mg/l			31		31		29		28		36		28		25		27
Bromide (dissolved)	ma/L			0.7	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010		0.010	<	0.030	<	0.030	<	0.030	<	0.03
Nitrate (as N)	as N mg/l			< 0.10	<	0.10		0.11	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as Nmg/L			< 0.10	<	0.10		0.11	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	ua/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₂			211		200		200		190		247		674		261		468
Silver (dissolved)	ua/L		1.5	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	ua/L			3		6		11	<	5		6		3		2		3
Arsenic (dissolved)	ua/L	25	1900	3.6		3.7		4.6		6.1		5.5		5.3		5.1		5.2
Barium (dissolved)	ua/L	1000	29000	101		100		100		88		97		104		95		99
Bervllium (dissolved)	ua/L		67	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	ua/L	5000	45000	26		28		19		18		20		20		20		20
Bismuth (dissolved)	ua/L			0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	ua/L			44750		42500		43000		41000		45000		43200		45300		44250
Cadmium (dissolved)	ua/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10		0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	ua/L		66	0.50	<	0.50	<	0.50	<	0.50		0.03		0.031		0.022		0.027
Chromium (dissolved)	ua/L		810	2.6	<	5.0	<	5.0	<	5.0		0.1		0.2		0.1		0.2
Copper (dissolved)	ua/L	1000	87	0.3	<	1.0	<	1.0	<	1.0	<	0.2	<	0.2	<	0.2	<	0.2
Iron (dissolved)	µg/L			272		255		175	<	100		85		87		93		90
Potassium (dissolved)	µg/L			1740		1700		1700		1700		1715		1740		1600		1670
Magnesium (dissolved)	µg/L			23650		22500		22000		21500		21450		22100		21400		21750
Manganese (dissolved)	µg/L			6.8		7.1		37.0		13.0		10.7		9.4		8.9		9.1
Molybdenum (dissolved)	µg/L		9200	1.7		1.7		1.8		2.6		1.5		2.1		1.8		1.9
Sodium (dissolved)	µg/L			9015		9400		9450		11100		9160		9830		10000		9915
Nickel (dissolved)	µg/L		490	0.6	<	1.0	<	1.0		1.1		0.1	<	0.1	<	0.1	<	0.1
Phosphorus (dissolved)	µg/L			38		77		257		69		7		6	<	3		5
Lead (dissolved)	µg/L	10	25	0.26	<	0.50	<	0.50	<	0.50		0.03	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L			0.5	<	1.0	<	1.0	<	1.0	۷	0.1	۷	0.06	۷	0.06	<	0.06
Strontium (dissolved)	µg/L			348		325		325		285		349		330		321		326
Titanium (dissolved)	µg/L			2.5	<	5.0	<	5.0	<	5.0		0.3		0.18	۷	0.05		0.12
Thallium (dissolved)	µg/L		510	0.028	<	0.050	<	0.050	<	0.050	۷	0.005	<	0.005	۷	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	0.1		0.2		0.4		2.7		0.8		0.564		0.378		0.471
Vanadium (dissolved)	µg/L		250	0.28	<	0.50	<	0.50	<	0.50		0.06		0.04		0.03		0.04
Zinc (dissolved)	µg/L		1100	3.5	<	5.0	<	5.0	<	5.0		2.5	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		0.030	<	0.040	<	0.040	<	0.040		0.010	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_ ²		_2		_2		_2		_2		27.1		74.4		
ORP	mV			_2		_2		_2	F	_2		_2		94.4				
SPC	us/cm			2		2		2		2		2		307.3		370.1		
Temperatura	μ3/0111 90			2		2		2	-	2		2	-	10 605		0.696		
Temperature				-		-	-	-	H	-		-	_	10.095		9.000		
Turdidity	FNU			-*		-*		-*		-*		-	_	506.83		54.43		
Hq	Units			-4		-2		-4		-4		-4		7.69				

Table 86: WC-MW4A-02

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Page	187	ot	
		_	-

Table 87: WC-MW4B-02

		Crit	eria							WC-N	۱W	4B-02						
		COPC	Table 3	2016		2017		2018		2019		2020				2021		
Parameter	Units				-		A	verage	•				20	21-05-06	20	21-12-09	A	verage
pH	pН			8.02		8.04	1	7.94	1	8.05		8.03		8.04		8.02		8.03
Alkalinity	mg/L as CaCO ₃			215		195		160		170		220		212		211		212
Carbonate	mg/L as CaCO ₃			2.1		2.0		1.3		1.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			215		195		155		170		220		212		211		212
Total Dissolved Solids	mg/L			274		240		318		303		259		286		303		295
Fluoride	mg/L	1.5		0.18		0.18		0.18		0.17		0.19		0.17		0.19		0.18
Total Organic Carbon	mg/L			< 1.0		2.3		2.2		2.0		1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L			-1		1.37		1.04		0.79		1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	as Nmg/L			-1		0.050		0.081	<	0.050	<	0.040	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L			7		8		59		28		20		24		32		28
Sulphate (dissolved)	mg/L			39		36		62		49		48		47		41		44
Bromide (dissolved)	mg/L			0.7	·	< 1.0	<	1.0	<	1.0	<	0.3	<	0.30		0.40		0.4
Nitrite (as N)	as N mg/L			< 0.01) ·	< 0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L			< 0.10		< 0.10		0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10		< 0.10		0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	0.06	; ·	< 0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			226		205		195		205		395		382		300		341
Silver (dissolved)	µg/L		1.5	0.05		< 0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			3.0		7.1	<	5.0	<	5.0		2.0	<	1.0	<	1.0	<	1.0
Arsenic (dissolved)	µg/L	25	1900	1.8		1.4	<	1.0		1.1		1.0		1.0		1.2		1.1
Barium (dissolved)	µg/L	1000	29000	120		109		85		105		141		125		134		130
Beryllium (dissolved)	µg/L		67	0.25		< 0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	23		28		30		24		30		26		18		22
Bismuth (dissolved)	µg/L			0.5		< 1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L			4600	0	43500		51500		47500		96850		48000		53200		50600
Cadmium (dissolved)	µg/L	5	2.7	0.06		< 0.10	<	0.10	<	0.10		0.01		0.012	<	0.003		0.008
Cobalt (dissolved)	µg/L		66	0.53		< 0.50	<	0.50	<	0.50		0.34		0.010		0.036		0.023
Chromium (dissolved)	µg/L		810	2.7		< 5.0	<	5.0	<	5.0		0.4		0.25		0.14		0.20
Copper (dissolved)	µg/L	1000	87	0.3		< 1.0	<	1.0	<	1.0		0.4		0.5	<	0.2		0.4
Iron (dissolved)	µg/L			55	•	< 100	<	100	<	100		654	<	7	<	7	<	7
Potassium (dissolved)	µg/L			2420)	2350		3250		2750		2515		2670		2510		2590
Magnesium (dissolved)	µg/L			2685	0	23000		16500		20500		31600		23600		26500		25050
Manganese (dissolved)	µg/L			10.2	!	5.0		4.3		2.6		120		0.4		3.0		1.7
Molybdenum (dissolved)	µg/L		9200	1/	_	13	-	19	_	13		8		11.7		10.6		11.2
Sodium (dissolved)	µg/L			1350	0	11500	-	50500	_	27000		26050		20100		22700		21400
Nickel (dissolved)	µg/L		490	0.7	-	< 1.0	<	1.0	<	1.0		0.8		0.2		0.3		0.3
Phosphorus (dissolved)	µg/L			560	_	1245		375		620		9		8	<	3		6
Lead (dissolved)	µg/L	10	25	0.26		< 0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	, ,	< 0.50	-	0.55	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	1.0	-	< 2.0	<	2.0	<	2.0	_	0.1	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L			0.5	-	< 1.0 250	< <u> </u>	1.0	È	1.0		0.1	È	0.00	`	0.00	<	427
Titanium (dissolved)	µg/L			440	+	2 50	-	50	-	500	-	0.1		410	/	400		437
Thallium (dissolved)	µg/L		510	2.0		< 0.050		0.050	È	0.050	/	0.005	/	0.005	<u> </u>	0.005	/	0.07
Liranium (dissolved)	µg/L	20	420	0.02	5	< 0.030 0.4	È	2.2	È	1.6	È	3.1	È	1 33	È	1.05	È	1 19
Vanadium (dissolved)	ug/L	20	250	1.20		0.4	+	0.64	-	0.60	-	0.54	-	0.01		0.98		0.95
Zinc (dissolved)	ug/L		1100	3.5	<u> </u>	< 5.0	<	5.0	<	5.0		2.5	<	2.0	<	2.0	<	2.0
Lead-210	Ba/l	0.20	1100	< 0.02		< 0.02	<	0.10	<	0.10		0.02	<	0.02	<	0.02	<	0.02
Radium-226	Ba/L	0.49		0.03) .	< 0.040	<	0.040	<	0.040	<	0.010		0.01	<	0.01		0.01
Thorium-230	Ba/L	0.65		0.04)	< 0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L	0.60		_1		< 0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters						2.000	1		T									
ODO % Sat	%			2		_2		2		_2		2		74.9		82.2		
	m\/			2	+	_2	1	_2	1	_2		2		138.0		02.2		
				2	+	-	\vdash	2	\vdash	2	-	2		204		E10.0		
SPC -	µs/cm			-	+	-	-	-	-	-		-	-	301		0.016		
Temperature	с			-2	_	-*		-*		-4		-4		10.672		10.231		
Turbidity	FNU			_2		_2		_ ²		_ ²		_ ²		117.2		127.20		
pН	Units			_ ²		_2		_ ²		_ ²		_ ²		8.14				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 88: WC-OW1-87

		Crit	eria							WC-	ow	1-87						
		COPC	Table 3	2016		2017		2018		2019		2020				2021		
Parameter	Units				-		A	verage	-				20	21-04-23	20	21-11-22	A	verage
На	Hq			7.75	Т	7.94	T	7.80	Г	7.82		7.58	_	7.47	-	7.39		7.43
Alkalinity	mg/L as CaCO₂			307		345		325		320		323		335		310		323
Carbonate	mg/L as CaCO ₃			1.8		2.9		1.9		2.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			307		345		325		315		323		335		310		323
Total Dissolved Solids	mg/L			370		403		345		468		452		494		551		523
Fluoride	mg/L	1.5		0.09	1	< 0.10		0.12		0.10		0.09		0.10		0.11		0.11
Total Organic Carbon	mg/L			1.9		2.1		1.7		2.0		1.5		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L			2.1		1.7		1.6		1.7		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.050) I	< 0.050		0.095	<	0.050	<	0.040	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L			16		12		14		31		31		42		74.00		58
Sulphate (dissolved)	mg/L			25		11		26		46		56		61		100		81
Bromide (dissolved)	mg/L			0.7	•	< 1.0	<	1.0	<	1.0	<	0.3	<	0.3		0.4		0.4
Nitrite (as N)	as N mg/L			< 0.010) •	< 0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L			< 0.10	•	< 0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	ŀ	< 0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	0.06	•	< 0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			330		325		325		360		463		472		432		452
Silver (dissolved)	µg/L		1.5	0.05	•	< 0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			3.7	•	< 5.0	<	5.0	<	5.0	<	1.0		1.0		2.0		1.5
Arsenic (dissolved)	µg/L	25	1900	1.0	•	< 1.0	<	1.0	<	1.0		0.8		0.9		0.9		0.9
Barium (dissolved)	µg/L	1000	29000	67		80		79		84		89		95		114		104
Beryllium (dissolved)	µg/L		67	0.25	·	< 0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	20		28		21		15		16		13		16		15
Bismuth (dissolved)	µg/L			0.5	·	< 1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L			10600	0	105000		103000		110000		116500		113000		122000		117500
Cadmium (dissolved)	µg/L	5	2.7	0.05	·	< 0.10	<	0.10	<	0.10		0.00		0.009	<	0.003		0.006
Cobalt (dissolved)	µg/L		66	0.59	•	< 0.50	<	0.51		0.51		0.45		0.584		0.858		0.721
Chromium (dissolved)	µg/L		810	2.5	•	< 5.0	<	5.0	<	5.0		0.1		0.23		0.11		0.17
Copper (dissolved)	µg/L	1000	87	0.4	•	< 1.0	<	1.0		1.8		0.3		0.4		0.3		0.4
Iron (dissolved)	µg/L			135		190		175		200		203		215		259		237
Potassium (dissolved)	µg/L			668		705		615		580		657		623		687		655
Magnesium (dissolved)	µg/L			15550)	16500		16500		20500		21050		21800		27100		24450
Manganese (dissolved)	µg/L			48		55		55		61		63		69		83		76
Molybdenum (dissolved)	µg/L		9200	0.77	_	0.51	<	0.50	<	0.50		0.35		0.40		0.38		0.39
Sodium (dissolved)	µg/L			18200)	26000		18000		17000		21400		19700		28600		24150
Nickel (dissolved)	µg/L		490	0.7	ŀ	< 1.0	<	1.0	<	1.0		0.6		0.8		1.5		1.2
Phosphorus (dissolved)	µg/L			52	_	130		71		46	<	3		4		8		6
Lead (dissolved)	µg/L	10	25	0.26	·	< 0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	·	< 0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	1.0	-ŀ	< 2.0	<	2.0	<	2.0	<	0.0		0.05	<	0.04	<	0.05
Tin (dissolved)	µg/L			0.5	·	< 1.0	<	1.0	<	1.0	<	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L			225	_	225		220		245		268		274		332		303
Titanium (dissolved)	µg/L			2.5		< 5.0	<	5.0	<	5.0	_	0.1		0.13		0.11		0.12
Thallium (dissolved)	µg/L		510	0.028	3 ·	< 0.050	<	0.050	<	0.050	<	0.005		0.011	<	0.005	_	0.008
Uranium (dissolved)	µg/L	20	420	1.1	_	8.1		5.8		5.0		3.8		4.2		3.6		3.9
Vanadium (dissolved)	µg/L		250	0.27	-	< 0.50	<	0.50	<	0.50		0.11		0.11		0.12		0.12
Zinc (dissolved)	µg/L	0.00	1100	3.5	-	< 5.0	-	5.5	-	5.2	_	2.0		3.0	_	2.0		2.5
Lead-210	Bq/L	0.20		< 0.02	-	< 0.06	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Thorium 230	Bq/L Bg/l	0.49		0.03	+	0.03	<	0.04	1×	0.04	2	0.01	/	0.01	~	0.01	-	0.01
Thorium 232	Bq/L	0.65		0.04	+	0.04		0.04	È	0.07	È	0.02	È	0.02		0.02	È	0.02
Field Parameters	Dq/L	0.60		-	+	-		0.04	È	0.00	È	0.02	Ì	0.02	Ì	0.02	È	0.02
Field Parameters	o.			2	+	2	-	2		2	-	2	-					
ODO % Sat	%			-*		-		-		-		-		41.2		47.1		
ORP	mV			-2		-2		-2		-2		-2		86.1		74.5		
SPC	µs/cm			- ²		- ²		- ²		- ²		_ ²		747		918.0		
Temperature	°C			- ²		_ ²		- ²		_ ²		_2		10.559		10.015		
Turbidity	FNU			_ ²	Τ	_2		_2		_ ²		_2		145.88		59.34		
pH	Units			_2		_2		_2		_2		_2		7.55		7.30		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

		Crite	eria		WC	-OW2-75
		COPC	Table 3	2016	2017	2018
Parameter	Units			Ave	rage	WELL DECOMMISSIONED
pН	pН			8.09	8.06	
Alkalinity	mg/L as CaCO ₃			254	185	
Carbonate	mg/L as CaCO ₃			2.6	2.1	
Bicarbonate	mg/L as CaCO ₃			254	185	
Total Dissolved Solids	mg/L			309	234	
Fluoride	mg/L	1.5		0.08	< 0.10	
Total Organic Carbon	mg/L			1.2	1.5	
Dissolved Organic Carbon	mg/L			1.3	1.5	
Ammonia+Ammonium (N)	as N mg/L			< 0.050	< 0.050	
Chloride (dissolved)	mg/L			13.0	10.3	
Sulphate (dissolved)	mg/L			15	7	
Bromide (dissolved)	mg/L			0.7	< 1.0	
Nitrite (as N)	as N mg/L			< 0.010	< 0.010	
Nitrate (as N)	as N mg/L			0.72	0.60	
Nitrate + Nitrite (as N)	as N mg/L		0.00	0.72	0.60	
	µg/L	1	0.29	0.06	< 0.10	
Figure (dissolved)	Ing/L as CaCO ₃		1.5	235	1/0	
	µg/L		1.5	3.5	10.3	
Arsenic (dissolved)	µg/L ца/I	25	1900	359	310	
Barium (dissolved)	ug/L	1000	29000	19	13	
Bervllium (dissolved)	ug/L	1000	67	0.25	< 0.50	
Boron (dissolved)	ug/L	5000	45000	13	15	
Bismuth (dissolved)	µg/L	3000	43000	0.5	< 1.0	
Calcium (dissolved)	ua/L			84000	60000	
Cadmium (dissolved)	µa/L	5	2.7	0.05	< 0.10	
Cobalt (dissolved)	µg/L		66	0.88	1.05	
Chromium (dissolved)	µg/L		810	2.8	< 5.0	
Copper (dissolved)	µg/L	1000	87	0.3	< 0.5	
Iron (dissolved)	µg/L			56	< 100	
Potassium (dissolved)	µg/L			506	400	
Magnesium (dissolved)	µg/L			5775	3900	
Manganese (dissolved)	µg/L			1	< 2	
Molybdenum (dissolved)	µg/L		9200	1.6	1.5	
Sodium (dissolved)	µg/L			31400	15500	
Nickel (dissolved)	μg/L		490	0.6	< 1.0	
Phosphorus (dissolved)	µg/L			150	32	
Lead (dissolved)	µg/L	10	25	0.26	< 0.50	
Antimony (dissolved)	µg/L	6	20000	4.5	3.7	
Selenium (dissolved)	µg/L	10	63	2.1	< 2.0	
Tin (dissolved)	µg/L			0.5	< 1.0	
Strontium (dissolved)	µg/L			149	101	
Titanium (dissolved)	µg/L		510	2.5	< 0.050	
I Iranium (dissolved)	µg/L	20	420	192	120	
	µg/L	20	420	1.05	0.02	
Zinc (dissolved)	µg/L		1100	3.5	< 50	
Lead-210	Ba/l	0.20	1100	0.02	< 0.02	
Radium-226	Ba/L	0.49		0.025	< 0.040	
Thorium-230	Ba/L	0.65		0.040	< 0.070	
Thorium-232	Bq/L	0.60		_1	_1	
Field Parameters						
ODO % Sat	%			_2	_2	
ORP	m\/			2	2	
800	uo/om			- 2	- 2	
5r 6				-	- 2	
remperature	~C			-	-	
lurbidity	FNU			-2	-4	
рН	Units			_2	_ ²	
COPC = Contaminants of F	Potential Concern	n criteria fo	or Potable	Groundwate	er Conditions	s derived from Port Hope
Screening Report.						

Table 89: WC-OW2-75

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry

of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.
² Field parameters included for current sampling year only.

			WC	-OW2A-75			WC-OW2A-1	9	
		2016	2017	2018	2019	2020		2021	
Parameter	Units	Ave	rage	WELL DECOMMISSIONED	Ave	rage	2021-04-22	2021-11-29	Average
pH	рН	7.90	7.82	Replaced by WC-OW2A-19	7.76	7.50	7.40	7.44	7.42
Alkalinity	mg/Las CaCO	486	470		420	478	478	553	516
Carbonate	mg/L as CaCO ₃	2.9	31		23	< 10	< 10	< 10	< 10
Bicarbonate	mg/L as CaCO ₂	486	470		420	478	478	553	516
Total Dissolved Solids	ma/L	576	610		450	497	514	494	504
Fluoride	ma/L	0.09	< 0.10		< 0.10	0.07	< 0.06	< 0.06	< 0.06
Total Organic Carbon	ma/L	3.6	2.7		1.7	1.5	1.0	1.0	1.0
Dissolved Organic Carbon	ma/L	2.2	2.1		1.1	1.0	1.0	2.0	1.5
Ammonia+Ammonium (N)	as N mg/L	< 0.050	0.076		0.061	< 0.040	< 0.04	0.05	0.05
Chloride (dissolved)	mg/L	4.3	4.6		6.6	6.7	7.80	7.10	7
Sulphate (dissolved)	mg/L	57	58		31	28	26	22	24
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.30	< 0.30	< 0.30
Nitrite (as N)	as N mg/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	µg/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃	399	385		465	1372	1710	1000	1355
Silver (dissolved)	µg/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	µg/L	3.0	< 5.0		< 5	< 1	3	2	3
Arsenic (dissolved)	µg/L	1.6	1.5		< 1.0	0.6	0.7	0.7	0.7
Barium (dissolved)	µg/L	234	240		135	146	125	108	117
Beryllium (dissolved)	µg/L	0.25	< 0.50		< 0.50	< 0.01	< 0.007	< 0.007	< 0.007
Boron (dissolved)	µg/L	9	11		11	11	9	13	11
Bismuth (dissolved)	µg/L	0.5	< 1.0		< 1.0	< 0.007	< 0.007	< 0.010	0.009
Calcium (dissolved)	µg/L	114500	110000		125000	130000	128000	129000	128500
Cadmium (dissolved)	µg/L	0.05	< 0.10		< 0.10	< 0.00	0.018	0.003	0.011
Cobalt (dissolved)	µg/L	0.52	< 0.50		0.97	0.41	0.500	0.564	0.532
Chromium (dissolved)	µg/L	2.7	< 5.0		< 5.0	0.4	0.23	0.20	0.22
Copper (dissolved)	µg/L	0.3	< 1.0		< 1.0	0.5	0.5	< 0.2	0.4
Iron (dissolved)	µg/L	1740	1750		355	452	299	239	269
Potassium (dissolved)	µg/L	1760	1700		1150	1100	977	1020	999
Magnesium (dissolved)	µg/L	28950	28000		36500	35350	37800	34800	36300
Manganese (dissolved)	µg/L	22	22		51	20	18	17	17
Molybdenum (dissolved)	µg/L	0.73	0.68		0.68	0.39	0.29	0.30	0.30
Sodium (dissolved)	µg/L	72700	68500		11000	11000	11700	11900	11800
Nickel (dissolved)	µg/L	0.6	< 1.0		1.5	0.7	0.8	0.9	0.9
Phosphorus (dissolved)	µg/L	261	148		1165	< 3	< 3	< 3	< 3
Lead (dissolved)	µg/L	0.26	< 0.50		< 0.50	0.03	0.06	< 0.09	0.08
Antimony (dissolved)	µg/L	0.35	< 0.50		< 0.50	< 0.90	< 0.90	< 0.90	< 0.90
Selenium (dissolved)	µg/L	1.0	< 2.0		< 2.0	0.1	0.10	0.13	0.12
Tin (dissolved)	µg/L	0.5	< 1.0		< 1.0	< 0.1	< 0.06	0.06	0.06
Strontium (dissolved)	µg/L	307	300		320	344	344	335	340
Titanium (dissolved)	µg/L	2.5	< 5.0		< 5.0	0.1	0.06	0.36	0.21
Inallium (dissolved)	µg/L	0.028	< 0.050		< 0.050	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (dissolved)	µg/L	0.1	< 0.1		4.1	2.7	4.6	6.6	5.6
Vanadium (dissolved)	µg/L	0.27	< 0.50		< 0.50	0.21	0.26	0.33	0.30
Zinc (dissolved)	µg/L	4	< 0.02		< 0.10	Z	7	< 2	5
Leau-210 Rodium 226	Bq/L Bg/l	< 0.02 0.020	0.03		< 0.10	< 0.02 0.010	< 0.02	< 0.02	< 0.02
Radium 220	Bq/L Bg/l	0.030	< 0.040		< 0.040	0.010	< 0.01	< 0.01	< 0.01
Thorium-232	Bq/L	1	< 0.070		< 0.060	< 0.020	< 0.02	< 0.02	< 0.02
Field Parameters			. 0.000		. 0.000	1 0.020	. 0.02	. 0.02	. 0.02
	0/	2	2		2	2	07.0	00.0	
ODO % Sat	70	-	-		-	-	67.2	86.2	
UKP	mV	-4	-4		-4	-4	121.9	113.1	
SPC	µs/cm	_ ²	_ ²		_ ²	_ ²	751	805.0	
Temperature	°C	- ²	- ²		_ ²	_ ²	5.915	10.724	
Turbidity	FNU	- ²	- ²		_ ²	- ²	1528.7	288.3	
pН	Units	_ ²	_ ²		_ ²	_ ²	7.51	7.27	

Table 90: WC-OW2A-75 and WC-OW2A-19

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

			WC	-OW2-87			WC-OW2-	19	
		2016	2017	2018	2019	2020		2021	
Parameter	Units	Ave	rage	WELL DECOMMISSIONED	Ave	rage	2021-04-22	2021-11-26	Average
рН	Hq	7.84	7.77	Replaced by WC-OW2-19	7.77	7.66	7.51	7.32	7.42
Alkalinity	mg/L as CaCO₃	501	495		440	413	410	407	409
Carbonate	mg/L as CaCO ₃	2.6	2.7		2.5	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃	501	495		440	413	410	407	409
Total Dissolved Solids	mg/L	639	631		680	646	706	594	650
Fluoride	mg/L	0.09	< 0.10		< 0.10	0.08	0.06	< 0.06	0.06
Total Organic Carbon	mg/L	10.1	2.8		3.0	2.5	2.0	2.0	2.0
Dissolved Organic Carbon	mg/L	2.7	2.5		2.8	2.5	3.0	3.0	3.0
Ammonia+Ammonium (N)	as N mg/L	< 0.050	0.105		0.050	0.045	< 0.04	< 0.04	< 0.04
Chloride (dissolved)	mg/L	5.2	6.6		4.8	4.9	5.3	4.8	5.1
Sulphate (dissolved)	mg/L	74	79		150	135	130	54	92
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as Nmg/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	µg/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO3	328	320		305	262	277	243	260
Silver (dissolved)	µg/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	µg/L	3.0	< 5.0		< 5.0	5.0	< 1.0	3.0	2.0
Arsenic (dissolved)	µg/L	1.2	1.3		1.4	1.5	1.8	1.7	1.8
Barium (dissolved)	µg/L	130	135		27	25	26	26	26
Beryllium (dissolved)	µg/L	0.25	< 0.50		< 0.50	< 0.01	< 0.007	< 0.007	< 0.007
Boron (dissolved)	µg/L	10	< 10		< 10	9	8	9	9
Bismuth (dissolved)	µg/L	0.5	< 1.0		< 1.0	< 0.007	< 0.007	< 0.010	0.009
Calcium (dissolved)	µg/L	98000	95000		90500	78800	80200	74600	77400
Cadmium (dissolved)	µg/L	0.05	< 0.10		< 0.10	< 0.00	0.052	< 0.003	0.028
Cobalt (dissolved)	µg/L	0.52	< 0.50		< 0.50	0.06	0.08	0.07	0.07
Chromium (dissolved)	µg/L	2.7	< 5.0		< 5.0	< 0.1	0.3	0.1	0.2
Copper (dissolved)	µg/L	0.5	< 1.0		< 1.0	< 0.2	0.3	< 0.2	0.3
Iron (dissolved)	µg/L	1655	1650		1350	1165	1070	1190	1130
Potassium (dissolved)	µg/L	1515	1600		1600	1445	1480	1360	1420
Magnesium (dissolved)	µg/L	19800	20000		19500	16750	17500	15500	16500
Manganese (dissolved)	µg/L	26	19		18	16	18	14	16
Molybdenum (dissolved)	µg/L	0.89	1.15		8.2	9.5	11.7	11.6	11.6
Sodium (dissolved)	µg/L	110500	115000		150000	137500	146000	133000	139500
Nickel (dissolved)	µg/L	0.6	< 1.0		< 1.0	0.2	< 0.1	0.2	0.2
Phosphorus (dissolved)	µg/L	43	51		9	4	13	10	12
Lead (dissolved)	µg/L	0.26	< 0.50		< 0.50	0.02	0.02	< 0.09	0.06
Antimony (dissolved)	µg/L	0.35	< 0.50		< 0.50	< 0.90	< 0.90	< 0.90	< 0.90
Tip (dissolved)	µg/L	0.51	< 1.0		< 2.0	0.1	0.10	0.00	0.08
Stroptium (discolved)	µg/L	0.01	225		150	139	138	130	130
Titanium (dissolved)	µg/L	257	225		150	0.1	0.06	0.00	0.15
Thallium (dissolved)	µg/L	2.5	< 0.050		< 0.050	< 0.005	< 0.00	< 0.005	0.15 ≤ 0.005
	ug/L	0.020	0.030		0.030	0.003	0.000	0.000	0.10
Vanadium (dissolved)	µg/L	0.03	< 0.50		< 0.50	0.13	0.12	0.00	0.10
Zinc (dissolved)	ug/L	3.5	< 5.0		< 50	< 2.0	4.0	6.0	5.0
Lead-210	Ba/l	< 0.02	< 0.02		< 0.10	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bg/L	0.025	< 0.02		< 0.04	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-230	Ba/L	0.040	< 0.070		< 0.07	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Ba/L	_1	< 0.060		< 0.06	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters		1	2.000		0.00	0.02		5.02	5.02
ODO % Sat	%	_2	_2		_2	_2	28.5	24.2	
	m) (2	2		2	2	£0.5	07.4	
	111v	- 2	-		-	- 2	-52.7	-21.4	
oru -	µs/cm	-	-		-	-	932	982.0	
Temperature	°C	-4	-4		-4	-4	9.061	8.986	
Turbidity	FNU	-2	-2		-2	-2	2.81	2.8	
pH	Units	_2	_ ²		- ²	- ²	7.41	7.37	

Table 91: WC-OW2-87 and WC-OW2-19

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 92: WC-OW3-79

								WC-	٥V	V3-79						
		2016		2017		2018		2019		2020				2021		
Parameter	Units	Average 2021-04-21 2021-12-03									A	verage				
pH	pH	7 90	1	8 05	É	7.95		8.06	Г	8 17	20	8.01	20	7.92	<u> </u>	7.97
Alkalinity	mg/Las CaCO	167		170		175		170		172		166		167		167
Carbonate	mg/L as CaCO ₃	16		1.8		1.5		1.8	<	10	<	1.0	<	10/	<	107
Bicarbonate	mg/L as CaCO ₃	167		170		175		170	-	172	-	166	-	167		167
Total Dissolved Solids	mg/L us ouco3	184		172		158		213		229		266		177		222
Fluoride	mg/L	0.20		0.18		0.21		0.17		0.18		0.17		0.19		0.18
Total Organic Carbon	mg/L	1.05		0.10		0.21		0.17	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.69		0.54		0.59		0.55	<	1.00	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as Nmo/I	< 0.050		0.060		0.080		0.068	L.	0.055	-	0.08	-	0.04		0.06
Chloride (dissolved)	ma/l	1.6		1.5		17		1.8		1.8		2.3		1.9		21
Sulphate (dissolved)	mg/L	25		25		26		26		25		25		25	_	25
Bromide (dissolved)	mg/L	0.7	<	1.0	<	10	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/l	< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/l	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	ua/l	0.06	<	0.10	<	0.10	<	0.10	<	0.00	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO₂	183		133		170		180		176	_	164		179		172
Silver (dissolved)	ua/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	ua/L	3.0		127.5	<	5.0	<	5.0		1.5	<	1.0	<	1.0	<	1.0
Arsenic (dissolved)	ua/L	2.9		1.9		3.1		3.2		3.8		3.8		3.6		3.7
Barium (dissolved)	ua/L	127		85		135		140		135		131		145		138
Beryllium (dissolved)	µg/=	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	37		15		20	-	19		20		20		20	-	20
Bismuth (dissolved)	µa/L	0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µa/L	39850		33000		37000		40000		41150		39200		46300		42750
Cadmium (dissolved)	µa/L	0.05	<	0.10	<	0.10	<	0.10		0.00		0.013	<	0.003		0.008
Cobalt (dissolved)	µa/L	0.52	<	0.50	<	0.50	<	0.50		0.01	<	0.004		0.025		0.015
Chromium (dissolved)	ua/L	2.6	<	5.0	<	5.0	<	5.0		0.4		0.2	<	0.1		0.1
Copper (dissolved)	µa/L	0.3		2.5	<	1.0	<	1.0		0.4	<	0.2	<	0.2	<	0.2
Iron (dissolved)	µa/L	161		160		200		215		215		211		243		227
Potassium (dissolved)	µa/L	1515		985		1400		1400		1465		1380		1730		1555
Magnesium (dissolved)	µa/L	19700		12650		19000		19500		19450		20600		18300		19450
Manganese (dissolved)	µa/L	19		23		15		14		16		15		16		16
Molybdenum (dissolved)	µg/L	1.1		0.9		1.2		1.2		1.2		1.2		1.1		1.1
Sodium (dissolved)	µg/L	9050		7900		8300		8500		8710		8920		9830		9375
Nickel (dissolved)	µa/L	0.6		1.1	<	1.0	<	1.0	<	0.1	<	0.1		1.9		1.0
Phosphorus (dissolved)	µg/L	29		18		12		19		8		8		58		33
Lead (dissolved)	µg/L	0.26		0.74	<	0.50	<	0.50		0.04	<	0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L	368		240		385		380		417		389		422		406
Titanium (dissolved)	µg/L	2.5	<	5.0	<	5.0	<	5.0		0.1	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	0.1		0.4	<	0.1	<	0.1		0.0		0.05		0.04		0.04
Vanadium (dissolved)	µg/L	0.26		0.62	<	0.50	<	0.50		0.02	<	0.01		0.12		0.07
Zinc (dissolved)	µg/L	3.5		23	<	5.0	<	5.0		3.5		2.0		2.0		2.0
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.03	<	0.04	<	0.04	۷	0.04	<	0.01	۷	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	< 0.01	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	_1	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters									Γ							
ODO % Sat	%	_2		_2		_2		_2		_2		49.7		49.4		
ORP	mV	_2		_2		_2		2		_2		97		68.8		
SPC	us/cm	2		2		2	-	2		2		187.1		352.0		
Temperatura		- 2	-	-	\vdash	-	-	-	H	-	-	0.570		0.000	-	
Temperature		-		-		-		-			_	9.572		8.262		
Turbidity	FNU	-		-4		-4		-		-4		1.33		0.78		
pH	Units	- ²		_ ²		- ²		_ ²		_ ²		8.12		7.95		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 93: WC-OW3-87

								WC-	٥V	V3-87						
		2016 2017 2018 2019 2020 2021					2021									
Parameter	Units		•		A	verage					20	21-04-23	20	21-12-13	A	verage
pН	pН	8.04		8.07		7.92		8.10		7.99		7.79		7.94		7.87
Alkalinity	mg/L as CaCO₃	207		185		195		185		185		203		210		207
Carbonate	mg/L as CaCO ₃	2.2		2.1		1.5		2.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	207		185		195		185		185		203		210		207
Total Dissolved Solids	mg/L	241		190		235		265		245		249		214		232
Fluoride	mg/L	0.11		0.12		0.12		0.11		0.11		0.12		0.12		0.12
Total Organic Carbon	mg/L	1.8		1.8		1.8		2.0		1.5		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L	1.90		1.55		1.70		1.70		2.00		2.0		2.0		2.0
Ammonia+Ammonium (N)	as Nmg/L	< 0.050	<	0.050		0.075		0.052		0.060	۷	0.04		0.06		0.05
Chloride (dissolved)	mg/L	6.1		4.1		4.0		6.0		4.9		8.0		5.4		6.7
Sulphate (dissolved)	mg/L	12.6		9.2		7.9		8.7		8.5		9		9		9
Bromide (dissolved)	mg/L	0.7		3.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as Nmg/L	< 0.010		0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as Nmg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as Nmg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO₃	217		180		180		190		196		215		189		202
Silver (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L	3.0	<	5.0	<	5.0	<	5.0		6.0	<	1.0		2.0		1.5
Arsenic (dissolved)	µg/L	4.4		5.0		4.5		4.2		5.1		4.1		5.9		5.0
Barium (dissolved)	µg/L	165		160		155		165		160		156		164		160
Beryllium (dissolved)	µg/L	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	15		12		10		11		12		10		18		14
Bismuth (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.0	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L	66400		54500		54000		58500		60650		59900		58300		59100
Cadmium (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10		0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L	0.52	<	0.50	<	0.50	<	0.50		0.02		0.01		0.05		0.03
Chromium (dissolved)	µg/L	2.6	<	5.0	<	5.0	<	5.0		0.3		0.2	<	0.1		0.2
Copper (dissolved)	µg/L	0.3	<	1.0	<	1.0		2.1		0.2	<	0.2	<	0.2	<	0.2
Iron (dissolved)	µg/L	171		200		155	<	155		162		93		151		122
Potassium (dissolved)	µg/L	1070		1000		970		975		1065		916		1100		1008
Magnesium (dissolved)	µg/L	11650		10500		10000		10450		10450		9760		10500		10130
Manganese (dissolved)	µg/L	10.6		9.9		10.1		10.8		9.6		9		9		9
Molybdenum (dissolved)	µg/L	0.4	<	0.5	<	0.5	<	0.5		0.2		0.3		0.4		0.4
Sodium (dissolved)	µg/L	8005		5000		5000	_	5600		5250		5940		5600		5770
Nickel (dissolved)	µg/L	0.6	<	1.0	<	1.0	<	1.0		0.2		0.2		0.2	<u> </u>	0.2
Phosphorus (dissolved)	µg/L	27		27		43	_	23		4		3		5	<u> </u>	4
Lead (dissolved)	µg/L	0.26	<	0.50	<	0.50	<	0.50		0.01	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04		0.07	<u> </u>	0.06
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L	215		195		195	_	205	⊢	207		212	-	217		215
Thanium (dissolved)	µg/L	2.5	<	5.0	<	5.0	<	5.0		0.3		0.18		0.19		0.19
I hallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050	<	0.005		0.005	<	0.005		0.005
Uranium (dissolved)	µg/L	0.00	_	0.14	_	0.16	_	0.30	-	0.15		1.19		0.18		0.68
Zine (diseeheed)	µg/L	0.20	<u>`</u>	0.50	\	0.50	< -	0.50		0.07		0.05		0.20	-	0.13
	µg/∟ Dα/l	3.5	\ _	5	< -	5.0	< -	5.0	_	2.5	~	2.0		3.0	-	2.5
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium 220	Dq/L	0.03	<u>`</u>	0.04	\	0.04	Ì	0.04	-	0.01		0.01	\	0.01	_	0.01
Thorium 232	Bq/L	1	È	0.07	È	0.07	È	0.07	È	0.02		0.02	È	0.02	\geq	0.02
Field Parameters	DQ/L	-	È	0.00	È	0.00	È	0.00	È	0.02	Ì	0.02	È	0.02	È	0.02
	0/	2		2		2	-	2	\vdash	2		40.0		00.0	\vdash	
ODO % Sat	70	-		-		-	-	-	\vdash	-		49.8		68.8	L	
ORP	mV	-4		-4		-2		-4		-2		83.3				
SPC	µs/cm	_ ²		_ ²		- ²		_ ²		_ ²		207.6		362.1		
Temperature	°C	_ ²		_2		_ ²		_2		-2		11.358		10.206		
Turbidity	FNU	_2		_2		_ ²		_2		_ ²		55.76		65.99		
pH	Units	_2		_2		_2		_2	Γ	_2		7.77				
							_		L						<u> </u>	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 94: WC-OW4-79

								WC-	OV	V4-79						
		2016		2017		2018		2019		2020				2021		
Parameter	Units					verage					20	21-04-15	20	21-12-01	A	verage
pH	pH	7 97		8 0 9	É	7 85		8 17	Γ	7 99	20	7 72	20	7 60	L_	7 66
Alkalinity	mg/Las CaCO	149		150		150		145		162		153		157		155
Carbonate	mg/L as CaCO ₃	17		1.7		12		2.0		1.0	<	1.0	<	10/	<	1.0
Bicarbonate	mg/L as CaCO	144		145		150		140		162	-	153		157		155
Total Dissolved Solids	mg/L do OdOO3	156		101		158		183		151		134		183		159
Fluoride	mg/L	0.21		0.21		0.20	_	0.21		0.23		0.24		0.11		0.18
Total Organic Carbon	mg/L	1.0		0.8		11		1.3		1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.82		0.62		0.77		0.83		1.00	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as Nmr/l	0.10		0.10		0.11	_	0.12		0.09		0.06		0.07		0.07
Chloride (dissolved)	ma/l	1.8		1.3		1.8	_	16		1.9		2.3		21		22
Sulphate (dissolved)	mg/L	11.0		9.1		13.5		10.9		13.0		13		14		14
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	<	1.0		0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	<	0.010		0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	<	0.10		0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	<	0.10		0.06	<	0.06	<	0.06	<	0.06
Mercurv (dissolved)	ua/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	142		135		140		140		232		170		157		164
Silver (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L	3.0	<	5.0	<	5.0	<	5.0		7.0		1.0		4.0		2.5
Arsenic (dissolved)	µg/L	2.8	<	1.0		1.1	<	1.0		0.7		1.1		0.5		0.8
Barium (dissolved)	µg/L	107		102		110		91		74		115		109		112
Beryllium (dissolved)	µg/L	0.25	<	0.50	<	0.50	<	0.50	<	0.01		0.034	<	0.007	<	0.021
Boron (dissolved)	µg/L	30		24		24		22		42		28		33		31
Bismuth (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L	31000		28500		30500		30000		32400		31100		36900		34000
Cadmium (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L	1.00	<	0.50	<	0.50	<	0.50		0.10		0.24		0.13		0.19
Chromium (dissolved)	µg/L	2.6	<	5.0	<	5.0	<	5.0		0.3		0.2		0.1		0.2
Copper (dissolved)	µg/L	0.3	<	1.0	<	1.0	<	1.0		0.4		0.3	<	0.2		0.3
Iron (dissolved)	µg/L	3660		2600		2950		1765		341		3610		3140		3375
Potassium (dissolved)	µg/L	972		900		950		1025		836		924		857		891
Magnesium (dissolved)	µg/L	15950		15000		15500		15000		13850		15000		13400		14200
Manganese (dissolved)	µg/L	67		78		69		53		25		54		107		80
Molybdenum (dissolved)	µg/L	1.4		1.4		1.2		2.0		1.1		1.1		1.2		1.1
Sodium (dissolved)	µg/L	9620		8900		9350		9500		9550		9350		8760		9055
Nickel (dissolved)	µg/L	0.6	<	1.0	<	1.0	۷	1.0		0.3		0.5		0.7		0.6
Phosphorus (dissolved)	µg/L	17		8		12		39	<	3	۷	3	<	3	<	3
Lead (dissolved)	µg/L	0.40	<	0.50	<	0.50	<	0.50		0.02		0.30	<	0.09		0.20
Antimony (dissolved)	µg/L	0.40	<	0.50	<	0.50	۷	0.50	<	0.90	۷	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	۷	2.0	<	0.0	۷	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.1		0.28		0.10		0.19
Strontium (dissolved)	µg/L	302		305		320		315		468		342		387		365
Titanium (dissolved)	µg/L	2.5	<	5.0	<	5.0	<	5.0		0.4		0.07		0.21		0.14
Thallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	1.12	<	0.10	<	0.10		0.18		0.09		0.02		0.14		0.08
Vanadium (dissolved)	µg/L	0.26	<	0.50	<	0.50	<	0.50		0.90		0.02		0.02		0.02
Zinc (dissolved)	µg/L	4.5	<	5	<	5.0	<	5.0		12.0		22.0		6.0		14.0
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.030	<	0.040	<	0.040	<	0.040	<	0.010	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.010	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%	- ²		_ ²		_2		- ²		- ²		25.2		64.8		
ORP	mV	_ ²		_ ²		_2		_ ²		_ ²		-128.5		-90.7		
SPC	µs/cm	_2		_2		_2		_2		_2		311.1		322.7		
Temperature	°C	_2		_2		_2		_2	1	_2		8 999		8 685		
Turbidity	ENILI	_2		_2		_2	-	_2	-	2		67.67		61 57		
		- 2	-	2		2	-	2		2		7.04		774		
рн	Units	-				-				-		7.91		1.14		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and

Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

			WC	-OW5-79			WC-0W5-19	1	
		2016	2017	2018	2019	2020	110-0110-1	, 2021	
Parameter	Units	Ave	rage	WELL DECOMMISSIONED	Ave	rade	2021-05-13	2021-11-29	Average
pH	pH	7.95	7.85	Replaced by WC-OW5-19	7.44	7.20	7.26	7.29	7.28
Alkalinity	mg/L as CaCO ₃	253	260		280	327	351	379	365
Carbonate	mg/L as CaCO ₃	2.1	1.7		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃	253	255		280	327	351	379	365
Total Dissolved Solids	mg/L	458	412		1620	1557	1630	1510	1570
Fluoride	ma/L	0.13	0.15		< 0.10	0.07	< 0.06	< 0.06	< 0.06
Total Organic Carbon	mg/L	3	2		14	9	8.0	8.0	8.0
Dissolved Organic Carbon	ma/L	2	2		12	8	8.0	8.0	8.0
Ammonia+Ammonium (N)	as N mg/L	0.13	0.15		0.20	0.13	0.14	0.19	0.17
Chloride (dissolved)	ma/l	3.3	2.9		8.5	6.0	5.0	6.5	58
Sulphate (dissolved)	mg/L	108	99		885	780	660	810	735
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mo/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	ua/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO₃	286	290		1000	897	896	944	920
Silver (dissolved)	ua/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	ua/L	3.0	< 5.0		< 5.0	4.0	2.0	3.0	2.5
Arsenic (dissolved)	ua/L	1.8	1.5		2.8	3.4	0.8	4.3	2.6
Barium (dissolved)	µa/L	172	165		29	24	21	22	22
Beryllium (dissolved)	ua/l	0.25	< 0.50		< 0.50	< 0.01	< 0.007	0.015	0.011
Boron (dissolved)	ua/L	26	21		22	18	17	19	18
Bismuth (dissolved)	µa/L	0.5	< 1.0		< 1.0	< 0.007	0.090	< 0.010	0.050
Calcium (dissolved)	µg/=	77850	76000		335000	299500	270000	285000	277500
Cadmium (dissolved)	ua/L	0.05	< 0.10		< 0.10	< 0.00	< 0.003	< 0.003	< 0.003
Cobalt (dissolved)	ug/l	0.53	< 0.50		< 0.51	0.35	0.31	0.43	0.37
Chromium (dissolved)	ua/l	27	< 50		< 50	0.1	< 0.1	0.3	0.2
Copper (dissolved)	ua/L	0.3	< 1.0		< 1.0	< 0.2	< 0.2	< 0.2	< 0.2
Iron (dissolved)	ua/L	1050	695		5300	5340	< 7	5180	2594
Potassium (dissolved)	ua/L	1085	1150		1500	1320	1290	1340	1315
Magnesium (dissolved)	µa/L	21950	23000		48000	43300	39000	41500	40250
Manganese (dissolved)	ua/L	15	15		79	73	65	72	68
Molvbdenum (dissolved)	ua/L	1.1	1.3		1.8	0.6	0.9	0.8	0.8
Sodium (dissolved)	µg/L	31350	33500		120000	112000	116000	133000	124500
Nickel (dissolved)	µg/L	0.6	< 1.0		< 1.0	0.8	0.7	0.8	0.8
Phosphorus (dissolved)	µg/L	20	9		20	10	11	9	10
Lead (dissolved)	µg/L	0.26	< 0.50		< 0.50	0.01	< 0.09	< 0.09	< 0.09
Antimony (dissolved)	µg/L	0.35	< 0.50		< 0.50	< 0.90	< 0.90	< 0.90	< 0.90
Selenium (dissolved)	µg/L	1.0	< 2.0		< 2.0	0.3	0.17	0.22	0.20
Tin (dissolved)	µg/L	0.5	< 1.0		< 1.0	0.1	0.11	< 0.06	0.09
Strontium (dissolved)	µg/L	501	475		460	471	510	492	501
Titanium (dissolved)	µg/L	2.5	< 5.0		< 5.0	0.5	0.17	0.60	0.39
Thallium (dissolved)	µg/L	0.028	< 0.050		< 0.050	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (dissolved)	µg/L	0.06	< 0.10		1.23	0.11	0.11	0.08	0.10
Vanadium (dissolved)	µg/L	0.27	< 0.50		< 0.50	0.20	0.09	0.21	0.15
Zinc (dissolved)	µg/L	3.5	10.0		< 5.0	< 2.0	< 2.0	< 2.0	< 2.0
Lead-210	Bq/L	< 0.02	< 0.02		< 0.10	< 0.02	0.04	< 0.02	0.03
Radium-226	Bq/L	0.025	< 0.040		< 0.040	< 0.010	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L	0.040	< 0.070		< 0.070	< 0.020	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	-1	< 0.060		< 0.060	< 0.020	< 0.02	< 0.02	< 0.02
Field Parameters									
ODO % Sat	%	_2	_2		_2	_2	44.1	60.0	
ORP	m\/	_2	_2		_2	_2	_05.3	_60.0	
	us/om	2	2		2	2	-30.0	1700 /	
	µs/cm	-	-		-	-	953	1/90.4	
Temperature	чС	-4	-4		-4	-4	12.797	8.486	
Turbidity	FNU	-2	-2		-2	-2	20.58	8.7	
pH	Units	_ ²	_ ²		- ²	_ ²	7.55	7.52	

Table 95: WC-OW5-79 and WC-OW5-19

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and

Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

		WC-OW9-75						W	C-L	TWMF-M	W-	D6				
		2016	20	017		2018		2019		2020				2021		
Parameter	Units					Δνο	ran	IP			20	21-05-06	201	21-12-08	Δ.	verage
nH	nH	Replaced by		8 15		8 14	l	8 25		7 96	20	8 17	201	8 25		8 21
Alkolipity		WC-I TWME-MW-06		145	-	140	-	125	_	150		155	-	174	-	165
Carbonata	$mg/L as CaCO_3$	WO-E1 WM1 -MW-00		140		140	-	130	/	109	/	100	/	1/4	-	105
Carbonate	mg/L as $CaCO_3$			1.9		1.0		2.3	< <u> </u>	1.0	` `	1.0	<u>`</u>	174	<u>`</u>	1.0
Tatal Dia a kuad Calida	mg/L as CaCO ₃			135		140	-	135	_	159		100		1/4	<u> </u>	050
Total Dissolved Solids	mg/L			223		213	-	263		250		200		240	<u> </u>	250
Fluoride	mg/L			0.79		0.70		0.68		0.76		0.73		0.74	<u> </u>	0.74
Total Organic Carbon	mg/L			0.88		1.03		0.88	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L			0.6		0.6		0.6		1.0		1.0		1.0	<u> </u>	1.0
Ammonia+Ammonium (N)	as N mg/L		(0.184		0.068		0.073		0.050	<	0.04		0.09	<u> </u>	0.07
Chloride (dissolved)	mg/L			22		20		26		35		40		38		39
Sulphate (dissolved)	mg/L			34		38		41		43		49		45		47
Bromide (dissolved)	mg/L		<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L		< (0.010	<	0.010		0.011	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L		<	0.10	<	0.10	<	0.10		0.08	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L		<	0.10	<	0.10	<	0.10		0.08	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L		<	0.10	<	0.10	<	0.10	<	0.01	۷	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			115		115		120		233		222		286		254
Silver (dissolved)	µg/L		<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			56.5		9.8		8.3		3.0		5.0		5.0		5.0
Arsenic (dissolved)	µg/L			1.6		2.1		1.9		1.3		1.1		1.9		1.5
Barium (dissolved)	µg/L			60		54		59		35		81		65		73
Beryllium (dissolved)	µg/L		<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L			165		165		155		94		147	-	129		138
Bismuth (dissolved)	ua/L		<	1.0	<	1.0	<	1.0	<	0.0	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	ug/L		2	22000		17000		17500		15050		26000	-	19500		22750
Cadmium (dissolved)	ug/l		<	0.10	<	0.10	<	0.10		0.02		0.005	<	0.003		0.004
Cobalt (dissolved)	ug/l		<	0.50	<	0.50	<	0.50		0.01		0.004	-	0.02		0.01
Chromium (dissolved)	ug/l		<	5.0	<	5.0	<	5.0		0.1		0.3	-	0.1	-	0.2
Copper (dissolved)	ug/l		<	1.0	<	1.0	<	1.0		0.5		0.4	<	0.2	-	0.3
Iron (dissolved)			-	115	~	100	2	100	<	7	۲	7	2	7	<	7
Potassium (dissolved)	ug/L			3000	È	1950	È	1800	È	1267	-	2240	È	1800	-	2020
Magnesium (dissolved)	ug/L		1	14000		17500	-	18500	-	10165		20400	-	20800	-	2020
Manganese (dissolved)	µg/L			13 /	/	2.0	/	2.0		0.4		20400	-	0.05	-	0.51
Molybdenum (dissolved)	µg/L			17.5	È	2.0	È	2.0		3.2		0.07	-	7.4	-	8.3
Sodium (dissolved)	µg/L		4	17.5		10.1		42500	_	3.2		9.2	-	1.4	<u> </u>	40100
Niekel (disselved)	µg/L		4	1.0		42000	-	43300	-	21000		40700	-	49500	-	49100
	µg/L		`	1.0	È	1.0	È	1.0		12.4	`	0.1	<u>`</u>	0.1	<u>`</u>	0.1
Phosphorus (dissolved)	µg/L			70	_	75	-	0.50	_	0.02		0.00	_	0.00	-	0.00
	µg/L		Ì	0.50	Ì	0.50	È	0.50	_	0.03	Ì	0.09	È	0.09	<u>`</u>	0.09
Antimony (dissolved)	µg/L		<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L		<	2.0	<	2.0	<	2.0		0.1		0.13	<	0.04	<	0.09
Tin (dissolved)	µg/L		<	1.0	<	1.0	<	1.0		0.2		0.14	<	0.06		0.10
Strontium (dissolved)	µg/L			490	_	625		695		3/4	_	861	L	//6	L	819
litanium (dissolved)	µg/L			5.6	<	5.0	<	5.0	<	0.1		0.17	<	0.05	L	0.11
Inallium (dissolved)	µg/L		< (0.050	<	0.050	<	0.050		0.008	_	0.009	<	0.005	L	0.007
Uranium (dissolved)	µg/L			1.40		0.95		0.79		0.33	_	1.26		0.62		0.94
Vanadium (dissolved)	µg/L			1.7		1.8		1.5		0.6		1.32		1.25		1.29
Zinc (dissolved)	µg/L		<	5.0	<	5.0	<	5.0		22.5	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L			0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L		<	0.04	<	0.04	<	0.04	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L		<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			-1	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%			_2		_ ²		_2		_ ²		80.7		74.8		
ORP	mV			2		2		2		_2		153.8				
SPC	us/cm			2		2		2		2		251	-	466.7	\vdash	
+ (-	-	-	-		-		-		201	-	400.7	—	
Temperature	°C			-*		-*		-4		-4		9.298		10.711		
Turbidity	FNU			-2		-2		_ ²		-2		99.44		96.1		
pН	Units			_2		_2		_2		_ ²		8.48				

Table 96: WC-OW9-75 and WC-LTWMF-MW-06

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Table 97: WC-OW10-75

								WC-0	ov	V10-75						
		2016		2017		2018		2019	Γ	2020				2021		
Parameter	Units				Δ.	verane					20	21-04-21	20	21-12-03	Δ	verane
nH	nH	8 04	r –	8.08	Ê	8 05	<u> </u>	8.05	Г	8.01	20	8.09	20	7 91	L-	8.00
Alkalinity		174		170		180		170	┢	165		247		1.01		214
Carbonate	mg/L as $CaCO_3$	1/4		10		1 0		1.8	~	105	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as $CaCO_3$	1.9		1.9		1.9	-	170	F	165	-	247	È	1.0	<u> </u>	214
Total Dissolved Solids	mg/L as 0a003	242		183		555		230	┢	260		277		206		2/7
Fluoride	mg/L	0.10		0.19		0.15		0.13	┢	0.15		0.15		0.14		0.15
Total Organic Carbon	mg/L	1.50		1 15		1.09		0.10	~	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.86		0.72		0.71		0.57	F	1.00	-	1.0	È	1.0		1.0
Ammonia+Ammonium (N)	as Nmn/l	0.00		0.065		0.145		0.069	┢	0.065	-	0.08	È	0.10	<u>`</u>	0.09
Chloride (dissolved)	ma/l	2.6		2.5		3.6		4.2	t	4.2		4		6		5
Sulphate (dissolved)	mg/L	2.0		2.5	-	35	-	30	┢	30		40		40	-	40
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	<	1.0	~	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as Nmg/L	< 0.010	2	0.010	· <	0.010	~	0.010	2	0.000	2	0.000	~	0.000	· <	0.06
Nitrate + Nitrite (as N)	as Nmg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	ua/l	0.06	<	0.10	<	0.10	<	0.10	<	0.00	<	0.00	<	0.00	<	0.00
Hardness	mg/L as CaCO.	177		170		190		195	t	207	-	655		237		446
Silver (dissolved)	ud/l	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	ua/L	3.0	<	5.0	<	5.0	<	5.0	<	1.0		3.0	<	1.0		2.0
Arsenic (dissolved)	ua/l	1.6		1.5		2.0		2.6	F	2.8		2.8		2.8		2.8
Barium (dissolved)	µg/L	123		125		135		135	t	154		150		158		154
Beryllium (dissolved)	ua/l	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	ua/l	27		23		15		16	F	12	-	13		13		13
Bismuth (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.0	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L	33650		31000		35500		39500		43550		43100		47700		45400
Cadmium (dissolved)	ua/L	0.05	<	0.10	<	0.10	<	0.10	<	0.00		0.032	<	0.003		0.018
Cobalt (dissolved)	ua/L	0.53	<	0.50	<	0.50	<	0.50	t	0.01	<	0.004		0.05		0.03
Chromium (dissolved)	ua/L	2.6	<	5.0	<	5.0	<	5.0	t	0.3		0.3		0.1		0.2
Copper (dissolved)	µa/L	0.3	<	1.0	<	1.0	<	1.0	<	0.2		0.2	<	0.2		0.2
Iron (dissolved)	ua/L	65	<	100		125		245	t	258		229		270		250
Potassium (dissolved)	µa/L	1310		1200		1250		1200	t	1255		1260		1570		1415
Magnesium (dissolved)	µg/L	23100		22500		24500		24500	Γ	23000		24900		21900		23400
Manganese (dissolved)	µg/L	12.8		12.5		11.5		10.4	Γ	9.2		8.5		12.2		10.4
Molybdenum (dissolved)	µg/L	1.05		1.15		0.99		0.85	T	0.75		1.2		0.7		1.0
Sodium (dissolved)	µg/L	9115		9200		7350		5950		5740		6410		7580		6995
Nickel (dissolved)	µg/L	0.6	<	1.0		1.7	<	1.0	<	0.1	<	0.1		2.8		1.5
Phosphorus (dissolved)	µg/L	24		34		5		18	Г	3		8		60		34
Lead (dissolved)	µg/L	0.26	<	0.50	<	0.50	<	0.50	Γ	0.02		0.04	<	0.09		0.07
Antimony (dissolved)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	Ĺ	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L	399		380		390		360	Γ	350		343		376		360
Titanium (dissolved)	µg/L	2.5	<	5.0	<	5.0	<	5.0	Γ	0.1		0.27	<	0.05		0.16
Thallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	0.07	<	0.10	<	0.10	<	0.10		0.03		0.03		0.02		0.03
Vanadium (dissolved)	µg/L	0.29	<	0.50	<	0.50	<	0.50	<	0.01		0.02		0.11		0.07
Zinc (dissolved)	µg/L	5.0	<	5	<	5.0	<	5.0	<	2.0		3.0	<	2.0		2.5
Lead-210	Bq/L	0.03	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.025	<	0.040	<	0.040	<	0.040		0.015	۷	0.01		0.01		0.01
Thorium-230	Bq/L	0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters									Γ							
ODO % Sat	%	_2		_2		_2		_2	Ĺ	_2		40.9		90.1		
ORP	mV	_2		_2		_2		_2	t	_2		120.4		54.5		
SPC	us/cm	_2		2		2		2	F	2		373.4		396.7		
Temperatura	μ3/011	- 2		2		2	-	2	\vdash	2	-	6.077		500.7		
Temperature	-0	-	-	-	-	-		-	1	-	-	0.9//	-	5.914	<u> </u>	
Turbidity	FNU	-4		-*		-4		-4		-4		5.89		93.73		
pH	Units	_ ²		- ²		_ ²		- ²	Γ	- ²		7.97		7.96		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Field parameters included for current sampling year

2018

WC-OW12-75

2017

Table 98: WC-OW12-75

2016

Ť

Parameter	Units	Ave	rag	e	WELL DECOMMISSIONED
pH	pН	8.00		7.84	
Alkalinity	mg/L as CaCO3	299		220	
Carbonate	mg/L as CaCO ₃	2.3		1.5	
Bicarbonate	mg/L as CaCO ₃	294		220	
Total Dissolved Solids	mg/L	536		309	
Fluoride	mg/L	0.08	<	0.10	
Total Organic Carbon	mg/L	1.20		1.00	
Dissolved Organic Carbon	mg/L	1.50		0.97	
Ammonia+Ammonium (N)	as N mg/L	< 0.050	<	0.050	
Chloride (dissolved)	mg/L	26.0		16.0	
Sulphate (dissolved)	mg/L	80		28	
Bromide (dissolved)	mg/L	0.7	<	1.0	
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	
Nitrate (as N)	as N mg/L	13.10		2.93	
Nitrate + Nitrite (as N)	as N mɑ/L	13.10		2.93	
Mercury (dissolved)	µg/L	0.06	<	0.10	
Hardness	mg/L as CaCO ₃	423		255	
Silver (dissolved)	ua/L	0.06	<	0.10	
Aluminum (dissolved)	µa/L	3.0	<	5.0	
Arsenic (dissolved)	ua/L	0.6	<	1.0	
Barium (dissolved)	µa/L	44		26	
Beryllium (dissolved)	ug/l	0.25	<	0.50	
Boron (dissolved)	ua/L	23		11	
Bismuth (dissolved)	ua/L	0.5	<	1.0	
Calcium (dissolved)	µg/=	153500		93500	
Cadmium (dissolved)	ug/l	0.05	<	0.10	
Cobalt (dissolved)	µg/=	0.84	<	0.50	
Chromium (dissolved)	ua/l	2.8	<	5.0	
Copper (dissolved)	ug/l	0.3	<	1.0	
Iron (dissolved)	ug/L	67	<	100	
Potassium (dissolved)	ug/l	729	· ·	575	
Magnesium (dissolved)	ug/l	8405		5000	
Manganese (dissolved)	ug/L	10	<	2.0	
Maligariese (discorred)	ug/L	0.35	2	0.50	
Sodium (dissolved)	ug/L	20250	È	7850	
Nickel (dissolved)	ug/l	0.6	<	10	
Phosphorus (dissolved)	µg/L	17	1 ·	6	
Lead (dissolved)	ug/l	0.26	<	0.50	
Antimony (dissolved)	ug/l	0.40	<	0.50	
Selenium (dissolved)	ug/L	12	<	2.0	
Tin (dissolved)	ug/l	0.5	<	1.0	
Strontium (dissolved)	ug/L	281	1	170	
Titanium (dissolved)	ug/l	2.5	<	5.0	
Thallium (dissolved)	ug/l	0.028	<	0.050	
I Iranium (dissolved)	ug/L	0.020	·	0.60	
Vanadium (dissolved)	ug/L	0.07	<	0.50	
Zinc (dissolved)	ug/L	3.5	<	5.0	
Lead-210	Bg/L	0.02	2	0.02	
Radium-226	Bq/L Bg/l	0.030	<	0.040	
Thorium-230	Bq/L	0.040	<	0.070	
Thorium-232	Ba/l	_1		_1	
Field Parameters	Dq/L				
	0/	2		2	
ODO % Sat	70	-	-	-	
ORP	mv				
SPC	µs/cm	-4		-'	
Temperature	°C	- ²		_2	
Turbidity	FNU	_ ²		_2	
pН	Units	_2		_2	
COPC = Contaminants of I	Potential Concerr	n criteria for	Pot	able Gro	undwater Conditions
derived from Port Hone Sc	reening Report				
Table 3 = Full Denth Gene	ric Site Condition	n Standards	in a	Non-Po	table Ground Water
Condition Ontario Ministry	of the Environm	ent and Clim	nate	Change	2011
				J	

Bold values indicate an exceedance of the COPC or Table 3 criteria. ¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

			WC-	OW18-76
		2016	2017	2018
Parameter	Units	Aver	age	WELL DECOMMISSIONED
pH	pH		7.97	
Alkalinity	mg/L as CaCO ₃		200	
Carbonate	mg/L as CaCO ₃		1.7	
Bicarbonate	mg/L as CaCO ₃		200	
Total Dissolved Solids	mg/L		240	
Total Organic Carbon	mg/L		< 0.10 5.70	
	mg/L mg/l	1	0.01	
Ammonia+Ammonium (N)	as N mg/L	1	< 0.050	
Chloride (dissolved)	ma/L		19.0	
Sulphate (dissolved)	mg/L		12	
Bromide (dissolved)	mg/L		< 1.0	
Nitrite (as N)	as N mg/L		< 0.010	
Nitrate (as N)	as N mg/L	-	< 0.10	
Nitrate + Nitrite (as N)	as N mg/L	-1	< 0.10	
Mercury (dissolved)	µg/L		< 0.10	
Hardness	mg/L as CaCO ₃	199	200	
Silver (dissolved)	µg/L	0.05	< 0.10	
Aluminum (dissolved)	µg/L	3.0	< 5.0	
Arsenic (dissolved)	µg/L	2.0	4.0	
Barium (dissolved)	µg/L	23	2/	
Beryllium (dissolved)	µg/L	0.3	< 0.50	
Boron (dissolved)	µg/L	10	< 10	
Calcium (dissolved)	µg/L	58700	< 1.0 65000	
Cadmium (dissolved)	ug/L	0.06	< 0.10	
Cobalt (dissolved)	ua/L	0.72	< 0.50	
Chromium (dissolved)	ua/L	2.7	< 5.0	
Copper (dissolved)	µg/L	0.85	< 1.0	
Iron (dissolved)	µg/L	447	2100	
Potassium (dissolved)	µg/L	980	770	
Magnesium (dissolved)	µg/L	7405	8500	
Manganese (dissolved)	µg/L	147	55	
Molybdenum (dissolved)	µg/L	3.0	0.97	
Sodium (dissolved)	µg/L	19900	20000	
Nickel (dissolved)	µg/L	5.1	3.2	
Phosphorus (dissolved)	µg/L		850	
Lead (dissolved)	µg/L	0.3	< 0.50	
Solonium (dissolved)	µg/L	0.4	< 0.50	
Tin (dissolved)	µg/L	0.5	< 1.0	
Strontium (dissolved)	ua/l	161	170	
Titanium (dissolved)	ua/L	2.5	< 5.0	
Thallium (dissolved)	µg/L	0.03	< 0.050	
Uranium (dissolved)	µg/L	99	120	
Vanadium (dissolved)	µg/L	0.3	< 0.50	
Zinc (dissolved)	µg/L	739	1200	
Lead-210	Bq/L	< 0.02	< 0.02	
Radium-226	Bq/L	0.035	< 0.040	
Thorium-230	Bq/L	0.040	< 0.070	
Thorium-232	Bq/L	-1	< 0.060	
Field Parameters				
ODO % Sat	%	- ²	_2	
ORP	mV	_2	_2	
SPC	µs/cm	- ²	-2	
Temperature	°C	_2	_2	
Turbidity	FNU	_ ²	_2	
pH	Units	_2	_2	
COPC = Contaminants of F	Potential Concerr	criteria for F	otable Grou	ndwater Conditions
derived from Port Hope Sci Table 3 = Full Depth Gene Condition, Ontario Ministry	reening Report. ric Site Conditior of the Environme	n Standards in ent and Clima	n a Non-Pota te Change,	able Ground Water 2011.

Table 99: WC-OW18-76

Table 100: WC-OW25-76

								WC-O	W2	5-76						
		2016		2017		2018		2019		2020				2021		
Parameter	Units		-		Av	erage					20	21-04-15	20	21-12-01	A	verage
рН	pH		Г	7 77	É		1	8 19	1	7 75		_4		_4		
Alkalinity	mul as CaCO			160				140		163		_4		_4		
Carbonate	mg/L as CaCO ₃		<	1.0				21	<	1.0		_4		_4		
Bicarbonate	mg/L as $CaCO_3$		È	1.0	-			1/0	È	163		_4	-	_4	-	
Total Dissolved Solids	mg/L as 0a003		-		-			140		160		_4	-	_4	-	
Fluoride	mg/L		-						-	0.24		4	-	- 4	-	
Total Organia Carbon	mg/L		-	2.2	-				/	1.0		- 4	-	- 4	-	
Diasolyad Organic Carbon	mg/L		-	2.3	-		-		È	1.0		- 4	-	- 4	-	
	mg/L		-	2.9	-		-		-	1.0		- 4		- 4	-	
Ammonia+Ammonium (IN)	as N mg/L		-	1.7	-		-		_	0.07		- '		4	-	
Chioride (dissolved)	mg/L		-		-					1.9		- '		4	-	
Sulphate (dissolved)	mg/L		_		_		_			14						
Bromide (dissolved)	mg/L								<	0.30		-*	_	-"		
Nitrite (as N)	as N mg/L								<	0.03		-"		-"		
Nitrate (as N)	as N mg/L								<	0.06		-*		-*		
Nitrate + Nitrite (as N)	as N mg/L								<	0.06		-4		-4		
Mercury (dissolved)	µg/L	0.06	<	0.10			<	0.10	<	0.01		-4		-4		
Hardness	mg/L as CaCO ₃	123				110		115		159		-4		-4		
Silver (dissolved)	µg/L	0.01	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05		-4	<	0.05
Aluminum (dissolved)	µg/L	2.0		8.0	<	5.0	<	5.0		2.0		1.0		-4		1.0
Arsenic (dissolved)	µg/L	1.6	<	1.0	<	1.0	<	1.0		0.8		0.7		-4		0.7
Barium (dissolved)	µg/L	27		30		25		35		69.50		35		-4		35
Beryllium (dissolved)	µg/L	< 0.01	<	0.50	<	0.50	<	0.50	<	0.007	<	0.007		-4	<	0.007
Boron (dissolved)	µg/L	71		70		62		63		41		61		-4		61
Bismuth (dissolved)	µg/L	< 0.0	<	1.0	<	1.0	<	1.0	<	0.007	<	0.007		-4	<	0.007
Calcium (dissolved)	µg/L	30000		28000		26500		25500		27700		33600		-4		33600
Cadmium (dissolved)	µg/L	0.01	<	0.10	<	0.10	<	0.10	<	0.003		0.005		-4		0.005
Cobalt (dissolved)	µg/L	0.20	<	0.50	<	0.50	<	0.50		0.097		0.04		-4		0.04
Chromium (dissolved)	µg/L	0.3	<	5.0	<	5.0	<	5.0		0.32		0.2		-4		0.2
Copper (dissolved)	µg/L	0.1	<	1.0	<	1.0	<	1.0		0.25	<	0.2		_4	<	0.2
Iron (dissolved)	ua/L	34	<	100	<	100	<	100		1289		29		_4		29
Potassium (dissolved)	ua/L	696		955		695		715		760		716		_4		716
Magnesium (dissolved)	ua/L	11700		11000		11500		11500		12600		14900		_4		14900
Manganese (dissolved)	ua/L	4		30		5		12		28		10.5		_4		10.5
Molybdenum (dissolved)	ug/l	17		16		1.5		17		1.35		12		_4		12
Sodium (dissolved)	ug/l	11200		11000		11000		10500		9385		11100		_4		11100
Nickel (dissolved)		0.2	<	1.0	<	1.0	<	1.0		0.3	<	0.1		_4	<	0.1
Phosphorus (dissolved)		0.2	<u> </u>	/10	-	1.0	-	1.0		6	· ~	3	-	_4	· <	3
Lead (dissolved)	µg/L	0.01	<	0.50	~	0.50	<	0.50		0.07	-	0.01	-	_4	È	0.01
Antimony (dissolved)	µg/L	0.01		0.50	2	0.50	È	0.50	/	0.07	/	0.01	-	- 4	/	0.01
Solonium (dissolved)	µg/∟	0.30	È	2.0	È	2.0	È	2.0	È	0.90	`	0.90	-	- 4	È	0.90
Jelenium (uissolveu)	µg/L	0.1	È	2.0	È	2.0	È	2.0	È	0.04	/	0.05		- 4	-	0.05
Till (dissolved)	µg/L	0.1	È	1.0	È	1.0	È	1.0		402	`	0.00	-	- 4	È	0.00
Strontium (dissolved)	µg/L	444		420	-	430	-	425		402		0/0		-	-	0/0
Titanium (dissolved)	µg/L	0.1	<	5.0	<	5.0	<	5.0		0.07	<	0.05		4	<	0.05
Thallium (dissolved)	µg/L	0.005	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	_		<	0.005
Uranium (dissolved)	µg/L	0.31		0.12		0.11		0.14		0.142		0.13		-"		0.13
Vanadium (dissolved)	µg/L	1.6		1.4		1.5		3.2		0.88		1.47		-"		1.47
Zinc (dissolved)	µg/L	2.0	<	5.0	<	5.0	<	5.0		10		2.0	<u> </u>	-*		2.0
Lead-210	Bq/L	0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.035	<	0.040	<	0.040	<	0.040		0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.010	<	0.070	<	0.070	<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	-1	<	0.060	<	0.060	<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters			L				L		L							
ODO % Sat	%	-2		_2		_2		_2		_2		_3		_3		
ORP	mV	_2		_2		_2		_2		_2		_3		_3		
SPC	us/cm	2		2		2	\vdash	2		2		3	-	_3		
Termerature	μ3/011	- 2		2	-	2	\vdash	2	-	2		- 3	-	-	-	
remperature	-0	-		-		-	L	-		-		-		-		
Turbidity	FNU	-2		-4		-1		-4		-2		-3		-3		
pH	Units	- ²		- ²		_2		_ ²		_ ²		-3		-3		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

³ Insufficient volume of groundwater for field parameters

⁴ Insufficient volume of groundwater for full sample collection

Table 101: WC-OW27-76

								WC-0	ov	V27-76						
		2016		2017		2018		2019	1	2020				2021		
Parameter	Units				A	verage			-		20	21-04-15	20	21-12-01	A	verage
рН	pH			8.00		7.88		8.04	Г	7.81		7.63		7.60		7.62
Alkalinity	mɑ/L as CaCO₃	205		215		210		210	t	255		217		214		216
Carbonate	mg/L as CaCO ₃	< 2.0		2.1		1.5		2.1	<	: 1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	205		210		210		205	T	255		217		214		216
Total Dissolved Solids	ma/L	292		338		680		390	T	353		343		409		376
Fluoride	ma/L	0.14		0.14		0.13		0.11	t	0.14		0.11		0.23		0.17
Total Organic Carbon	ma/L	< 1.0		1.4		9.4		1.6	T	1.0		1.0		1.0		1.0
Dissolved Organic Carbon	ma/L	_1		1.2		1.3		1.3	T	1.5		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mo/L	_1		0.093		0.210		0.077	T	0.065		0.10		0.10		0.10
Chloride (dissolved)	mg/L	20		28		31		46	T	54		67		91		79
Sulphate (dissolved)	mg/L	31		29		26		31	T	32		33		32		33
Bromide (dissolved)	mg/L	< 0.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3		0.7		0.5
Nitrite (as N)	as N mg/L	_1	<	0.010		0.022		0.023	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L		<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Nitrate + Nitrite (as N)	as N mg/L		<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Mercury (dissolved)	µg/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	255		270		250		305		417		351		351		351
Silver (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L	3.0	<	5.0	<	5.0	<	5.0		2.0		2.0		1.0		1.5
Arsenic (dissolved)	µg/L	0.9	<	1.0	<	1.0	<	1.0		0.4		0.3		0.4		0.4
Barium (dissolved)	µg/L	113		125		110		155		158		152		160		156
Beryllium (dissolved)	µg/L	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	51		45		46		40		39		39		50		45
Bismuth (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	: 0.0	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L	67000		70000		65500		82500		88300		96200		94900		95550
Cadmium (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10		0.01	<	0.003		0.006		0.005
Cobalt (dissolved)	µg/L	0.61	<	0.50	<	0.50	<	0.50		0.05		0.07		0.06		0.07
Chromium (dissolved)	µg/L	2.6	<	5.0	<	5.0	<	5.0		0.3		0.2		0.2		0.2
Copper (dissolved)	µg/L	0.3	۷	1.0	۷	1.0	۷	1.0		0.3		0.3		0.2		0.3
Iron (dissolved)	µg/L	55	۷	100	۷	100	۷	100		8	<	7		9		8
Potassium (dissolved)	µg/L	802		820		810		885		939		892		1020		956
Magnesium (dissolved)	µg/L	21500		22000		21500		23500		24700		26900		23600		25250
Manganese (dissolved)	µg/L	20		19		78		46		36		37.7		37.4		37.6
Molybdenum (dissolved)	µg/L	0.70		0.56		0.55		0.51		0.52		0.46		0.49		0.48
Sodium (dissolved)	µg/L	9320		9650		9700		11000		12450		14700		13700		14200
Nickel (dissolved)	µg/L	0.7	<	1.0	<	1.0		1.2		0.5		0.3		0.7		0.5
Phosphorus (dissolved)	µg/L	30		47		18		38	<	: 3	<	3	<	3	<	3
Lead (dissolved)	µg/L	0.26	<	0.50	<	0.50	<	0.50		0.02	<	0.01		0.17		0.09
Antimony (dissolved)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	: 0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	<	2.0	<	: 0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	: 0.1	<	0.06		0.09		0.08
Strontium (dissolved)	µg/L	688		695		715		765		928		993		836		915
Titanium (dissolved)	µg/L	2.5	<	5.0	<	5.0	<	5.0		0.1		0.08		0.12		0.10
Thallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050		0.006	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	0.16		0.14		0.15		0.13		0.14		0.13		0.13		0.13
Vanadium (dissolved)	µg/L	0.60		0.54	<	0.50	<	0.50		0.56		0.41		0.43		0.42
Zinc (dissolved)	µg/L	3.5	<	5.0	<	5.0	<	5.0		2.0		7.0		4.0		5.5
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.040	<	0.040	<	0.040	<	0.040		0.010	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	< 0.010	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	-'	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%	- ²		_2		_2		- ²		- ²		-3		-3		
ORP	mV	- ²		_2		_2		_ ²		- ²		-3		-3		
SPC	µs/cm	_2		_2		_2		_2	T	_2		_3		_3		
Temperature	°C	_2		_2		_2		_2	t	_2		_3		_3		
Turbidity	ENILI	2		_2	-	2	-	_2	┢	2		_3		_3	-	
	l Inite	- 2		-	-	2	-	2	\vdash	-		-	-	- 3	H	
рн	Units	-		-					L	-		-		-		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.
² Field parameters included for current sampling year only.

³ Insufficient volume of groundwater for field parameters

									WC-OV	V28	-76						
			2016		2017		2018		2019		2020			2	2021		
Parameter	Units	<u> </u>				F	Verage					20	21-04-15	202	21-12-01	A	/erage
pH	pH					1			8.19		8.10		_4		_4		
Alkalinity	mg/L as CaCO₀								140		132		_4		_4		
Carbonate	mg/L as CaCO ₃								2.05	<	1		_4		_4		
Bicarbonate	mg/L as CaCO ₃								140		132		_4		-4		
Total Dissolved Solids	mg/L								205		166		_4		-4		
Fluoride	mg/L								0.22		0.24		_4		-4		
Total Organic Carbon	mg/L				1.2				1.3		1.0		_4		-4		
Dissolved Organic Carbon	mg/L								1.0		1.0		_4		-4		
Ammonia+Ammonium (N)	as Nmg/L				0.079				0.067	<	0.040		_4		-4		
Chloride (dissolved)	mg/L								16		18		_4		-4		
Sulphate (dissolved)	mg/L								13		12		_4		-4		
Bromide (dissolved)	mg/L								1	<	0		-4		-4		
Nitrite (as N)	as Nmg/L								0	<	0		_4		-4		
Nitrate (as N)	as Nmg/L							<	0	<	0		_4		-4		
Nitrate + Nitrite (as N)	as Nmg/L								0	<	0		-4		-4		
Mercury (dissolved)	µg/L	<	0.01	<	0.10	<	0.10	<	0.10	<	0.01		-4		-4		
Hardness	mg/L as CaCO ₃		156				120		130		146		-4		-4		
Silver (dissolved)	µg/L	<	0.00	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05		-4	<	0.05
Aluminum (dissolved)	µg/L	<	1.0	<	5.0		6.7	<	5.0		1.5		13.0		-4		13.0
Arsenic (dissolved)	µg/L		1.0	<	1.0	<	1.0	<	1.0		0.6		0.5		-4		0.5
Barium (dissolved)	µg/L		67		64		63		73		81		101		-4		101
Beryllium (dissolved)	µg/L	<	0.01	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007		-4	<	0.007
Boron (dissolved)	µg/L		89		81		74		80		93		80		-4		80
Bismuth (dissolved)	µg/L	<	0.0	<	1.0	<	1.0	<	1.0	<	0.0	<	0.007		-4	<	0.007
Calcium (dissolved)	µg/L		36000		29500		28000		30000		34600		41900		-4		41900
Cadmium (dissolved)	µg/L	<	0.00	<	0.10	<	0.10	<	0.10		0.00	<	0.003		-4	<	0.003
Cobalt (dissolved)	µg/L		0.23	<	0.50	<	0.50	<	0.50		0.03		0.034		-4		0.034
Chromium (dissolved)	µg/L		0.4	<	5.0	<	5.0	<	5.0		0.4		0.29		-4		0.29
Copper (dissolved)	µg/L		0.1	<	1.0	<	1.0	<	1.0		0.5		1.20		-4		1.20
Iron (dissolved)	µg/L		14	<	100	<	100	<	100	<	7		14		-4		14
Potassium (dissolved)	µg/L		760		710		690		715		747		842		-4		842
Magnesium (dissolved)	µg/L		16000		13500		12500		13500		14600		18800		-4		18800
Manganese (dissolved)	µg/L		9.4		6.5		3.0	<	2.4		3.0		2.2		-4		2.20
Molybdenum (dissolved)	µg/L		1.5		1.6		1.5		1.6		1.2		1.21		-4		1.21
Sodium (dissolved)	µg/L		12200		11000		11000		11000		11750		14500		-4		14500
Nickel (dissolved)	µg/L		0.4	<	1.0	<	1.0	<	1.0		0.4		1.00		-4		1.0
Phosphorus (dissolved)	µg/L				9				7		4	۷	3		-4	<	3
Lead (dissolved)	µg/L		0.14	<	0.50	<	0.50	<	0.50		0.05		0.04		-4		0.04
Antimony (dissolved)	µg/L		0.20	<	0.50	<	0.50	<	0.50	<	0.90	۷	0.90		-4	<	0.90
Selenium (dissolved)	µg/L	<	0.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04		-4	<	0.04
Tin (dissolved)	µg/L		0.1	<	1.0	<	1.0	<	1.0	<	0.1	<	0.06		-4	<	0.06
Strontium (dissolved)	µg/L		653		500		520		525		686		892		-4		892
Titanium (dissolved)	µg/L	<	0.1	<	5.0	<	5.0	<	5.0		0.1		0.77		-4		0.77
Thallium (dissolved)	µg/L	<	0.005	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005		-4	<	0.005
Uranium (dissolved)	µg/L		0.26		0.17		0.17		0.16		0.17		0.19		-4		0.19
Vanadium (dissolved)	µg/L		0.63	<	0.50	<	0.50		2.76		0.84		0.64		-4		0.64
Zinc (dissolved)	µg/L		4.0	<	5.0	<	5.0	<	5.0		3.5	<	2.0		-4	<	2.0
Lead-210	Bq/L	<	0.02	<	0.02	<	0.10	<	0.10		0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L		0.030	<	0.040	<	0.040	<	0.040		0.010	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L		0.010	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L		-1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																	
ODO % Sat	%		_2		_2		_2		_2		-		_3		- ³		
ORP	mV		_2		_2		_2		_2		-		_3		_3		
SPC	us/cm		2		2		_2		2		-		_3		_3		
Temperature	°C		2		2		2		2		-		3		3		
Turkidit		-	2	-	- 2	-	2		2	-	-	-	3	-	- 3		
			-		-		-		-		_		-		-		
nH	Linite		-		-		-		-				5		5		

Table 102: WC-OW28-76

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.
² Field parameters included for current sampling year only.

³ Insufficient volume of groundw ater for field parameters

Insufficient volume of groundwater for full sample collection

Table 103: WC-OW33-76

								WC-0	ov	V33-76						
		2016		2017		2018		2019		2020				2021		
Parameter	Units				A	verage					20	21-05-20	20	21-12-09	A	verage
pH	н	7.62		7.82	Ē	7.85		7.63	Г	7.36		7.62		7.58		7.60
Alkalinity	, mɑ/L as CaCO₃	390		380		385		370	t	380		1053		454		754
Carbonate	mg/L as CaCO3	1.8		2.4		2.7		1.5	<	: 1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO3	385		380		385		370		380		1050		454		752
Total Dissolved Solids	mg/L	438		445		423		435		460		446		474		460
Fluoride	mg/L	0.10	<	0.10	<	0.10	<	0.10		0.07	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L	2.5		2.9		2.6		2.5		2.0		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L	2.40		2.2		2.2		2.0		2.5		3.0		2.0		2.5
Ammonia+Ammonium (N)	as N mg/L	< 0.050	<	0.050		0.058	<	0.050		0.040	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L	2.7		4.8		5.0		6.8		23.5		30		12		21
Sulphate (dissolved)	mg/L	30		34		30		30		27		28		27		28
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	<	1.0		0.4		0.4	<	0.3		0.4
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as Nmg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as Nmg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	253		265		265		295		337		10100		493		5297
Silver (dissolved)	µg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L	3.5	<	5.0	<	5.0	-	5.7	-	93.5	<	1.0	<	1.0	<	1.0
Arsenic (dissolved)	µg/L	2.0	-	1.4	<	1.0	<	1.0	+	1.2		0.5		0.7		0.6
Barlum (dissolved)	µg/L	74	_	/8		/8		0.50	-	76		91		83		8/
Beryllium (dissolved)	µg/L	0.25	<	0.50	<	0.50	<	0.50	-	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	40	/	30	/	30	/	43	-	92	/	0.010	/	37	/	30
Coloium (dissolved)	µg/L	97500	<u>`</u>	01000	<u>`</u>	02500	<u>`</u>	00500	È	69450	`	110000	`	110000	`	114500
Calcium (dissolved)	µg/L	0.05	/	91000	/	92500	/	99500	-	00400		0.003	/	0.003		0.003
Caumium (dissolved)	µg/L	0.05	-	0.10	~	0.10	~	0.10	È	0.00		0.003	`	0.003		0.003
Cobait (dissolved)	µg/L	2.7	~	5.0	~	5.0	~	5.0	┢	0.12		0.13		0.30		0.24
Copper (dissolved)	ug/l	0.3	<	1.0	<	1.0	<	1.0		0.5	<	0.2		0.6		0.1
Iron (dissolved)	µg/L	1335		910		240		410	t	139	-	33		14		24
Potassium (dissolved)	ua/L	1145		1100		1100		1150	t	1545		1260		1370		1315
Magnesium (dissolved)	ua/L	8865		9050		9000		10000	T	14950		10900		10100		10500
Manganese (dissolved)	µg/L	63		64		65		87		58		84		157		121
Molybdenum (dissolved)	µg/L	3.1		2.9		2.8		3.0		4.9		2.79		3.94		3.37
Sodium (dissolved)	µg/L	75300		69000		61000		61000		47250		54500		62900		58700
Nickel (dissolved)	µg/L	1.4		1.3	<	1.0	<	1.0		0.3		0.3		0.9		0.6
Phosphorus (dissolved)	µg/L	31		264		45		52		17	۷	3	<	3	۷	3
Lead (dissolved)	µg/L	0.26	<	0.50	<	0.50	<	0.50		0.16	۷	0.09	<	0.09	۷	0.09
Antimony (dissolved)	µg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	۷	0.90	<	0.90	۷	0.90
Selenium (dissolved)	µg/L	1.0	<	2.0	<	2.0	<	2.0		0.1	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06		0.10		0.08
Strontium (dissolved)	µg/L	195		195		200		205		538		247		223		235
Titanium (dissolved)	µg/L	2.6	<	5.0	<	5.0	<	5.0	L	5.0	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	µg/L	0.028	<	0.050	<	0.050	<	0.050		0.013	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	2.6		2.5		2.1		2.0		1.5		4.15		2.55		3.35
Vanadium (dissolved)	µg/L	0.28	<	0.50	<	0.50	<	0.50		0.88		0.03	<	0.01		0.02
Zinc (dissolved)	µg/L	7.0		7.2		6.2	<	5.0	<	2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.03		0.03
Radium-226	Bq/L	0.025	<	0.040	<	0.040	<	0.040		0.010	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	-'		-1	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%	- ²		- ²		- ²		- ²		- ²		-3		66.4		
ORP	mV	-2		_2		-2		-2		_2		- ³				
SPC	µs/cm	-2		- ²		- ²		- ²		- ²		-3		757		
Temperature	°C	-2		_2		_2		_2	Γ	_ ²		- ³		10.158		
Turbidity	FNU	_2		_2		_2		_2	Γ	_2		- ³		2332.6		
pН	Units	_2		_2		_2		_2	Г	_2		_ ³				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground W³ Insufficient volume of groundwater for field parameters Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.
² Field parameters included for current sampling year only.

³ Insufficient volume of groundwater for field parameters

Appendix D

Table 104: PH-02-01

HIGHLAND DRIVE GROUNDWATER RESULTS

		Crit	eria					P	H-02-01				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/25	20	21/11/12	A	verage
pН	pН	6.5-8.5	6.5-9.0		7.46	Ē	7.43		7.50		7.41		7.46
Alkalinity	mg/L as CaCO ₃				325		318		433		434		434
Carbonate	mg/L as CaCO ₃				1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				325		318		433		434		434
Total Dissolved Solids	mg/L				423		356		477		440		459
Fluoride	mg/L	1.5		<	0.10		0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				3.4		2.0		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L				2.3		2.0		2.0		2.0		2.0
Total Ammonia-N	mg/l				0.10	<	0.04	<	0.04		0.04		0.04
Chloride	mg/L				15		8		24		12		18
Sulphate	mg/L				6.4		6.0		11		9.3		10.2
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010		0.73	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.81		0.61		1.63		3.21		2.42
Nitrate + Nitrite (N)	mg/L				0.81		1.29		1.63		3.21		2.42
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				350		390		435		683		559
Silver (dissolved)	ua/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	ua/L			<	5		6	<	1		4		3
Arsenic (dissolved)	ua/L	25	1900	<	1.0		0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	ua/L	1000	29000		24		22		37		29		33
Bervllium (dissolved)	ua/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	ua/L	5000	45000		27		25		20		30		25
Bismuth (dissolved)	ug/l			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	ug/l			-	130000		122500	-	162000		171000		166500
Cadmium (dissolved)	ug/l	5	2.7	<	0.1	<	0.003	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	ug/L	,	66	<	0.50	-	0.000	-	0.056		0.055	-	0.056
Chromium (dissolved)	ug/L		810	<	5.0		0.00		0.13		0.000	-	0.000
Conner (dissolved)	ug/L	1000	87	-	1.3		1.6		0.10		1.3	-	11
Iron (dissolved)	ug/L	1000	07	<	100		1.0	<	7	<	7	<	7
Potassium (dissolved)	ug/L			-	2050		2295	-	3110		2920	-	3015
Magnesium (dissolved)	ug/L				7100		6485		7460		9210	-	8335
Manganese (dissolved)	ug/L			<	2.0		19		0.06		0.90	-	0.48
Molybdenum (dissolved)	µg/L		9200	-	0.50		0.44		0.00		0.35	-	0.40
Sodium (dissolved)	µg/L		5200		3450		5380		5510		4930	-	5220
Nickel (dissolved)	µg/L		/00	<	1.0		0.3	~	0.1		03		0.2
Phosphorus (total)	µg/L		450	-	215		8	~	3		7	_	5
Lead (dissolved)	µg/L	10	25	/	0.50		0.02	-	0.01	/	0.00	-	0.05
Antimony (discolved)	µg/L	- 10	20000	-	0.50	/	0.02	-	0.01		0.09	/	0.00
Selenium (dissolved)	µg/L	10	20000	-	2.0	È	0.90	<u>`</u>	0.30	È	0.90	Ì	0.30
Tin (dissolved)	µg/L	10	03	-	2.0		0.0	/	0.00	/	0.40	/	0.42
Strontium (discolved)	µg/L			<u>`</u>	200		210	<u>`</u>	200	È	277	Ì	288
Titanium (dissolved)	µg/L			/	5.0		0.3		299		0.24		200
Thallium (dissolved)	µg/L		E10	-	0.05	/	0.01	/	0.00	/	0.24	/	0.10
Iranium (dissolved)	µg/L	20	420	-	3.4	È	2.0	<u>`</u>	2 00	È	3 15	<u>`</u>	3.03
Vanadium (dissolved)	µg/L	20	420	` `	0.50	-	2.9		2.90		0.45		0.25
Zipe (dissolved)	µg/L		250		0.00 E 0		2.0		0.20	/	0.40		0.35
Lead 210	Pg/L Bg/l	0.20	1100		0.10	È	2.0	/	0.02	È	2	-	0.02
Padium 226	Bq/L	0.20			0.10	È	0.02		0.02	È	0.02	È	0.02
Thorium 230	Bq/L	0.49			0.04	-	0.02		0.01	-	0.01	/	0.01
Thorium 232	Bq/L	0.05			0.07	È	0.02		0.02	È	0.02		0.02
Field Parameters	Dq/L			È	0.00	È	0.02	È	0.02	È	0.02	È	0.02
	mag /				1	_	1		70.4		50.6	-	
	mg/L				1		1	-	146.7		116.6		
					- 1		-	-	708.0		760		
Tomporatura	us/cm				- 1		-	-	9.746		11 690		
Turbidity	ENIL				- 1		-	-	0./10		120.04		
	FINU			_	-	-	-	_	7.00		7.47		
pn COBC - Contantinant (1	Units	anitari - f	Detation of		-		-		7.20	11	7.17		 Domort
Toble 2 = Cuntaminants of H	rio Sito Concern	Stondord	in a Mar	roui	hin Crow		lator Corr	vea	n Onterio	пор	iotru of th	ng i	tepon.
Finite S = Full Depth Gene	Change 2011	standards	nn a Non-F	ota	bie Groun	uИ	aler Cond	1110	n, Ontario	win	istry of the	-	
Environment and Climate C	unange, 2011.	0000 T	الاست (ماط	in									
boid values indicate an ex	ceedance of the	COPC or Ta	able 3 criter	ıa									

¹ Field parameters included for current sampling year only.

Table 105: PH-02-02

		Crit	eria						PH-02-02				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac	le	20	21/03/25	20	21/11/12	A	verage
Hq	Ha	6.5-8.5	6.5-9.0		7.47	Ľ	7.37		7.60		7.39		7.50
Alkalinity	mɑ/L as CaCO₃				335		347		405		375		390
Carbonate	mg/L as CaCO ₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				335		347		405		375		390
Total Dissolved Solids	mg/L				415		375		423		391		407
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2.6		2.0		2.0		1.0		1.5
Dissolved Organic Carbon	mg/L				2.0		2.5		2.0		2.0		2.0
Total Ammonia-N	mg/l				0.08		0.12		0.13		0.13		0.13
Chloride	mg/L				14		4		13		23		18
Sulphate	mg/L				5.6		5.5		7.7		6.4		7.1
Bromide	mg/L			۷	1.0	<	0.3	۷	0.3		0.4		0.4
Nitrite (N)	mg/L				0.017		0.500		0.05	<	0.03		0.04
Nitrate (N)	mg/L				0.81		0.67		1.13		0.96		1.05
Nitrate + Nitrite (N)	mg/L				0.82		1.12		1.18		0.96		1.07
Mercury (dissolved)	µg/L	1	0.29	۷	0.10	<	0.01	۷	0.01	۷	0.01	۷	0.01
Hardness (dissolved)	mg/L as CaCO ₃				360		473		365		558		462
Silver (dissolved)	µg/L		1.5	۷	0.1	<	0.1	۷	0.05	۷	0.05	۷	0.05
Aluminum (dissolved)	µg/L				5		21		54	<	1		28
Arsenic (dissolved)	µg/L	25	1900	<	1.0		0.3	<	0.2	<	0.2	<	0.2
Barium (dissolved)	µg/L	1000	29000		37		33		48		48		48
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		34		32		29		30		30
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				130000		131000		136000		153000		144500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.005	<	0.003		0.004		0.004
Cobalt (dissolved)	µg/L		66	<	0.50		0.13		0.123		0.068		0.096
Chromium (dissolved)	µg/L		810	<	5.0		0.1		0.15	<	0.08		0.12
Copper (dissolved)	µg/L	1000	87		1.6		1.8		1.4		1.3		1.4
Iron (dissolved)	µg/L			<	100		37	<	7	<	7	<	7
Potassium (dissolved)	µg/L				2400		2810		3430		2940		3185
Magnesium (dissolved)	µg/L				7950		8160		6150		7520		6835
Manganese (dissolved)	µg/L				70		195		216		142		179
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.28		0.62		0.29		0.46
Sodium (dissolved)	µg/L				5700		4255		3540		5060		4300
Nickel (dissolved)	µg/L		490	<	1.0		0.8	<	0.1		0.4		0.3
Phosphorus (total)	µg/L				73	<	3	<	3	<	3	<	3
	µg/L	10	25	<	0.50	<	0.05	<	0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.3		0.25		0.39		0.32
Tin (dissolved)	µg/L			<	1.0	-	0.1	<	0.00	<	0.06	<	0.00
Strontium (dissolved)	µg/L				205		206		248		240		247
Thanium (dissolved)	µg/L		510	<	5.0		1.1	/	0.005	<	0.05	/	0.005
Liranium (dissolved)	µg/L	20	420	×	0.05	1×	2.1	Ì	3.5	È	2.005	Ì	2.04
Vanadium (dissolved)	µg/L	20	420	-	0.50		0.42		0.49	-	0.26	_	0.27
	µg/L		250		5.0	-	2.0	/	0.40	1	0.20	/	2
Lead 210	µg/∟ Ba/l	0.20	1100	Ì	0.10	È	2.0	~	0.02	Ì	2	< <	0.02
Radium-226	Bq/L	0.20		Ì	0.10	È	0.02	~	0.02	È	0.02	È	0.02
Thorium 230	Bq/L Bg/l	0.49		-	0.04	Ì	0.01	~	0.01	/	0.01	~	0.01
Thorium-232	Bq/L Bg/l	0.05		~	0.07	~	0.02	~	0.02	~	0.02	~	0.02
Field Parameters	Dq/L			-	0.00	È	0.02	`	0.02	-	0.02	`	0.02
ODO % Sat	ma/l				_1	⊢	_1		54.4		42.3		
ORP	mV				_1		_1		135.4		123.6		
SPC	us/cm				_1		_1		615.0		657		
Temperature	°C				_1		_1		9.449		11,356		
Turbidity	FNU				_1		_1		211 43		180 41		
pH	Units				_1		_1		7.22		7,15		
COPC = Contaminants of F	Potential Concern	criteria for	Potable G	rou	ndwater (Cor	nditions d	eriv	ed from Pr	ort H	lope Scre	enin	a Report.
Table 3 = Full Depth Gene	ric Site Condition	Standards	in a Non-F	Pote	ble Grou	ind	Water Co	ondi	tion, Onta	rio I	Ministry of	the	
Environment and Climate C	Change, 2011.				0.00				, eu				
Bold values indicate an ex	ceedance of the	COPC or Ta	able 3 criter	ia									

Field parameters included for current sampling year only.

Table 106: PH-02-03

		Crit	eria						PH-02-03				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/25	20)21/11/12	Α	verage
pН	pН	6.5-8.5	6.5-9.0		7.65		7.43		7.54		7.52		7.53
Alkalinity	mg/L as CaCO ₃				300		285		300		249		275
Carbonate	mg/L as CaCO ₃				1.3	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				295		285		300		249		275
Total Dissolved Solids	mg/L				403		323		451		483		467
Fluoride	mg/L	1.5		<	0.10		0.07	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2.5		2.0		2.0		2.0		2.0
Dissolved Organic Carbon	ma/L				2.1		2.0		2.0		2.0		2.0
Total Ammonia-N	ma/l				0.13		0.10		0.16		0.15		0.16
Chloride	ma/L				11		7		50		100		75
Sulphate	mg/L			-	69		3.3		6.6		9.6		81
Bromide	mg/L			<	1.0	<	0.3	<	0.3		1.7		1.0
Nitrite (N)	mg/L			<	0.010	-	0.330	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L			-	0.010		0.000		0.00	-	0.00	-	0.00
Nitrate + Nitrite (NI)	mg/L				0.24	-	0.10		0.25		0.31		0.20
Moroury (discolved)	ing/L	1	0.20	/	0.24	/	0.47	/	0.23	/	0.01	/	0.20
Hardpose (dissolved)	µg/L mg/L as CaCO	1	0.29	`	225	È	245	`	272	`	440		407
Silver (dissolved)	Ing/L as CaCO ₃		1 5	/	0.1	/	0.1	/	0.05	/	0.05	/	407
Aluminum (dissolved)	µg/L		1.5	` _	0.1 E		0.1	`	14	` _	0.05	`	0.05
Araania (dissolved)	µg/L	25	1000	`	5	-	0.2	/	14	`	0.2	/	0.2
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	µg/L	1000	29000		23		20		27		29		28
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		30		22		28		18		23
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				120000		114500		143000		172000		157500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1	<	0.003	<	0.003		0.003		0.003
Cobalt (dissolved)	µg/L		66	<	0.50		0.13		0.139		0.285		0.212
Chromium (dissolved)	µg/L		810	<	5.0		0.1		0.09	<	0.08		0.09
Copper (dissolved)	µg/L	1000	87		1.7		1.5		1.4		1.8		1.6
Iron (dissolved)	µg/L			<	100	<	7	<	7	<	7	<	7
Potassium (dissolved)	µg/L				1850		2080		3310		3480		3395
Magnesium (dissolved)	µg/L				5700		5330		4200		5900		5050
Manganese (dissolved)	µg/L				475		194		195		668		432
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.23		0.36		0.23		0.30
Sodium (dissolved)	µg/L				5450		3425		7020		4870		5945
Nickel (dissolved)	µg/L		490	<	1.0		0.7		0.2		0.7		0.5
Phosphorus (total)	µg/L				11	<	3	<	3		3		3
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.1		0.11		0.09		0.10
Tin (dissolved)	µg/L			۷	1.0		0.1		0.17	۷	0.06		0.12
Strontium (dissolved)	µg/L				185		198		271		260		266
Titanium (dissolved)	µg/L			<	5.0		0.1		0.05		0.05		0.05
Thallium (dissolved)	µg/L		510	۷	0.05	<	0.01	۷	0.005	۷	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		13.5		10.5		14.1		14.0		14.1
Vanadium (dissolved)	µg/L		250	<	0.50		0.16		0.23		0.19		0.21
Zinc (dissolved)	µg/L		1100	<	5.0	<	2.0	<	2	<	2	<	2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.03		0.03
Radium-226	Bq/L	0.49		<	0.04		0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	ma/L				_1		_1		54.7		33.1		
ORP	mV				_1		_1		135.9		127.1		
SPC	us/cm				_1	F	_1		593.0		854		
Temperature	°C				1		_1		9.847		11 049		
Turbidity	FNU				1		_1		19.36		41.02		
nH	Units				_1		_1		7.34		7.07		
COPC = Contaminants of I	Potential Concorr	criteria for	Potabla	rou	indwater (Cor	ditions d	orive	ed from D	ort L	Hone Soro	onin	a Report
Table 3 = Full Denth Cono	oric Site Condition	Standarda	in a Non E		able Grou	und	Water C	ndi	tion Onto	ric	Ministry of	th≏	g Neport.
Environment and Climate	Change 2011	Glanuards	in a Non-F	018	ine Giou	nu	valer Cl	nui	aon, Onla	101	winnistry Of	ale	
Bold volues is distant	vegedence of the	CODC T	hla 2it	in									
bold values indicate an ex	ceedance of the	COPC or la	able 3 criter	а									

¹ Field parameters included for current sampling year only.

---Nodata.

Г

		Crit	eria						PH-90-3-I		
		COPC	Table 3		2019		2020				20
	Units		(MECP)		Ave	rage	e	202	21/03/29	202	21/
	pН	6.5-8.5	6.5-9.0		8.02		7.88		7.88		7
	mg/L as CaCO3				210		260		225		2
	mg/L as CaCO3				2.1	<	1.0	<	1.0	۷	
	mg/L as CaCO3				205		260		225		2
	mg/L				465		579		606		4
	mg/L	1.5		<	0.10		0.07	<	0.06	۷	0
	mg/L				1.0	۷	1.0	<	1.0	۷	
on	mg/L				0.5	<	1.0		1.0	۷	
	mg/l				0.09	۷	0.04		0.04		0
	mg/L				104		140		160		
	mg/L				38		40		36		
	ma/l			1	10	/	50	1	0.2	`	(

Table 107: PH-90-3-I

		COPC	Table 3		2019	1	2020		111000		2021		
Δnalvsis	Units	0010	(MECP)			rag	2020	20	21/03/29	20	21/10/27	Δ	verage
	nH	6 5 9 5	6500	-	8.02	lag	7.88	20	7.88	20	7 72		7.80
Alkalinity		0.5-0.5	0.3-9.0		210		260		225		208		217
Carbonate	mg/L as CaCO ₃				210	~	1.0	~	1.0	2	1.0	~	10
Bicarbonate	mg/L as $CaCO_3$				205	<u>`</u>	260	<u>`</u>	225	-	208	`	217
Total Dissolved Solids	mg/L as CaCO ₃			-	465		579	-	606		437		522
Fluoride	mg/L	1 5		~	0.10		0.07	~	0.06	2	0.06	~	0.06
Total Organic Carbon	mg/L	1.5		`	1.0	<	1.0	~	1.0	~	1.0	~	1.0
Dissolved Organic Carbon	mg/L			-	0.5	~	1.0	-	1.0	~	1.0	` ~	1.0
Total Ammonia-N	mg/L				0.0	~	0.04	-	0.04	-	0.08	`	0.06
Chloride	mg/l				104	-	140		160		140		150
Sulphate	mg/L				38		40		36		/0		38
Bromide	mg/L			<	1.0	<	03	<	0.3	<	03	۲	03
	mg/L			-	0.010	2	0.030	Ì	0.03	2	0.03	~	0.03
Nitrate (N)	mg/L			`	1 56	`	1 0/	-	2.20	-	1 72	`	2.01
Nitrate (N)	mg/L				1.50		1.04	-	2.23		1.72		2.01
Mercury (dissolved)	ug/L	1	0.20	~	0.10	~	0.01		0.01	~	0.01		0.01
Hardness (dissolved)	µg/∟ mg/Las CaCO		0.25	`	330	`	807		1070	-	377		724
Silver (dissolved)			1 5	/	0.1	/	0.1	/	0.05	/	0.05	/	0.05
	µg/L		1.5	-	5	<u>`</u>	5	Ì	0.05	È	1	<u>`</u>	1
Arcopia (dissolved)	µg/L	25	1000		1.0	/	0.2	<u>`</u>	0.2	/	0.2	/	0.2
Arsenic (dissolved)	µg/L	25	20000	<u>`</u>	275	<u>`</u>	287	Ì	328	È	280	<u>`</u>	300
Banullium (dissolved)	µg/L	1000	29000	/	275	/	207	/	0.007	/	209	/	0.007
Beron (dissolved)	µg/L	5000	45000	`	15	`	12	Ì	11	È	14	`	12
Bismuth (dissolved)	µg/L	5000	45000	/	10	/	0.007	/	0.007	/	0.010		0.000
Coloium (dissolved)	µg/L			`	94500	<u>`</u>	0.007	Ì	125000	Ì	100000		112500
Calcium (dissolved)	µg/L	-	2.7	/	04500	/	96750	/	0.002	/	0.002	/	0.002
Cabelt (dissolved)	µg/L	5	2.7	` `	0.1	<u>`</u>	0.003	Ì	0.003	Ì	0.003	`	0.003
Cobait (dissolved)	µg/L		00	`	0.50		0.17		0.110		0.070		0.093
Copper (dissolved)	µg/L	1000	010	-	1.0		0.2	/	0.30	/	0.33	/	0.35
trop (dissolved)	µg/L	1000	67	`	170		151	Ì	202	È	256	`	220
Potossium (dissolved)	µg/L			-	1900		1790	-	203		200		2005
Magnasium (dissolved)	µg/L				28000		21000		2040		20800		2005
Magnesium (dissolved)	µg/L				20000		12.0	_	11.5		12.7		12.1
Mahyanese (dissolved)	µg/L		0200	/	0.50		0.41	-	0.22		0.27		0.25
Nolybaenam (dissolvea)	µg/L		9200	Ì	25000		20500		29400		22700		26050
Nickel (disselved)	µg/L		400	/	1.0	/	29500		20400	/	23700		20030
Decemberus (tetal)	µg/L		490	`	1.0	-	0.1	/	0.1	-	0.1	/	2
Phosphorus (total)	µg/L	10	25	/	4150	`	3	` `	0.01	-	0.00	`	0.05
Antimony (dissolved)	µg/L	10	25	\ \	0.50	-	0.04	<u>`</u>	0.01	-	0.09	/	0.00
Selenium (dissolved)	µg/L	10	20000	` `	0.50	`	0.90	Ì	0.90	Ì	0.90	`	0.90
Selenium (dissolved)	µg/L	10	05	-	2.0		0.3	/	0.01	/	0.27	-	0.29
Till (dissolved)	µg/L			ì	205		420	Ì	0.00	Ì	0.00	`	0.00
Titopium (dissolved)	µg/L			/	595		429		0.10		405		0.12
Thallium (dissolved)	µg/L		F10		0.05	/	0.2	/	0.10	/	0.13	/	0.12
Litanium (dissolved)	µg/L	20	420	`	1.7	`	2.0	<u>`</u>	0.005	<u>`</u>	1.65	`	1 00
Vanadium (dissolved)	µg/L	20	420	/	0.50		2.0	_	2.1		0.16		0.00
Zipe (dissolved)	µg/L		250	<u> </u>	5.0		4.0	/	0.27	/	0.10	/	0.22
Lood 210	µy/L Ra/l	0.20	1100	-	0.10	~	4.0		0.02	-	<u> </u>	~	0.02
Padium 226	By/L Ba/l	0.20		-	0.10	-	0.02	-	0.02	-	0.02	`	0.02
Thorium 230	Bq/L Bg/l	0.49	-	È	0.04	\geq	0.01	È	0.01	-	0.01	/	0.01
Thorium 222	Bq/L Bg/l	0.65		· ·	0.07	`	0.02	` `	0.02	-	0.02	`	0.02
Field Parameters	Bq/L			Ś	0.06	<	0.02	Ì	0.02	,	0.02	Ì	0.02
	ma/l				1		1		47.0		59		
	my/L				-		-		47.9		91.7		
				-	-	-	-	-	47.1	-	-01./	-	
Tomporatura	us/cm				-		-		0.000		10.000		
Turbidity				-	-		-		9.230		10.339		
	FINU				-'	-	-'	_	200.00		293.72		
	Dotontial Corres	aritaria f	Detable O		-	Corr	-	ori.	1.12 od from D		1.05	mir	
Table 2 - Euli Durite C	-olential Concern	Criteria foi	Potable G	rou	nawater (Con	NACE OF C	env	ea from Po	ort F	ope Scre	enin	y Report.
Table 3 = Full Depth Gene	ne site condition	i standards	n a Non-F	-018	wie Grou	ina	vvater Co	JNAI	uon, Onta	r10 I	viinistry of	ine	

Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

		Crit	eria					PH	I-90-4-III				
		COPC	Table 3		2019		2020				2021		
Analysis	Units	-	(MECP)		Ave	rac	qe	20	021/03/29	20	021/10/27	Α	verage
pH	рН	6.5-8.5	6.5-9.0		6.81	Ē	6.76		6.66		6.56		6.61
Alkalinity	mg/L as CaCO				740		669		664		694		679
Carbonate	mg/L as CaCO ₂			<	1.0	<	10	<	10	<	10	<	10
Bicarbonate	mg/L as CaCO ₂				740		669		664		694		679
Total Dissolved Solids	mg/L de oddog mg/l				2735		3920		4394		3920		4157
Fluoride	mg/L	15		<	0.10		0.52	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L	1.5		-	3.8		2.5	-	4.0	-	6.0	-	5.0
Dissolved Organic Carbon	mg/L				3.2		3.5		5.0		6.0	-	5.5
Total Ammonia-N	mg/L				0.48		0.44		0.36		0.0	-	0.32
Chloride	mg/l				1215		1800		2200	-	1800	-	2000
Sulphate	mg/L				10		28		2200		28	-	2000
Bromide	mg/L				7.5		0.4	<	3.0	-	0.5	-	1.8
Nitrito (NI)	mg/L				0.022		0.4	` `	0.20	/	0.0	/	0.20
Nitrato (N)	mg/L			/	0.023	È	0.00		0.30	<u> </u>	0.30	Ì	0.30
Nitrate + Nitrite (N)	mg/L			<u> </u>	0.10	È	0.00	\ \	0.00	/	0.10		0.30
Moroury (discolved)	ng/L	1	0.20		0.10		0.45		0.00	-	0.30	/	0.45
Herdness (dissolved)	µy/L		0.29	`	1200	È	1614	`	2440	<u>`</u>	1540	ì	1000
Hardness (dissolved)	mg/L as CaCO ₃		4.5	/	1300	-	1014	/	2440	_	1540	-	1990
Sliver (dissolved)	µg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L		4000	<	5	-	2	<	1		1	_	1
Arsenic (dissolved)	µg/L	25	1900		7.3		8.1		12.0		11.9		12.0
Barium (dissolved)	µg/L	1000	29000	-	305		352		591		469		530
Beryllium (dissolved)	µg/L		67	<	0.50		0.012		800.0		0.007		0.008
Boron (dissolved)	µg/L	5000	45000		300		501		1360		2810		2085
Bismuth (dissolved)	µg/L			<	1.0		0.024		0.018	<	0.010		0.014
Calcium (dissolved)	µg/L				450000		544500		770000		549000		659500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.007		0.006		0.011		0.009
Cobalt (dissolved)	µg/L		66		15		16.7		32.1		25.1		28.6
Chromium (dissolved)	µg/L		810	<	5.0		0.33		0.63		0.48		0.56
Copper (dissolved)	µg/L	1000	87	<	1.0		1.7		0.3		0.3		0.3
Iron (dissolved)	µg/L				48500		47150		76400		61500		68950
Potassium (dissolved)	µg/L				2050		2365		2880		2280		2580
Magnesium (dissolved)	µg/L				41500		38150		55900		42000		48950
Manganese (dissolved)	µg/L				4150		4900		6890		4390		5640
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.36		0.32		0.38		0.35
Sodium (dissolved)	µg/L				525000		715500		878000		699000		788500
Nickel (dissolved)	µg/L		490		4.3		5.8		10.3		8.1		9.2
Phosphorus (total)	µg/L				23		7		3		11		7
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01		0.02	<	0.09	<	0.06
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.21		0.12		0.14		0.13
Tin (dissolved)	µg/L			<	1.0		0.13		0.14		0.19		0.17
Strontium (dissolved)	µg/L				1010		1355		2000		1440		1720
Titanium (dissolved)	µg/L			<	5.0		0.34		0.34		0.33		0.34
Thallium (dissolved)	µg/L		510	<	0.05	<	0.005	<	0.005		0.005		0.005
Uranium (dissolved)	µg/L	20	420		30		40		80		54		67
Vanadium (dissolved)	µg/L		250	<	0.50		0.39		0.42		0.42		0.42
Zinc (dissolved)	µg/L		1100	<	5.0		3		2	<	2		2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.04		0.03
Radium-226	Bq/L	0.49		<	0.04		0.03		0.05		0.04		0.05
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		31.9		38.8		
ORP	mV				_1		_1		-61.9		-49.2		
SPC	us/cm				_1		-1		63.8		6477		
Temperature	°C				-1		-1		10.918		12.123		
Turbidity	FNU				-1		-1		26.34		14.42		
	L haite				1		1		0.50		0.50		

Table 108: PH-90-4-III

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

		Unit	eria						PH-90-6-				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac	ie	20	21/03/31	20	021/12/03		Average
nH	nH	6 5-8 5	65-90		7 69	1	7 65		7.39		7 53	-	7 46
Alkalinity	mg/Las CaCO.	0.0 0.0	0.0 5.0		155		165	-	160		166	-	163
Carbonate	mg/L as CaCO			-	1 1	~	1.0	~	100	~	1.0	~	1.0
	mg/L as CaCO ₃				1.1	<u> </u>	1.0	`	1.0	'	1.0	<u>`</u>	1.0
Bicarbonate	mg/L as CaCO ₃				150		0105		160		100		103
Total Dissolved Solids	mg/L				2960		3105		3240		3270		3255
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				0.7		1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.6		1.0	<	1.0	<	1.0	<	1.0
Total Ammonia-N	mg/l				0.10		0.07		0.05		0.10		0.08
Chloride	mg/L				1750		1800		1900		2100		2000
Sulphate	mg/L				36		38		38		40		39
Bromide	mg/L				3		2	<	0.3	۷	0.3	<	0.3
Nitrite (N)	ma/L			<	0.010	<	0.300	<	0.30	<	0.30	<	0.30
Nitrate (N)	ma/l			<	0.10		0.33	<	0.06		0.10		0.08
Nitrate + Nitrite (N)	mg/L			<	0.10		0.33	<	0.30	<	0.30	<	0.30
Mercury (dissolved)	ug/l	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardpass (dissolved)	µg/∟ mg/L as CaCO	-	0.23	-	1200	È	1195	<u> </u>	1510	-	1160	È	1225
Cityon (dissolved)	IIIg/L as CaCO ₃		4.5		1200	_	0.4		0.05		0.05	_	0.05
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5	<	1	<	1		2		2
Arsenic (dissolved)	µg/L	25	1900	<	1.0		0.8		0.6		0.4		0.5
Barium (dissolved)	µg/L	1000	29000		575		551		631		507		569
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		17		20		64		20		42
Bismuth (dissolved)	µg/L			<	1.0		0.011		0.019	<	0.010		0.015
Calcium (dissolved)	µg/L				300000		319500		397000		319000		358000
Cadmium (dissolved)	µg/L	5	2.7	<	0.1	<	0.003	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L		66	<	1		0.255		0.610		0.243		0.427
Chromium (dissolved)	ua/L		810	<	5.0		1.0		0.68		0.20		0.44
Copper (dissolved)	ug/l	1000	87	<	10		0.2	<	0.2	<	0.2	<	0.2
Iron (dissolved)	ug/L	1000		-	1500		1510		2220	-	1390	-	1805
Potassium (dissolved)	µg/L				4150		4555		5810		/180		/005
Magnasium (dissolved)	µg/L				105000		4000		110000		100000		100000
Magnesium (dissolved)	µg/L				103000		46.2		E4 2		44.0		103000
Mahuk darawa (dissolved)	µg/L		0000	-	40.5	-	40.3		0.44		44.9		49.0
Wolybdenum (dissolved)	µg/L		9200	<	0.50		0.32		0.44		0.40		0.45
Sodium (dissolved)	µg/L				620000		635000		816000		715000		765500
Nickel (dissolved)	µg/L		490	<	1.0		0.3		0.2		0.2		0.2
Phosphorus (total)	µg/L				16		7		8	<	3		6
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	۷	2.0		0.1	<	0.04	۷	0.04	<	0.04
Tin (dissolved)	µg/L			<	1.0		0.4	<	0.06		0.19		0.13
Strontium (dissolved)	µg/L				1700		1770		2150		1760		1955
Titanium (dissolved)	µg/L			<	5.0		0.1	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	ua/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ua/L	20	420		1		1		1.3		1.55		1.45
Vanadium (dissolved)	ug/l		250	<	0.50		0.25		0.10		0.30		0.20
Zinc (dissolved)	ug/l		1100	<	5.0	<	2.0		3		9		6
Lead-210	Ba/l	0.20	1100	~	0.0	~	0.02	~	0.02		0.02		0.02
Padium 226	Bq/L Bg/l	0.20		-	0.10	<u> </u>	0.02	<u>`</u>	0.02		0.02		0.02
Thorium 220	Dq/L	0.49		È	0.04	-	0.03		0.01	-	0.02		0.02
The arium 020	Dy/L	0.65		<	0.07	<	0.02	Ś	0.02	<	0.02	Ś	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters					1	L	1	_					
ODO % Sat	mg/L				-		-'		87.0		52.8		
ORP	mV				-'		-1		-26.0		-1.8		
SPC	us/cm				-1		-1		5382.0		5796.4		
Temperature	°C				_ ¹		-1		9.417		9.299		
Turbidity	FNU				-1		-1		33.64		43.26		
pH	Units				_1		_1		7.50		7.41		

Table 109: PH-90-6-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Field parameters included for current sampling year only.

Table 110: PH-90-6-II

		Crit	eria					F	PH-90-6-II				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/31	20	21/12/03	A	verage
pH	pН	6.5-8.5	6.5-9.0		7.55	Ē	7.41		7.24		7.60		7.42
Alkalinity	mg/L as CaCO ₃				765		456		341		314		328
Carbonate	mg/L as CaCO ₃				3.5	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				765		456		341		314		328
Total Dissolved Solids	mg/L				880		667		560		514		537
Fluoride	mg/L	1.5			0.11		0.13		0.11		0.11		0.11
Total Organic Carbon	mg/L				20		8		2		2		2
Dissolved Organic Carbon	mg/L				20		7		2		2		2
Total Ammonia-N	mg/l				44		20		9.5		2.7		6.1
Chloride	mg/L				133		115		160		130		145
Sulphate	mg/L				14		28		41		41		41
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	۷	0.10	<	0.01	۷	0.01	۷	0.01	۷	0.01
Hardness (dissolved)	mg/L as CaCO ₃				540		431		492		401		447
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	۷	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5.0	<	1.0	<	1		1		1
Arsenic (dissolved)	µg/L	25	1900		9.9		10.4		15.1		11.2		13.2
Barium (dissolved)	µg/L	1000	29000		910		477		382		230		306
Beryllium (dissolved)	µg/L		67	۷	0.50	<	0.01	۷	0.007	۷	0.007	۷	0.007
Boron (dissolved)	µg/L	5000	45000		605		140		75		125		100
Bismuth (dissolved)	µg/L			۷	1.0	<	0.007	۷	0.007	۷	0.010		0.009
Calcium (dissolved)	µg/L				140000		125000		137000		112000		124500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1	<	0.003	<	0.003		0.003		0.003
Cobalt (dissolved)	µg/L		66		1.22		0.38		0.230		0.093		0.162
Chromium (dissolved)	µg/L		810	۷	5.0		0.3		0.36		0.24		0.30
Copper (dissolved)	µg/L	1000	87	<	1.0	<	0.2		1.1	<	0.2		0.7
Iron (dissolved)	µg/L				13700		10320		7240		6150		6695
Potassium (dissolved)	µg/L				35500		16250		9590		3420		6505
Magnesium (dissolved)	µg/L				49000		40150		36300		30500		33400
Manganese (dissolved)	µg/L				235		219		169		171		170
Molybdenum (dissolved)	µg/L		9200		0.50		0.47		0.91		0.84		0.88
Sodium (dissolved)	µg/L				109000		53150		58300		53400		55850
Nickel (dissolved)	µg/L		490		12.6		3.7		0.9		0.6		0.8
Phosphorus (total)	µg/L				255		18		11	<	3		7
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01		0.04	<	0.09		0.07
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.1	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L			<	1.0		0.5		0.08	<	0.06		0.07
Strontium (dissolved)	µg/L				745		544		435		355		395
Titanium (dissolved)	µg/L			<	5.0		0.1		0.11		0.19		0.15
Thallium (dissolved)	µg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	<	0.1		0.1		0.1		0.04		0.05
Vanadium (dissolved)	µg/L		250	<	0.61		0.24		0.12		0.23		0.18
Zinc (dissolved)	µg/L		1100	<	5.0	<	2.0	<	2		3		3
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.04		0.05		0.03	<	0.01		0.02
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				_	1		1				= 0 =	_	
ODO % Sat	mg/L			-	-'	L	-'		53.3		58.5		
OKP	mV			-	-'	L	-'		-95.0		-72		
SPC	us/cm			_	-'		-'		1046.0		490.3		
	<u>~С</u>			-	-'		-'		9.641		9.265	_	
Turbidity	FNU			_	-'		-'		919.33		10.39		
рН	Units		5 /		-		-'		7.25		7.19	L .	
COPC = Contaminants of F	-otential Concern	criteria for	Potable G	rou	Indwater (Con	ations d	erive	ed from Po	ort F	tope Scree	enin	g Report.
Table 3 = Full Depth Gene	ric Site Condition	Standards	in a Non-F	ota	able Grou	ind	water Co	ondi	tion, Onta	rio I	vinistry of	the	
Environment and Climate C	Change, 2011.												

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

6.86

681

681

1.0

Analysis

Alkalinity

Carbonate

Bicarbonate

pН

Criteria PH-90-6-III Table 3 2019 2020 2021 COPC Average Units (MECP) 2021/03/31 2021/12/03 Average 6.99 7.16 6.74 6.5-8.5 6.97 pН 6.5-9.0 mg/L as CaCO3 485 498 768 594 mg/L as CaCO3 1.0 1.0 1.0 1.0 ~ mg/L as CaCO₃ 485 498 768 594

Total Dissolved Solids	mg/L				535		586		840		585		713
Fluoride	mg/L	1.5			0.52		0.63		0.53		0.50		0.52
Total Organic Carbon	mg/L				13		6		11		6		9
Dissolved Organic Carbon	mg/L				5		6		11		6		9
Total Ammonia-N	mg/l				13.5		10.5		27.4		13.2		20.3
Chloride	mg/L				48		56		84		57		71
Sulphate	mg/L				1.2		0.9		1.3		0.5		0.9
Bromide	mg/L			۷	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.12	<	0.06		0.09	<	0.06		0.08
Nitrate + Nitrite (N)	mg/L				0.12	<	0.06		0.09	<	0.06		0.08
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				440		494		797		517		657
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L				9.2		5.0	<	1		5		3
Arsenic (dissolved)	µg/L	25	1900		6.6		7.8		7.5		6.3		6.9
Barium (dissolved)	µg/L	1000	29000		660		583		1580		941		1261
Bervllium (dissolved)	ua/L		67	<	0.50		0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µa/L	5000	45000		545		506		1200		669		935
Bismuth (dissolved)	µa/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µa/L				155000		180000		270000		193000		231500
Cadmium (dissolved)	µa/L	5	2.7	<	0.1	<	0.003	<	0.003		0.008		0.006
Cobalt (dissolved)	ua/L		66		0.80		0.89		2.10		1.12		1.61
Chromium (dissolved)	ug/l		810	<	5.0		12		2 10		1 24		1.67
Copper (dissolved)	ug/l	1000	87	<	1.0		0.2	_	0.5	<	0.2		0.4
Iron (dissolved)	ug/l	1000			29500		29250		45500		39300		42400
Potassium (dissolved)	ug/l				9850		10175		17700		12500		15100
Magnesium (dissolved)	ug/l				10950		11750		22700		15300		19000
Manganese (dissolved)	ua/L				515		552		847		650		749
Molybdenum (dissolved)	ua/L		9200	<	0.50		0.13		0.18		0.16		0.17
Sodium (dissolved)	ua/L				31500		32800		56100		51300	-	53700
Nickel (dissolved)	ug/l		490	<	10		1.0	_	23		10		17
Phosphorus (total)	ug/l				285		218		145		233		189
Lead (dissolved)	ua/L	10	25	<	0.50		0.03		0.01	<	0.09		0.05
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	ua/L	10	63	<	2.0		0.1		0.13		0.09		0.11
Tin (dissolved)	ug/l			<	1.0		0.3		0.68		0.33		0.51
Strontium (dissolved)	ug/l				340		421		690		516		603
Titanium (dissolved)	ug/l			<	5.0		0.6	_	0.54		0.36		0.45
Thallium (dissolved)	ug/l		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ug/l	20	420	-	0.5		0.8		1.9		17		1.8
Vanadium (dissolved)	ug/l		250		0.70		0.86		1.0		12		1.3
Zinc (dissolved)	ua/L		1100	<	5.0	t	3.0		2		2		2
Lead-210	Ba/L	0.20		<	0.10		0.02	<	0.02		0.02		0.02
Radium-226	Bq/L Bg/l	0.49			0.08		0.07		0.04		0.14		0.09
Thorium-230	Bq/L Bg/l	0.45		<	0.07	<	0.02	<	0.02	<	0.02	<	0.00
Thorium-232	Bq/L Bg/l	0.05		<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	Dq/L			-	0.00	-	0.02		0.02	-	0.02		0.02
ODO % Sat	ma/l				_1		_1		39.1		66		
ORP	mV				_1		_1		-86.7		-48.6		
SPC	us/cm				_1		_1		949.0		644.8		
Temperature	°C				_1		_1		10.308		9 147		
Turbidity	FNU				1		1		79.87		35.7		
nH	Linite				_1		_1		6.88		6.95	-	
COPC - Contominants of I	Potential Concern	critoria fa	Potabla C	rou	-	- Co-	- ditiona d	oriu	ed from D	ort L	Jone Soro	onin	
COFC - Contaminants of P	otential Concern	cineria ior	Gable G	100	nuwaler	COL	anuons a	env		ліг	iope scre	ະເທກ	y Report.

Table 111: PH-90-6-III

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Field parameters included for current sampling year only.

Table 112: PH-90-7-III

		Crit	eria					F	PH-90-7-III				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	raç	qe	20	21/03/22	20	21/11/11	A	verage
pH	pH	6.5-8.5	6.5-9.0		7.41	Ē	7.17		7.14		7.25		7.20
Alkalinity	mg/L as CaCO ₃				505		683		513		631		572
Carbonate	mg/L as CaCO ₃				1.3	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				505		683		513		631		572
Total Dissolved Solids	mg/L				1195		830		849		945		897
Fluoride	mg/L	1.5		<	0.10		0.09	<	0.06		0.07		0.07
Total Organic Carbon	mg/L				8		6		5		5		5
Dissolved Organic Carbon	mg/L				4		6		4		5		5
Total Ammonia-N	mg/l				0.08		0.04		0.04		0.07		0.06
Chloride	mg/L				395		185		200		270		235
Sulphate	mg/L				18		21		33		200		117
Bromide	mg/L				3.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.15	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L				0.15	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				755		4080		512		465		489
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5.0		10.5	<	1.0		4		3
Arsenic (dissolved)	µg/L	25	1900		32		51		31		24		28
Barium (dissolved)	µg/L	1000	29000		135		109		81.9		135		108
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		19		17		13		58		36
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				255000		199000		176000		163000		169500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.004		0.013		0.016		0.015
Cobalt (dissolved)	µg/L		66		1.60		1.57		2.80		3.64		3.22
Chromium (dissolved)	µg/L		810	<	5.0		0.5		0.19		0.33		0.26
Copper (dissolved)	µg/L	1000	87	<	1.0		0.5		0.8		0.5		0.7
Iron (dissolved)	µg/L				1700		1311		433		113		273
Potassium (dissolved)	µg/L				1055		1195		989		1420		1205
Magnesium (dissolved)	µg/L				28000		20050		17500		16200		16850
Manganese (dissolved)	µg/L				465		458		348		372.00		360
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.19		0.18		0.12		0.15
Sodium (dissolved)	µg/L				165000		139000		146000		161000		153500
Nickel (dissolved)	µg/L		490		1.2		0.9		1.0		1.5		1.3
Phosphorus (total)	µg/L				8300		6		4	<	3		4
Lead (dissolved)	µg/L	10	25	<	0.50		0.02		0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000		1.45		0.95	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.1		0.05		0.09		0.07
Tin (dissolved)	µg/L			<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L				435		342		323		328		326
Titanium (dissolved)	µg/L			<	5.0		0.5	<	0.05		2.48		1.27
Thallium (dissolved)	µg/L		510	<	0.05		0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		15		24		16		14		15
Vanadium (dissolved)	µg/L		250		1.34		0.90		0.22		0.41		0.32
Zinc (dissolved)	µg/L		1100	<	5.0	Ļ	3.0	<u> </u>	2	<	2	<u> </u>	2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		_	0.04	_	0.05	<u> </u>	0.02		0.05		0.04
Thorium-230	Bq/L	0.65		<	0.07	Ļ	0.05	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/∟			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				-	1	-	1		71 4		01.2		
ODO % Sal	mg/∟			_	-		1		/1.4		01.3		
ORP	mv				-		- 1		40.0		103.5		
SPC Temperature	us/cm			-	-	-	- 1	-	10.670		11 072		
Turbidity		'		-	-	-	-	-	10.079 E90.1E		710.9		
	FINU L laite	·		-	-	-	-	-	7 20		7 19.0		
CORC = Contominants of I	Office Concern	aritaria fa	r Databla C		-		- nditiona d	-	7.39 od from D	art L	7.15 Jana Sara	anin	
Toble 2 - Eull Dopth Cone	ria Sita Condition	Stondorde	Folable G	Potr	nuwaler (501	Mator C	enve ondi	tion Onto	rio	Ninistry of	Eriiri Stho	у кероп.
Finite S - Full Depth Gene	The Sile Condition	i Stanuarus	in a Nun-r	-016		mu	Waler Cl	Jinun	uon, Onta	101	viiriisii y Oi	uie	
Environment and Crimate C	mange, 2011.	0000 T											

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

PH-90-8-I Criteria COPC Table 3 2019 2020 2021 2021/03/25 2021/11/15 Analysis Units (MECP) Average Average 7 50 pН nН 6.5-8.5 6.5-9.0 7.64 7.71 743 7 57 Alkalinity mg/L as CaCO₃ 220 431 741 515 628 Carbonate mg/L as CaCO₃ 1.0 1.0 1.0 1.0 1.0 741 **Bicarbonate** mg/L as CaCO3 220 431 515 628 Total Dissolved Solids ng/L 1700 1730 1646 1580 1613 0.10 0.06 0.06 0.06 0.06 Fluoride 1.5 mg/L Total Organic Carbon mg/L 2 1 1 1 1 Dissolved Organic Carbon 1 1 1 1 1 ng/L Total Ammonia-N 0.09 0.04 0.04 0.06 0.05 mg/l Chloride mg/L 840 860 880 870 875 Sulphate 48 49 52 47 50 mg/L Bromide 5.5 0.3 0.3 0.3 0.3 mg/L Nitrite (N) mg/L 0.050 0.300 0.30 0.30 0.30 Nitrate (N) 0.55 0.58 0.44 0.60 0.52 mg/L 0.44 Nitrate + Nitrite (N) 0.60 0.58 0.60 0.52 mg/L Mercury (dissolved) µg/L 1 0.29 0.10 0.01 0.01 0.01 0.01 Hardness (dissolved) mg/L as CaCO₃ 725 1460 724 795 760 Silver (dissolved) 1.5 0.1 0.1 0.05 0.05 0.05 µg/L Aluminum (dissolved) µg/L 5.0 3.5 98.0 1 50 Arsenic (dissolved) µg/L 25 1900 1.0 2.7 0.5 0.4 0.5 Barium (dissolved) 1000 29000 520 451 484 431 458 µg/L 0.50 0.01 0.007 0.007 0.007 Beryllium (dissolved) µg/L 67 Boron (dissolved) 5000 45000 27 47 32 40 µg/L 29 0.007 0.007 Bismuth (dissolved) 1.0 0.010 0.009 µg/L 213000 Calcium (dissolved) µq/L 205000 209500 193000 203000 Cadmium (dissolved) µg/L 5 2.7 0.1 0.0 0.003 0.003 0.003 Cobalt (dissolved) µg/L 66 0.5 0.2 0.291 0.270 0.281 Chromium (dissolved) 810 5.0 0.6 0.23 0.11 0.17 µg/L Copper (dissolved) µg/L 1000 87 1.0 0.4 0.2 0.2 0.2 Iron (dissolved) 575 418 307 238 273 µg/L 3350 3685 4050 3685 Potassium (dissolved) 3320 µg/L 54500 54050 Magnesium (dissolved) µg/L 46900 48400 47650 40 Manganese (dissolved) µg/L 36 35 40.00 40 0.57 0.51 1.27 0.89 Molvbdenum (dissolved) 9200 0.51 µg/L Sodium (dissolved) µg/L 280000 326500 320000 349000 334500 490 1.0 0.4 0.1 0.7 0.4 Nickel (dissolved) µg/L Phosphorus (total) µg/L 2100 10 3 3 3 0.50 0.01 0.01 0.05 Lead (dissolved) µg/L 10 25 0.09 Antimony (dissolved) 0.5 0.9 0.90 0.90 0.90 µg/L 6 20000 2.0 0.05 0.04 0.05 Selenium (dissolved) µg/L 10 63 0.0 Tin (dissolved) µg/L 10 01 0.07 0.06 0.07 Strontium (dissolved) µg/L 835 848 837 692 765 Titanium (dissolved) 5.0 0.2 0.06 0.27 0.17 µg/L 510 0.05 0.01 0.005 0.005 0.005 Thallium (dissolved) µg/L Uranium (dissolved) 20 420 27 36 41 34 38 µg/L Vanadium (dissolved) µg/L 0.50 0.12 0.49 0.04 0.27 250 Zinc (dissolved) µg/L 1100 5.0 3.0 2 2 2 Lead-210 Bq/L 0.20 0.10 0.02 0.02 0.02 0.02 Radium-226 Bq/L 0.49 0.040 0.020 0.01 0.02 0.02 Thorium-230 0.65 0.070 0.020 0.02 Bq/L 0.02 0.02 Thorium-232 Bq/L 0.060 0.020 0.02 0.02 0.02 Field Parameters 47.1 34 ODO % Sat mg/L ---ORP mV 68.9 71.4 ---SPC us/cm 2516.0 2997 --_1 _1 10.672 °C 10.05 Temperature ---Turbidity FNU _1 2257.30 789.1 ---

Table 113: PH-90-8-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

7.06

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Units

---- No data.

pН

Table 114: PH-90-8-II

		Criteria			PH-90-8-II								
	COPC Table 3			2019		2020	2021						
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/25	20	21/11/15	Α	verage
Hq	рH	6.5-8.5	6.5-9.0		7.40	Г	7.25		7.58		7.22		7.40
Alkalinity	mo/L as CaCO₂				390		379		368		429		399
Carbonate	mg/L as CaCO ₂				1.1	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₂				390		379		368		429		399
Total Dissolved Solids	mg/L at babby			-	543		587		546		549		548
Fluoride	mg/L	15		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L	1.5		-	3		2		1		3	-	2
Dissolved Organic Carbon	mg/L				1		2		2		3		3
Total Ammonia N	mg/L				0.066		0.040	/	0.04	/	0.04	/	0.04
Chlorido	mg/l				42		66	`	76	`	12	-	60
Chionde	mg/L				43	-	00		10		40		10
Bramida	mg/L			/	14	-	23	/	9	-	29	/	19
	mg/L			` `	0.010	È	0.0	` `	0.02	` `	0.3	Ì	0.3
Nitrite (N)	rng/L			<	0.010	<	0.030	<	0.03	<	0.30		0.17
Nitrate (N)	rng/L				4.58	_	0.91		2.57		2.35		2.40
Nitrate + Nitrite (N)	mg/L				4.58		6.91		2.57		2.35		2.46
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01		0.01		0.01
Hardness (dissolved)	mg/L as $CaCO_3$				475		526		472		482		4//
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5.0		3.5		114		5		60
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	0.2		0.2	<	0.2		0.2
Barium (dissolved)	µg/L	1000	29000		63		70		75		73		74
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		44		44		37		39		38
Bismuth (dissolved)	µg/L			<	1.0		0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				165000		183500		168000		165000		166500
Cadmium (dissolved)	µg/L	5	2.7	۷	0.1	<	0.0	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	µg/L		66	۷	0.50		0.16		0.062		0.152		0.107
Chromium (dissolved)	µg/L		810	۷	5.0		0.6		0.34		0.33		0.34
Copper (dissolved)	µg/L	1000	87	۷	1.0		0.8	۷	0.2		0.5		0.4
Iron (dissolved)	µg/L			۷	100		15		8		9		9
Potassium (dissolved)	µg/L				5950		6630		6600		6860		6730
Magnesium (dissolved)	µg/L				15000		16450		12600		15000		13800
Manganese (dissolved)	µg/L				2.0		7.9		2.71		8.61		5.7
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.07		0.54		0.05		0.30
Sodium (dissolved)	µg/L				7250		10250		15800		25800		20800
Nickel (dissolved)	µg/L		490	<	1.0		0.3	<	0.10		0.30		0.2
Phosphorus (total)	µg/L				51		7	<	3		6		5
Lead (dissolved)	ua/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	ua/L	10	63	<	2.0		0.5		0.52		0.53		0.53
Tin (dissolved)	ua/L			<	1.0	<	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	ug/l				290		352		325		318		322
Titanium (dissolved)	ug/l			<	5.0		0.3	<	0.05		0.25		0.15
Thallium (dissolved)	ug/l		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	ug/l	20	420		5		5		21		14	-	17
Vanadium (dissolved)	µg/=		250	<	0.50		0.18		0.70		0.07		0.39
Zinc (dissolved)	ug/L		1100	<	5.0		3.0	<	2	<	2	<	2
Lead-210	Ba/l	0.20	1100	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L Bg/l	0.49		<	0.10	<	0.010	<	0.02	<	0.02	~	0.02
Thorium-230	Bq/L	0.45		< <	0.040	Ì.	0.020	<	0.07	<	0.07	<	0.07
Thorium 232	Bq/L Bg/l	0.05		~	0.060	2	0.020	~	0.02	~	0.02	2	0.02
Field Parameters				È	0.000	È	0.020	È	0.02	È	0.02	È	0.02
	ma/l				1		_1		68.6		61.2		
	my/L				-		-		12.9		102.0		
	uo/om				-		-		42.0		027.0		
Joru Temperatura	us/cm				-		-		979.0		927.0		
Turbidite					-'		-		10.150		10.8	-	
	FINU				-'		-'		68.79		22.4	-	
		a site i d	Defet 1		-		-		1.33	. , , ,	6.94		
Table 2 - Cult Danth Care	-olential Concern	Standarda	in a Nor	rou	nawater i	uor.	Motor C	erive	tion Orto	nt H	Ainiotry -	ening	ς κεροπ.

Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 115: PH-90-9-III

		Criteria			PH-90-9-III										
		COPC	Table 3		2019		2020				2021				
Analysis	Units		(MECP)		Ave	raq	ie	20	21/03/29	20	21/11/19	A	verage		
pH	рН	6.5-8.5	6.5-9.0		7.60	Ē	7.70		7.58		7.35		7.47		
Alkalinity	mg/L as CaCO₀				305		1337		767		1250		1009		
Carbonate	mg/L as CaCO				12		95.5	<	1.0	<	10	<	1.0		
Bicarbonate	mg/L as CaCO			_	305		1242		767		1250		1009		
Total Dissolved Solids	mg/L at babby				343		619		349		334		342		
Fluoride	mg/L	15		<	0.10		0.11	<	0.06		0.08		0.07		
Total Organic Carbon	mg/L	1.5		ì	/ 3		1.0	-	1		1		1		
Dissolved Organic Carbon	mg/L				4.5	_	1.0	/	1		1		1		
Total Ammonia N	mg/L			/	0.050		0.055	<u>`</u>	0.04		0.04		0.04		
Oblasida	mg/i			`	0.050		0.055	Ì	0.04		0.04		0.04		
Chioride	mg/L				3.0		4.7		5		4		4		
Sulphate	mg/L				17	_	17		16		17		1/		
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3		
Nitrite (N)	mg/L				0.013	<	0.030	<	0.03	<	0.03	<	0.03		
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06		
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06		
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01		
Hardness (dissolved)	mg/L as CaCO ₃				320		2935		9580		277		4929		
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05		
Aluminum (dissolved)	µg/L				6.1		17.5		6		2		4		
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	0.2	<	0.2		0.5		0.4		
Barium (dissolved)	µg/L	1000	29000		60		58		67		57		62		
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007		
Boron (dissolved)	µg/L	5000	45000		20		18		25		20		23		
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009		
Calcium (dissolved)	µg/L				96500		96200		116000		88500		102250		
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.0		0.003	<	0.003		0.003		
Cobalt (dissolved)	ua/L		66	<	0.50		0.04		0.042		0.291		0.167		
Chromium (dissolved)	ua/L		810	<	5.0		0.8		0.99		0.24		0.62		
Copper (dissolved)	ug/l	1000	87	<	10		0.5		0.8		0.2		0.5		
Iron (dissolved)	ug/l	1000		<	100		23		21	<	7		14		
Potassium (dissolved)	ug/l				710		693		814		700		757		
Magnesium (dissolved)	ug/L			-	19500		19300		21100		19200		20150		
Manganese (dissolved)	ug/L				9.1		1.6		16		10.3		6.0		
Molybdenum (dissolved)	µg/L		0200	~	0.50		0.14		0.18		0.23		0.0		
Sodium (dissolved)	µg/∟ ug/l		9200	È	5450	_	5115		6170		6510		6240		
Niekel (disselved)	µg/L		400	/	1.0	-	0.1		0.20		0.20		0.340		
Nickel (dissolved)	µg/L		490	Ì	0.050	È	0.1	/	0.20		0.30		0.25		
Priosphorus (total)	µg/L				9250	_	4	Ì	3		0		0		
Lead (dissolved)	µg/L	10	25	<	0.50	_	0.05		0.02	<	0.09		0.06		
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90		
Selenium (dissolved)	µg/L	10	63	<	2.0		0.2		0.20		0.18		0.19		
Tin (dissolved)	µg/L			<	1.0		0.1		80.0	<	0.06		0.07		
Strontium (dissolved)	µg/L				215		219		246		225		236		
Titanium (dissolved)	µg/L			<	5.0		0.9	_	0.44	<	0.05		0.25		
Thallium (dissolved)	µg/L		510	<	0.05		0.01	<	0.005	<	0.005	<	0.005		
Uranium (dissolved)	µg/L	20	420		2.8		2.9		3		3		3		
Vanadium (dissolved)	µg/L		250	<	0.50		0.36		0.36		0.46		0.41		
Zinc (dissolved)	µg/L		1100	<	5.0		4.0		2	<	2		2		
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02		
Radium-226	Bq/L	0.49		۷	0.040	<	0.010	۷	0.01	<	0.01	۷	0.01		
Thorium-230	Bq/L	0.65		<	0.070	<	0.020	<	0.02	<	0.02	<	0.02		
Thorium-232	Bq/L			<	0.060	<	0.020	<	0.02	<	0.02	<	0.02		
Field Parameters															
ODO % Sat	mg/L				-1		_1		71.5		77.7				
ORP	mV				_1		_1		141.7		131.0				
SPC	us/cm				_1		_1		597.0		579.0				
Temperature	°C				_1		_1		8.308		9.3				
Turbidity	FNU				_1		_1		4116.00		1473.4				
Hq	Units				_1		_1		7.49		7.23				
COPC = Contaminants of P	Potential Concern	criteria for	Potable G	rou	ndwater (Cor	nditions d	eriv	ed from Pr	ort H	lone Scre	enin	a Report		
Table 3 = Full Denth Gene	ric Site Condition	Standards	in a Non-F	Pota	ble Grou	ind	Water Co	ndi	tion Onte	rio I	Ainistry of	the	,,		
Factore and open Gene		Standardo		010	210 0100				, ond						

Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 116: PH-93-3-III

		Criteria						PH-93-3-III					
		COPC	Table 3		2019		2020			2021			
Analysis	Units		(MECP)		Ave	rag	е	2021/03/24	20	21/11/19	A	/erage	
pН	pН	6.5-8.5	6.5-9.0		7.70		7.35	No Sample ²		-3		-3	
Alkalinity	mg/L as CaCO3				370		352			-3		-3	
Carbonate	mg/L as CaCO ₃				1.7	<	1.0			-3		-3	
Bicarbonate	mg/L as CaCO ₃				370		352			-3		- ³	
Total Dissolved Solids	mg/L				440		374			-3		-3	
Fluoride	mg/L	1.5		<	0.10	<	0.06			-3		-3	
Total Organic Carbon	mg/L				1.3		1.0			- ³		-3	
Dissolved Organic Carbon	mg/L				1.2		1.0			- ³		-3	
Total Ammonia-N	mg/l				0.54		2.90			-3		-3	
Chloride	mg/L				12		29			-3		-3	
Sulphate	mg/L				3.7		3.9			-3		- ³	
Bromide	mg/L			<	1.0	<	0.3			- ³		- ³	
Nitrite (N)	mg/L				0.166		0.080			-3		-3	
Nitrate (N)	mg/L				2.22		1.61			-3		-3	
Nitrate + Nitrite (N)	mg/L				2.39		1.69			- ³		-3	
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		<	0.01	<	0.01	
Hardness (dissolved)	mg/L as CaCO ₃				360		425			-3		-3	
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1		<	0.05	<	0.05	
Aluminum (dissolved)	µg/L			<	5		6			4		4	
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	0.2		<	0.2	<	0.2	
Barium (dissolved)	µg/L	1000	29000		45		52			48.6		48.6	
Bervllium (dissolved)	ua/L		67	<	0.50	<	0.01		<	0.007	<	0.007	
Boron (dissolved)	ua/L	5000	45000		250		243			71		71	
Bismuth (dissolved)	ua/L			<	1.0	<	0.0		<	0.010	<	0.010	
Calcium (dissolved)	ua/L				130000		129000			89500		89500	
Cadmium (dissolved)	ua/L	5	2.7	<	0.1	<	0.0		<	0.003	<	0.003	
Cobalt (dissolved)	ua/L		66	<	0.50		0.18			0.099		0.099	
Chromium (dissolved)	ua/L		810	<	5.0		0.3			0.22		0.22	
Copper (dissolved)	ua/L	1000	87	<	1.0		0.5			0.6		0.6	
Iron (dissolved)	µg/L			<	100		12		<	7	<	7	
Potassium (dissolved)	ua/L				3800		5420			4960		4960	
Magnesium (dissolved)	ua/L				10000		10400			9020		9020	
Manganese (dissolved)	ua/L			<	2		4			0.28		0.28	
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.06			0.14		0.14	
Sodium (dissolved)	ua/L				12000		10800			4910		4910	
Nickel (dissolved)	ua/L		490	<	1.0		0.1			0.30		0.30	
Phosphorus (total)	ua/L				33		8			6		6	
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01		<	0.09	<	0.09	
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90		<	0.90	<	0.90	
Selenium (dissolved)	ua/L	10	63	<	2.0		0.4			0.33		0.33	
Tin (dissolved)	ua/L			<	1.0		0.1		<	0.06	<	0.06	
Strontium (dissolved)	µg/L				230		226			178		178	
Titanium (dissolved)	µg/L			<	5.0		0.6			0.09		0.09	
Thallium (dissolved)	ua/L		510	<	0.05	<	0.01		<	0.005	<	0.005	
Uranium (dissolved)	ua/L	20	420		9		9			37		37	
Vanadium (dissolved)	µg/L		250		0.56		0.53			0.73		0.73	
Zinc (dissolved)	µg/L		1100	<	5.0	<	2.0		<	2	<	2	
Lead-210	Ba/L	0.20		<	0.10	<	0.02		<	0.06	<	0.06	
Radium-226	Bq/L	0.49		<	0.040	<	0.010		<	0.01	<	0.01	
Thorium-230	Ba/L	0.65		<	0.070	<	0.020		<	0.02	<	0.02	
Thorium-232	Ba/L			<	0.060	<	0.020		<	0.02	<	0.02	
Field Parameters													
ODO % Sat	ma/L				_1		_1			67.7			
ORP	mV				_1		_1			89.9			
SPC	us/cm				_1		_1			568			
Temperature	°C				_1		_1			10.664			
Turbidity	FNU				_1		_1			27.87			
рН	Units				_1		_1			7.23			
COPC = Contominants of P	Potential Concorn	aritaria for	Potoblo C	rou	ndurator C	and	itiona dori	und from Port	Lon	o Saraani	na l	Poport	

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Field parameters included for current sampling year only.

² Insufficient volume of groundwater for sample collection

Insufficient volume of groundwater for full sample collection
		Crit	eria					PH-93-6-I					
		COPC	Table 3	Table 3 2019 2020 2021									
Analysis	Units		(MECP)		Ave	rag	je	20	21/03/25	20	021/11/12	Α	verage
pH	pН	6.5-8.5	6.5-9.0		7.89	Ē	7.61		7.78		7.49		7.64
Alkalinity	mg/L as CaCO ₃				290		286		260		582		421
Carbonate	mg/L as CaCO ₃				2.6	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				290		286		260		582		421
Total Dissolved Solids	mg/L				1635		1457		1720		1351		1536
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				6		2		2		2		2
Dissolved Organic Carbon	mg/L				6		2		2		2		2
Total Ammonia-N	mg/l				23.6		0.57		0.16		0.19		0.18
Chloride	mg/L				795		800		840		570		705
Sulphate	mg/L				37.5		34.0		38		29		34
Bromide	mg/L			<	5.5	<	0.3	<	0.3		0.3		0.3
Nitrite (N)	ma/L				0.041		0.530	<	0.30	<	0.03		0.17
Nitrate (N)	ma/L				1.46		0.70		1.19		1.42		1.31
Nitrate + Nitrite (N)	ma/L				1.50		1.21		1.19	1	1.42		1.31
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				520		668		609		1830		1220
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L				5.1		2.0	<	1		32		17
Arsenic (dissolved)	µg/L	25	1900		1.4		0.7		0.4		0.5		0.5
Barium (dissolved)	µg/L	1000	29000		320		334		413		348		381
Beryllium (dissolved)	µg/L		67	<	0.50		0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000	1	47		87		38		104		71
Bismuth (dissolved)	µg/L			<	1.0	<	0.0	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				145000		175000		183000		198000		190500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.0		0.081		0.068		0.075
Cobalt (dissolved)	µg/L		66		0.71		1.10		0.868		0.871		0.870
Chromium (dissolved)	µg/L		810	<	5.0		0.4		0.22		0.45		0.34
Copper (dissolved)	µg/L	1000	87	<	1.0		0.8		0.4		1.1		0.8
Iron (dissolved)	µg/L				225		120		11		71		41
Potassium (dissolved)	µg/L				36500		4805		4530		4750		4640
Magnesium (dissolved)	µg/L				39500		37700		36800		43800		40300
Manganese (dissolved)	µg/L				400		665		506		532		519
Molybdenum (dissolved)	µg/L		9200		0.67		0.45		0.59		0.40		0.50
Sodium (dissolved)	µg/L				335000		298500		335000		266000		300500
Nickel (dissolved)	µg/L		490		2.0		2.1		0.8		2.6		1.7
Phosphorus (total)	µg/L				605		32		20		45		33
Lead (dissolved)	µg/L	10	25	<	0.50		0.02		0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0	_	0.4		0.38		0.40		0.39
Tin (dissolved)	µg/L			<	1.0	-	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L			_	535	-	612		705	-	8/4		790
Thanium (dissolved)	µg/L		540	<	5.0	-	0.1		0.06	-	2.10		1.11
Inallium (dissolved)	µg/L	20	510	<	0.05	-	0.01		0.008	-	0.022		0.015
Vranium (dissolved)	µg/L	20	420	_	2	-	2		2	-	2		2
Zine (dissolved)	µg/L		250		0.73	-	0.53		0.50	-	0.00		0.58
Zinc (dissolved)	µg/L Ba/l	0.20	1100	_	0.10	_	43	/	20	-	0.02	/	19
Reduum 226	Bq/L Bg/l	0.20			0.10	È	0.02	-	0.02		0.02	-	0.02
Thorium-230	Bq/L	0.49		Ì	0.040	<	0.020	è.	0.01	Ì	0.01	è.	0.01
Thorium-232	Bq/L	0.05		` ~	0.060	· ·	0.020	<	0.02	~	0.02	~	0.02
Field Parameters				È	0.000	È	0.020	È	0.02	È	0.02	È	0.02
ODO % Sat	ma/l				_1		_1		43.4		39.5		
ORP	mV				_1	F	_1		79.5		105.7		
SPC	us/cm				_1		_1		2549.0		2353.0		
Temperature	°C				_1		_1		12,208		10.6		
Turbidity	FNU				_1		_1		14.34		2264.4		
рН	Units			1	_1		_1		7 73		7.08		

Table 117: PH-93-6-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Criteria PH-93-6-II COPC Table 3 2019 2020 2021 Units Average 2021/03/25 2021/11/12 Average Analysis (MECP) 7.51 6.5-8.5 7.37 7.30 pН pН 6.5-9.0 7.22 7.37 Alkalinity mg/L as CaCO3 525 428 369 581 475 1.0 1.0 Carbonate mg/L as CaCO3 1.2 1.0 1.0 mg/L as CaCO₃ 520 581 475 Bicarbonate 428 369 Total Dissolved Solids mg/L 598 472 680 694 687 Fluoride 1.5 0.10 0.06 0.06 0.06 0.06 mg/L Total Organic Carbon 13 3 4 4 4 mq/L Dissolved Organic Carbon 4 3 4 4 4 mg/L Total Ammonia-N 1.53 0.07 0.04 0.05 0.05 mg/l Chloride 10 30 25 28 mg/L 8 15.0 Sulphate 20.5 19 mg/L 32 26 Bromide mg/L 1.0 0.3 0.5 0.3 0.4 Nitrite (N) 0.053 0.030 0.03 0.03 0.03 mg/L Nitrate (N) 0.41 1.34 0.45 5.58 3.02 mq/L Nitrate + Nitrite (N) 0.46 0.45 5.58 3.02 mg/L 1.34 Mercury (dissolved) µg/L 1 0.29 0.10 0.02 0.01 0.01 0.01 mg/L as CaCO3 516 Hardness (dissolved) 570 676 658 667 Silver (dissolved) 1.5 0.1 0.1 0.05 0.05 0.05 μg/L Aluminum (dissolved) µg/L 8.0 3.0 1 1 1 Arsenic (dissolved) 25 1900 1.0 0.4 0.2 0.2 0.2 µg/L Barium (dissolved) µq/L 1000 29000 58 50 75 90 82 0.50 0.01 0.007 0.007 0.007 Bervllium (dissolved) µg/L 67 5000 Boron (dissolved) µg/L 45000 26 45 26 71 49 Bismuth (dissolved) 1.0 0.0 0.007 0.010 0.009 µg/L Calcium (dissolved) 200000 181000 254000 256000 255000 µg/L Cadmium (dissolved) µg/L 5 2.7 0.1 0.0 0.003 0.004 0.004 Cobalt (dissolved) 1.00 0.38 0.519 0.675 0.597 µg/L 66 Chromium (dissolved) 810 5.0 0.1 0.08 0.28 0.18 µq/L 1000 2.6 1.0 1.2 1.0 Copper (dissolved) µg/L 87 0.8 1500 Iron (dissolved) µg/L 202 74 92 83 Potassium (dissolved) µg/L 3350 2935 4030 3470 3750 16000 12265 10100 13900 12000 Magnesium (dissolved) µg/L Manganese (dissolved) µg/L 211 213 398 329 364 Molybdenum (dissolved) µg/L 9200 0.50 0.13 0.18 0.10 0.14 5850 6380 4560 10800 7680 Sodium (dissolved) µq/L Nickel (dissolved) 490 1.2 1.5 1.2 0.8 0.8 µg/L Phosphorus (total) µg/L 1028 38 20 18 19 10 25 0.50 0.02 0.01 0.09 0.05 Lead (dissolved) µg/L 0.50 0.90 0.90 0.90 0.90 Antimony (dissolved) 6 20000 µq/L Selenium (dissolved) µg/L 10 63 2.0 0.2 0.11 0.14 0.13 Tin (dissolved) 1.0 0.1 0.06 0.06 0.06 µg/L Strontium (dissolved) 350 297 360 469 415 µq/L 0.18 Titanium (dissolved) µg/L 5.0 0.2 0.15 0.20 Thallium (dissolved) µg/L 510 0.05 0.01 0.005 0.005 0.005 20 420 13 36 81 59 Uranium (dissolved) µg/L 38 0.50 0.27 0.11 0.64 0.38 Vanadium (dissolved) 250 µg/L Zinc (dissolved) µg/L 1100 5 3 4 3 4 Lead-210 Bq/L 0.20 0.10 0.02 0.02 0.02 0.02 Radium-226 0.040 0.010 0.01 0.02 0.02 Bq/L 0.49 Thorium-230 0.65 0.070 0.020 0.02 0.02 0.02 Ba/L Thorium-232 Bq/L 0.060 0.020 0.02 0.02 0.02 Field Parameters ODO % Sat _1 44.4 68.6 mg/L ---ORP mV _1 712 92.5 ---1 SPC us/cm 653.0 1156.0 _1 _1 10.806 Temperature °C 11.0 ---Turbidity FNU 4.56 12.7 1 Inits 6 97 7 04 pН

Table 118: PH-93-6-II

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Field parameters included for current sampling year only.

--Nodata

		Crit	teria					PH-93-9-I					
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	le	20	21/03/30	20)21/10/28	A	verage
рН	pН	6.5-8.5	6.5-9.0		7.26		7.08		7.26		6.92		7.09
Alkalinity	mg/L as CaCO ₃				600		604		614		718		666
Carbonate	mg/L as CaCO ₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				600		604		614		718		666
Total Dissolved Solids	mg/L				905		863		966		997		982
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				6		6		5		7		6
Dissolved Organic Carbon	mg/L				6		6		5		7		6
Total Ammonia-N	mg/l				11.0		11.5		13.8		16.4		15.1
Chloride	mg/L				175		160		190		140		165
Sulphate	mg/L				34.5		34		42		67		55
Bromide	mg/L				1.2		0.30		0.3		0.4		0.4
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.43	<	0.09	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L				0.43	<	0.09		0.06	<	0.06		0.06
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃				645		799		799		689		744
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L				12.5		1.0		22	<	1		12
Arsenic (dissolved)	µg/L	25	1900		1.4		0.6		0.5		0.6		0.6
Barium (dissolved)	µg/L	1000	29000		180		166		203		241		222
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.007		0.008	<	0.007		0.008
Boron (dissolved)	µg/L	5000	45000		1100		949		1030		1540		1285
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				185000		192000		189000		206000		197500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.005		0.007	<	0.003		0.005
Cobalt (dissolved)	µg/L		66		2.35		2.7		3.000		2.880		2.940
Chromium (dissolved)	µg/L		810	<	5.0		0.38		0.50		0.55		0.53
Copper (dissolved)	µg/L	1000	87		3.6		4.3		4.3		2.9		3.6
Iron (dissolved)	µg/L				115		69		172		65		119
Potassium (dissolved)	µg/L				21000		22250		24000		37600		30800
Magnesium (dissolved)	µg/L				43000		41450		49300		42100		45700
Manganese (dissolved)	µg/L				390		479		465		607		536
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.24		0.27		0.23		0.25
Sodium (dissolved)	µg/L				87000		80300		91600		73000		82300
Nickel (dissolved)	µg/L		490		7.7		8.9		9.4		7.6		8.5
Phosphorus (total)	µg/L				102		14		7		12		10
Lead (dissolved)	µg/L	10	25	<	0.50		0.03		0.41	<	0.09		0.25
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.2		0.17		0.34		0.26
Tin (dissolved)	µg/L			<	1.0		0.3		0.21		0.57		0.39
Strontium (dissolved)	µg/L				745		830		918		954		936
Titanium (dissolved)	µg/L			<	5.0		0.1		0.22		0.12		0.17
Thallium (dissolved)	µg/L		510	<	0.05	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		2200		2075		3600		10700		7150
Vanadium (dissolved)	µg/L		250	<	0.50		0.33		0.63		0.33		0.48
Zinc (dissolved)	µg/L		1100	<	17.0		5		3	<	2		3
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.74		0.38
Radium-226	Bq/L	0.49		<	0.040		0.02		0.02		0.02		0.02
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				-1		-1		34.4		23.0		
ORP	mV				-1		_1		134.2		140.8		
SPC	us/cm				-1		-1		786.0		1752.0		
Temperature	°C				-1		-1		10.230		11.1		
Turbidity	FNU				_1		-1		99.52		1.7		
n Ll	I Inite				1		1		6.02	1	6 72		

Table 119: PH-93-9-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 120: PH-93-9-II

		Crit	eria PH-93-9-II										
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	е	20	21/03/30	20	21/10/28	Α	verage
рН	pН	6.5-8.5	6.5-9.0		7.51	Ľ	7.33		7.67		7.28		7.48
Alkalinity	mɑ/L as CaCO₃				390		413		368		346		357
Carbonate	mg/L as CaCO ₂				1.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₂			-	390		413	-	368		346		357
Total Dissolved Solids	mg/L do odoo3				448		542		471		609		540
Fluoride	mg/L	15		<	0.10		0.09	۲	0.06		0.10		0.08
Total Organic Carbon	mg/L	1.5		-	3	-	1	-	2	۲	1		2
Dissolved Organic Carbon	mg/L				2	-	2	-	1	-	1		1
Total Ammonia N	mg/L				0.63	/	0.04	/	0.04	/	0.04	/	0.04
Chlorido	mg/l				25	È	0.04	-	200	-	200	-	200
Chionde	mg/L				25		02		200		200		200
Suprate	mg/L				0.4		12.3		11		12	-	12
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.54		3.75		2.32		4.82		3.57
Nitrate + Nitrite (N)	mg/L				0.54		3.75		2.32		4.82		3.57
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		0.03	<	0.01		0.02
Hardness (dissolved)	mg/L as $CaCO_3$				410		488		492		289		391
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5.0		25.0	<	1	<	1	<	1
Arsenic (dissolved)	µg/L	25	1900	<	1.0		0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	µg/L	1000	29000		29		46		47		59		53
Beryllium (dissolved)	µg/L		67	<	0.50		0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		12		35		1460		34		747
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				155000		174500		168000		138000		153000
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.0		0.007		0.014		0.011
Cobalt (dissolved)	ua/L		66	<	0.50		0.15		0.083		0.157		0.120
Chromium (dissolved)	ua/L		810	<	5.0		0.8		0.45		1.45		0.95
Copper (dissolved)	ua/L	1000	87	<	1.0		0.6		0.6		0.4		0.5
Iron (dissolved)	ug/l			<	100		43		10	<	7		9
Potassium (dissolved)	ug/l				580		879		1720		962		1341
Magnesium (dissolved)	ug/L				5300		7200		6000		5690		5845
Manganese (dissolved)	ug/L			-	12		2.4		0.08		0.07		0.08
Molybdenum (dissolved)	µg/L		9200	/	0.50		0.76		0.00		0.07		0.00
Sodium (dissolved)	µg/∟ ug/l		9200	<u>`</u>	8050		40350		/1000		10/000		72050
Nickel (dissolved)	µg/L		400	/	1.0	/	49350		41900		0.2		0.2
Nickei (dissolved)	µg/L		490	Ì	1.0	` `	10	-	0.3		0.3		0.3
Phosphorus (total)	µg/L				320		12	<	3		3		3
	µg/L	10	25	<	0.50		0.02		0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.8		0.81		0.65		0.73
Tin (dissolved)	µg/L			<	1.0	<	0.1	<	0.06		0.08		0.07
Strontium (dissolved)	µg/L				255		326		303		292		298
Titanium (dissolved)	µg/L			<	5.0		2.1		0.45	<	0.05		0.25
Thallium (dissolved)	µg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		3		8		11		6		8
Vanadium (dissolved)	µg/L		250	<	0.50		0.35		0.28		0.26		0.27
Zinc (dissolved)	µg/L		1100		8.5		3.5		4		2		3
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.040	<	0.010	<	0.01		0.02		0.02
Thorium-230	Bq/L	0.65		<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		81.1		66.1		
ORP	mV				_1		_1		114.0		141.4		
SPC	us/cm				-1		_1		833.0		1136.0		
Temperature	°C				_1		_1		5.846		13.5		
Turbidity	FNU				_1		_1		77 13		118.3		
nH	Linits				_1		_1		7.56		7 00		
COPC = Contaminants of I	Potential Concorr	criteria fo	Potable C	rou	ndwater C	and	itions deri	Ved	from Port	Hon	e Screeni	na	Report
Table 3 - Eull Dopth Corr		Standarda	in a Mon		hle Crour	d M	Ator Con	litic	n Ontorio	Mim	histry of the	ng I	sepon.
Fault S - Full Deptil Gene	Condition	i Stanuards	ni a Noil-F	ola	Sie Groun	uΝ	aler Conc	auol	n, Ontario	wiin	iisti y Oi (fil		
Environment and Crimate C	Snange, 2011.	0000 -	- LI- 0 ''										
bold values indicate an ex	ceedance of the	COPC or Ta	able 5 criter	id									

¹ Field parameters included for current sampling year only.

Criteria PH-93-10-I COPC Table 3 2019 2020 2021 2021/03/22 2021/11/18 Average Analysis Units (MECP) Average 7.00 6.5-8.5 7.11 6.96 pН pН 6.5-9.0 7.22 6.98 Alkalinity mg/L as CaCO3 620 588 548 491 520 Carbonate mg/L as CaCO3 1.0 1.0 1.0 1.0 1.0 mg/L as CaCO₃ 620 588 548 491 520 Bicarbonate Total Dissolved Solids mg/L 898 842 900 845 873 1.5 0.10 0.07 0.06 0.06 0.06 Fluoride mg/L Total Organic Carbon mg/L 13 11 11 7 9 Dissolved Organic Carbon 12 11 7 10 9 mg/L Total Ammonia-N mg/l 8.8 12.9 11.30 8.65 9.98 150 155 Chloride 210 240 225 mg/L Sulphate 15.0 25 21 21 mg/L 21 Bromide mg/L 1.0 0.30 0.3 0.3 0.3 0.010 0.03 0.03 0.03 0.03 Nitrite (N) mg/L Nitrate (N) mg/L 0.10 0.06 0.06 0.06 0.06 Nitrate + Nitrite (N) 0.10 0.06 0.06 0.06 0.06 mg/L Mercury (dissolved) µg/L 0.29 0.10 0.01 0.01 0.01 0.01 1 Hardness (dissolved) mg/L as CaCO3 575 689 615 605 610 1.5 0.1 0.05 0.05 0.05 0.05 Silver (dissolved) µq/L Aluminum (dissolved) 5.0 µg/L 447 1 2 2 Arsenic (dissolved) 25 1900 17.5 24.3 21.9 19.1 20.5 µg/L Barium (dissolved) µq/L 1000 29000 500 623 511 477 494 Bervllium (dissolved) 0.50 0.007 0.007 0.019 0.007 µg/L 67 Boron (dissolved) µg/L 5000 45000 560 683 410 346 378 Bismuth (dissolved) 1.0 0.010 0.007 0.010 0.009 µg/L Calcium (dissolved) 150000 171000 172000 158000 165000 µg/L Cadmium (dissolved) µg/L 5 2.7 0.1 0.008 0.003 0.003 0.003 Cobalt (dissolved) 66 6.50 8.245 6.900 5.840 6.370 µg/L Chromium (dissolved) 810 5.0 1.40 0.43 0.28 0.36 µq/L 1000 1.0 0.5 2.2 0.6 0.4 Copper (dissolved) µg/L 87 Iron (dissolved) µg/L 13000 14750 10900 8730 9815 Potassium (dissolved) µg/L 15000 18300 15800 12300 14050 46000 49150 45100 41000 43050 Magnesium (dissolved) µg/L Manganese (dissolved) µg/L 615 745.0 768.00 774.00 771.00 Molybdenum (dissolved) µg/L 9200 0.64 0.73 0.67 0.72 0.70 Sodium (dissolved) 89500 82000 103000 92100 97550 µq/L Nickel (dissolved) 490 10.1 11.4 10.5 7.7 9.1 µg/L Phosphorus (total) µg/L 350 47 27 17 22 10 25 0.50 0.31 0.02 0.09 0.06 Lead (dissolved) µg/L 0.50 0.90 0.90 0.90 0.90 Antimony (dissolved) µg/L 20000 6 Selenium (dissolved) µg/L 10 63 2.0 0.1 0.08 0.11 0.10 Tin (dissolved) 1.0 0.51 0.27 0.20 0.24 µg/L Strontium (dissolved) µg/L 645 787 735 677 706 5.0 34.17 0.27 0.14 0.21 Titanium (dissolved) µg/L Thallium (dissolved) µg/L 510 0.05 0.027 0.005 0.011 800.0 Uranium (dissolved) 20 420 4 3 3 µg/L 7 5 0.50 1.49 0.47 0.39 0.43 Vanadium (dissolved) 250 µg/L Zinc (dissolved) µg/L 1100 5.0 5 2 2 2 Lead-210 Bq/L 0.20 0.10 0.02 0.03 0.04 0.04 0.02 Radium-226 Bq/L 0.49 0.040 0.03 0.01 0.02 Thorium-230 0.070 0.02 0.02 0.02 0.02 Bq/L 0.65 Thorium-232 Ba/L 0.060 0.02 0.02 0.02 0.02 Field Parameters ODO % Sat 35.6 43.2 mg/L ORP -84.3 -58.5 mV ---1 SPC us/cm 1469.0 1612.0 _1 Temperature °C 10.370 10.1 ---FNU 31.45 78.6 Turbidity Hα Units 7 01 6.83 COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 121: PH-93-10-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change. 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 122: PH-93-10-II

		Crit	teria PH-93-10-II										
		COPC	Table 3		2019		2020	2021					
Analysis	Units		(MECP)		Ave	rag	е	20	21/03/22	20	21/11/18	A	verage
pН	pН	6.5-8.5	6.5-9.0		7.17		6.99		6.89		6.86		6.88
Alkalinity	mg/L as CaCO ₃				805		709		819		814		817
Carbonate	mg/L as CaCO ₃				1.1	<	1.0	۷	1.0	<	1.0	۷	1.0
Bicarbonate	mg/L as CaCO ₃				805		709		819		814		817
Total Dissolved Solids	mg/L				1008		893		1180		1010		1095
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				7		6		8		7		8
Dissolved Organic Carbon	mg/L				6		6		8		6		7
Total Ammonia-N	mg/l				17.0		17.9		22.2		19.9		21.1
Chloride	mg/L				71		70		100		100		100
Sulphate	mg/L				66		62		70		72		71
Bromide	mg/L			<	1.0		0.5		0.5		0.5		0.5
Nitrite (N)	mg/L				0.018		0.09	<	0.03		0.03		0.03
Nitrate (N)	mg/L				1.58		2.30		1.86		2.63		2.25
Nitrate + Nitrite (N)	mg/L				1.59		2.39		1.86		2.66		2.26
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃				705		830		777		795		786
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5		2	<	1		2		2
Arsenic (dissolved)	µg/L	25	1900	<	1.0		0.6		0.6		0.5		0.6
Barium (dissolved)	µg/L	1000	29000		175		168		205		209		207
Beryllium (dissolved)	µg/L		67	<	0.50	<	0.007	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		2850		3290		3770		4190		3980
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010	<	0.009
Calcium (dissolved)	µg/L				210000		212500		238000		204000		221000
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.005		0.005	<	0.003		0.004
Cobalt (dissolved)	µg/L		66		3.15		2.71		3.40		2.86		3.13
Chromium (dissolved)	µg/L		810	<	5.0		0.90		0.69		0.52		0.61
Copper (dissolved)	µg/L	1000	87		4.5		7.5		8.5		6.8		7.7
Iron (dissolved)	µg/L			<	100		18		7	<	7	<	7
Potassium (dissolved)	µg/L				40000		39250		54400		42100		48250
Magnesium (dissolved)	µg/L				44500		39550		44700		41500		43100
Manganese (dissolved)	µg/L				485		424		620		546		583
Nolybaenum (dissolvea)	µg/L		9200	<	0.50		0.17		0.20		0.22	_	0.21
Sodium (dissolved)	µg/L		40.0		72000		75600		99600		86200		92900
Nickei (dissolved)	µg/L		490		0.0		1.0		9.3		0.1		0.7
Priospriorus (total)	µg/L	10	25	-	415		0.02		21	_	13		0.06
Antimony (dissolved)	µg/L	10	20000	<u> </u>	0.50	/	0.02	/	0.02	-	0.09	/	0.00
Solonium (dissolved)	µg/L	10	20000	` `	2.0	È	0.90	<u>`</u>	0.90	È	0.90	Ì	0.90
Tip (discolved)	µg/L	10	05	` `	2.0	-	0.0		0.20	-	0.32		0.29
Streptium (discolved)	µg/L			`	915	-	0.30		1050	-	0.29		0.32
Titanium (dissolved)	µg/L			/	5.0	-	0.27		0.22	-	0.18		970
Thallium (dissolved)	µg/L		E10		0.05	-	0.27		0.22	-	0.10		0.20
Liranium (dissolved)	µg/L	20	420	Ì	5450	-	4970		7170	-	6130		6650
Vanadium (dissolved)	µg/L	20	420		0.72		0.87		0.76		0.71		0.74
Zinc (dissolved)	µg/L		1100	/	5	/	0.07	/	2	/	2	~	2
Lead 210	µg/∟ Ba/l	0.20	1100	-	0.10	<u> </u>	2 0.03	`	0.04	2	0.02	2	0.03
Padium 226	Bq/L Bg/l	0.20		-	0.10		0.03		0.04	2	0.02	2	0.03
Thorium-230	Bq/L Bg/l	0.49		~	0.040	<	0.02	<	0.02	~	0.01	~	0.02
Thorium-232	Bq/L Bg/l	0.05		` ~	0.060	~	0.02	۔ ح	0.02	~	0.02	` ~	0.02
Field Parameters	Dq/L			È	0.000	-	0.02	-	0.02	-	0.02	È	0.02
ODO % Sat	ma/l				_1		_1		42.8		30.7		
ORP	mV				_1		_1		7.2		-19.5		
SPC	us/cm				_1		_1		1647.0		1788.0		
Temperature	°C			-	_1		1		10 301		10.3	-	
Turbidity	FNU				_1		_1		8.33		12.9		
nH	Units			-	_1		1		6.86		6.65	-	
COPC = Contaminants of P	Potential Concern	criteria for	Potable G	rou	ndwater C	ond	itions deriv	ved	from Port	Hor	e Screeni	na I	Report
Table 3 = Full Denth Gene	ric Site Condition	Standards	in a Non-F	ota	ble Groun	d N	/ater Cond	litio	n. Ontario	Min	nistry of the		
Environment and Climate (Change 2011	. Standards		510	210 010011				., onano				

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 123: PH-93-12-II

		Criteria			PH-93-12-II								
		COPC	Table 3 2019 2020 2021 (11727) 0001/00/00 0001/00/01 0001/01/01 0001/01/01										
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/30	20	21/11/04	A	verage
pН	pН	6.5-8.5	6.5-9.0		7.39		7.07		7.05		7.05		7.05
Alkalinity	mg/L as CaCO ₃				540		3210		3900		478		2189
Carbonate	mg/L as CaCO ₃				1.3	<	1.0	۷	1.0	<	1.0	۷	1.0
Bicarbonate	mg/L as CaCO ₃				540		3210		3900		478		2189
Total Dissolved Solids	mg/L				655		633		694		655		675
Fluoride	mg/L	1.5		۷	0.10	<	0.06	۷	0.06	<	0.06	۷	0.06
Total Organic Carbon	mg/L				6		3		3		3		3
Dissolved Organic Carbon	mg/L				3		3		4		3		4
Total Ammonia-N	mg/l				7.8		8.5		5.4		7.3		6.3
Chloride	mg/L				57		52		63		57		60
Sulphate	mg/L				33		31		34		33		34
Bromide	mg/L			۷	1.0	<	0.3	۷	0.3	<	0.3	۷	0.3
Nitrite (N)	mg/L			۷	0.010	<	0.03	۷	0.03	<	0.03	۷	0.03
Nitrate (N)	mg/L				1.18		1.12		1.91		1.78		1.85
Nitrate + Nitrite (N)	mg/L				1.18		1.12		1.91		1.78		1.85
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO3				535		6795		12600		7770		10185
Silver (dissolved)	µg/L		1.5	۷	0.1	<	0.05	<	0.05	<	0.50		0.28
Aluminum (dissolved)	µg/L				6		70	<	1	<	10		6
Arsenic (dissolved)	µg/L	25	1900	<	1.0		0.3		0.2	<	2.0		1.1
Barium (dissolved)	µg/L	1000	29000		165		193		206		222		214
Beryllium (dissolved)	µg/L		67	<	0.50		0.008	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		785		779		657		800		729
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.100		0.054
Calcium (dissolved)	µg/L				175000		194500		216000		189000		202500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.012		0.004	<	0.030		0.017
Cobalt (dissolved)	ua/L		66		0.65		0.77		0.66		0.93		0.80
Chromium (dissolved)	ua/L		810	<	5.0		0.40		0.42	<	0.80		0.61
Copper (dissolved)	ua/L	1000	87		1.5		3.4		1.4	<	2.0		1.7
Iron (dissolved)	ua/L			<	100		81		10	<	70		40
Potassium (dissolved)	µa/L				23500		26900		22900		30700		26800
Magnesium (dissolved)	ua/L				23500		23000		23100		25900		24500
Manganese (dissolved)	ua/L				75		69		74		123		99
Molvbdenum (dissolved)	ua/L		9200	<	0.50		0.15		0.13	<	0.40		0.27
Sodium (dissolved)	ua/L				33500		33250		33600		40500		37050
Nickel (dissolved)	ua/L		490		2.2		2.4		2.2		3.0		2.6
Phosphorus (total)	µa/L				15500		15	<	3	<	30		17
Lead (dissolved)	ug/l	10	25	<	0.50		0.09	<	0.01	<	0.90		0.46
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	ua/L	10	63	<	2.0		0.2		0.25	<	0.40		0.33
Tin (dissolved)	ug/l			<	1.0		0.25	_	0.15	<	0.60	_	0.38
Strontium (dissolved)	ug/l				520		612		624		628		626
Titanium (dissolved)	ug/l			<	5.0		4 13		0.30		2 20		1.25
Thallium (dissolved)	ua/L		510	<	0.05		0.008	<	0.005	<	0.050		0.028
Uranium (dissolved)	ua/L	20	420		3450		3330		3210		4150		3680
Vanadium (dissolved)	ua/L	_0	250	<	0.50		0.61		0.43		0.50		0.47
Zinc (dissolved)	ua/L		1100	<	12.0		8		6	<	20		13
Lead-210	Ba/L	0.20	1100	<	0.10		0.02	<	0.02		0.13		0.08
Radium-226	Ba/L	0.49		<	0.040		0.01		0.01		0.02		0.02
Thorium-230	Bg/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L Bg/l	0.05		<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	Dq/E			-	0.000	-	0.02	-	0.02	-	0.02	-	0.02
ODO % Sat	ma/l				_1		_1		45.1		27.7		
ORP	mV				_1		_1		154.6	-	159.3		
SPC	us/cm				_1	F	1		1034.0		1210.0		
Temperature	°C				_1		1		9 009		10.7		
Turbidity	FNU				_1		1		4366 30		2316.5		
nH	Linits				_1	F	1		7 22		6.75		
COPC = Contaminants of P	Potential Concorr	criteria for	Potabla	rou	ndwater C	and	litions deriv	up d	from Port	Hor	e Screeni	na	Report
Table 3 = Full Depth Conc	ric Site Condition	Standardo	in a Non E	Pote	hle Group	d M	Vater Conc	litio	n Ontaria	Min	histry of the	ng i s	Coport.
Environment and Climate C	Change 2011	Glanuarus	in a Nun-F	old	ore Groun	u V			n, Ontario	wiifi	i su y or th	-	
	andinge, 2011.	00D0 T	bla 2	ia									
Doid values indicate an ex	ceedance of the	COPC OF 18	able o criter	d									

¹ Field parameters included for current sampling year only.

		Crit	eria					PH-95-I 20 2021				
		COPC	Table 3		2019		2020			2021		
Analysis	Units		(MECP)		Ave	rage	e	20	21/04/14	2021/07/12	A١	verage
pH	pН	6.5-8.5	6.5-9.0		7.64		7.62		7.20	Decommissioned		7.20
Alkalinity	mg/L as CaCO ₃				335		290		339			339
Carbonate	mg/L as CaCO				15	<	1.0	<	10		<	1.0
Bicarbonate	mg/L as CaCO				330		200	-	330		<u> </u>	330
Total Dissolved Solids	mg/L as CaCO ₃				260	-	230	-	242		-	242
Total Dissolved Solids	ing/L				300		0.00		0.00		<u> </u>	343
Fluoride	mg/L	1.5		<	0.10	<u> </u>	80.0	<	0.06		<	0.06
Total Organic Carbon	mg/L				5		2		2			2
Dissolved Organic Carbon	mg/L				2		2		2			2
Total Ammonia-N	mg/l				0.13	<	0.04	<	0.04		<	0.04
Chloride	mg/L				4		2		3			3
Sulphate	mg/L				6		4		9			9
Bromide	ma/L			<	1.0	<	0.3	<	0.3		<	0.3
Nitrite (N)	mg/l			<	0.010	<	0.03	<	0.03		<	0.03
Nitrate (N)	mg/L			2	0.010	2	0.06	2	0.06		-	0.06
Nitrate (N)	ing/L			È	0.10	È	0.00	È	0.00		È	0.00
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06		<	0.06
Mercury (dissolved)	µg/L	1	0.29	<	0.10	<	0.01		0.01			0.01
Hardness (dissolved)	mg/L as CaCO ₃				345		363		1120			1120
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.05	<	0.05		<	0.05
Aluminum (dissolved)	µg/L			<	5	<	1		4			4
Arsenic (dissolved)	µg/L	25	1900	<	1.0	<	0.2	<	0.2		<	0.2
Barium (dissolved)	ug/l	1000	29000		16		13		17			17
Beryllium (dissolved)	ug/l		67	<	0.50	<	0.007	<	0.007		<	0.007
Boron (dissolved)	µg/∟ ug/l	5000	45000	-	10	-	21	-	20		È	20
Boron (dissolved)	µy/L	5000	45000		19		21		29		<u> </u>	29
Bismuth (dissolved)	µg/L			<	1.0	<	0.007		0.007		<u> </u>	0.007
Calcium (dissolved)	µg/L				125000		109500		155000		<u> </u>	155000
Cadmium (dissolved)	µg/L	5	2.7	<	0.1	<	0.003	<	0.003		<	0.003
Cobalt (dissolved)	µg/L		66	<	0.50		0.05		0.03			0.03
Chromium (dissolved)	µg/L		810	<	5.0		0.21		0.17			0.17
Copper (dissolved)	µg/L	1000	87		1.9		0.4		0.4			0.4
Iron (dissolved)	ug/l			<	100	<	7	<	7		<	7
Potassium (dissolved)	ug/l				725		694		882		-	882
Magnesium (dissolved)	ug/L				6100	-	4845	-	6780		-	6780
Magnesium (dissolved)	µg/∟ /!				0100	-	4040		0700		—	0700
Manganese (dissolved)	µg/L				4		20		1		<u> </u>	1
Molybdenum (dissolved)	µg/L		9200	<	0.50		0.24		0.96		<u> </u>	0.96
Sodium (dissolved)	µg/L				2200		1855		2500			2500
Nickel (dissolved)	µg/L		490	<	1.0	<	0.1		0.2			0.2
Phosphorus (total)	µg/L				2595		7		3			3
Lead (dissolved)	µg/L	10	25	<	0.50		0.03		0.01			0.01
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90	<	0.90		<	0.90
Selenium (dissolved)	ug/L	10	63	<	2.0		0.2		0.00		-	0.42
Tip (dissolved)	µg/L	10	05	-	1.0		0.2	/	0.42		/	0.42
Chrometiums (discoluted)	µg/∟ //			<u> </u>	1.0	-	0.03	<u>`</u>	0.00		È	0.00
Strontlum (dissolved)	µg/L				185		107		220		<u> </u>	220
litanium (dissolved)	µg/L			<	5.0	<	0.05		0.45			0.45
Thallium (dissolved)	µg/L		510	<	0.05	<	0.005	<	0.005		<	0.005
Uranium (dissolved)	µg/L	20	420		9		8		8			8
Vanadium (dissolved)	µg/L		250	<	0.50		0.28		0.31			0.31
Zinc (dissolved)	µg/L		1100	<	5.0		2	<	2		<	2
Lead-210	Ba/L	0.20		<	0.10	<	0.02	<	0.02		<	0.02
Radium-226	Ba/l	0.49		<	0.040	<	0.01	<	0.01		<	0.01
Thorium 230	Bq/L	0.45		2	0.070	2	0.02	2	0.02		-	0.02
Thorium 220	Bq/L	0.05		È	0.070	È	0.02	È	0.02		È	0.02
Thorium-232	DQ/L			<	0.060	<	0.02	<	0.02		< _	0.02
Field Parameters							4					
ODO % Sat	mg/L				-1		-'		37.6			
ORP	mV				-1		-1		147.6			
SPC	us/cm				-1		-1		583.0			
Temperature	°C				_1		_1		5.753			
Turbidity	ENU				_1		_1		74 85			
nH	Linite				_1		1		7.04			
COPC - Contominants of	Potential Concern	oritorio fo	Potobla C		- ndurator 0	004	tions dari	Lod.	from Dort	Hono Sorooning 5	2000	
			, otable G	Jour		Juli		veu		nope screening R	epo	n.
Table 3 = Full Depth Gene	eric Site Condition	n Standards	: in a Non-F	ota	ple Groun	a W	ater Cond	ntior	, Ontario	Ministry of the		

Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

		Crit	iteria PH-95-17-I										
		COPC	Table 3	Table 3 2019 2020 2021									
Analysis	Units		(MECP)		Ave	rag	ge	20)21/03/24	20	021/11/02	Α	verage
pH	pН	6.5-8.5	6.5-9.0		7.35		7.15		7.15		6.92		7.04
Alkalinity	mg/L as CaCO ₃				805		947		878		816		847
Carbonate	mg/L as CaCO ₃				1.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				800		947		878		816		847
Total Dissolved Solids	mg/L				1023		842		963		1020		992
Fluoride	ma/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	ma/L				7		6		6		7		7
Dissolved Organic Carbon	ma/L				6		6		6		6		6
Total Ammonia-N	ma/l				12.8		10.4		14.6		14.7		14.7
Chloride	ma/l				52		49		70		51		61
Sulphate	ma/L				104		45		44		42		43
Bromide	ma/l				11		0.4		0.6		0.4		0.5
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L			<	0.010	-	0.00		0.00		0.00	-	0.00
Nitrate + Nitrite (N)	mg/L			<	0.10		0.15		0.14		0.17		0.16
Mercury (dissolved)	ug/L	1	0.29	<	0.10	<	0.10	<	0.01	<	0.01	<	0.10
Hardness (dissolved)	mg/L as CaCO	-	0.25	-	790	-	1585	-	766	-	1180	-	973
Silver (dissolved)			1 5	-	0.1	-	0.05	/	0.05	~	0.05	~	0.05
Aluminum (dissolved)	µg/L		1.5	-	5	-	0.05	`	0.00	<u> </u>	3	-	0.05
Araopia (dissolved)	µg/L	25	1000	<u> </u>	1.0		4		4		0.6	-	4
Arsenic (dissolved)	µg/L	25	1900	`	240		0.4		0.5		0.0	-	0.0
Barlum (dissolved)	µg/L	1000	29000	/	240	-	191		238	-	228		233
Beryllium (dissolved)	µg/L	5000	67	<	0.50		0.011		0.012		0.027		0.020
Boron (dissolved)	µg/L	5000	45000		1500	-	1340		1500	_	1760		1630
Bismuth (dissolved)	µg/L			<	1.0	<	0.007		0.008	<	0.010		0.009
Calcium (dissolved)	µg/L			-	260000		238000		244000		220000		232000
	µg/L	5	2.7	<	0.1		0.009		0.013		0.057		0.035
Cobalt (dissolved)	µg/L		66		4.55		3.95		4.77		4.18		4.48
Chromium (dissolved)	µg/L		810	<	5.0		0.25		0.43		0.58		0.51
Copper (dissolved)	µg/L	1000	87		2.2		2.5		2.2		3.3		2.8
Iron (dissolved)	µg/L			<	100		33		65		14		40
Potassium (dissolved)	µg/L				32500		31650		34500		35600		35050
Magnesium (dissolved)	µg/L				33500		33150		38300		33500		35900
Manganese (dissolved)	µg/L				7550		6615		8190		7590		7890
Molybdenum (dissolved)	µg/L		9200		0.65		0.51		0.67		0.60		0.64
Sodium (dissolved)	µg/L				43500		40000		42800		46000		44400
Nickel (dissolved)	µg/L		490		5.3		4.7		5.7		5.0		5.4
Phosphorus (total)	µg/L				840		11		17		17		17
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01		0.02	<	0.09	<	0.06
Antimony (dissolved)	µg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	µg/L	10	63	<	2.0		0.2		0.24		0.51		0.38
Tin (dissolved)	µg/L			<	1.0		0.27		0.24		0.33		0.29
Strontium (dissolved)	µg/L				930		935		1060		879		970
Titanium (dissolved)	µg/L			<	5.0		0.43		0.37	<	0.05		0.21
Thallium (dissolved)	µg/L		510	<	0.05		0.034		0.027		0.145		0.086
Uranium (dissolved)	µg/L	20	420		6150		9735		14200		10800		12500
Vanadium (dissolved)	µg/L		250	<	0.50		0.50		0.53		0.71		0.62
Zinc (dissolved)	µg/L		1100	<	5.0		5		2		10		6
Lead-210	Bq/L	0.20		<	0.10		0.05		0.06		0.64		0.35
Radium-226	Bq/L	0.49		<	0.040		0.03		0.02		0.03		0.03
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				-1		-1		38.5		32.0		
ORP	mV				-1		-1		-6.1		101.5		
SPC	us/cm				-1		-1		14.9		1565.0		
Temperature	°C				-1		-1		10.286		10.7		
Turbidity	FNU				_1		-1		589.53		229.6		
pH	l Inits				_1		_1		6 72		6.58		

Table 125: PH-95-17-I

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report. Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Table 126: PH-95-17-II

		Crit	Criteria					PH-95-17-II					
		COPC	Table 3 2019 2020 2021										
Analysis	Units		(MECP)		Ave	rag	е	20	21/03/24	20	21/11/02	A	verage
рН	pН	6.5-8.5	6.5-9.0		7.42	Ē	7.19		7.4		7.34		7.37
Alkalinity	mg/L as CaCO ₃				530		1015		655		519		587
Carbonate	mg/L as CaCO ₃				1.4	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				530		1015		655		519		587
Total Dissolved Solids	ma/L				558		546		529		517		523
Fluoride	ma/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/l				7		5		4		4		4
Dissolved Organic Carbon	mg/l				5		6		4		4		4
Total Ammonia-N	mg/L				21.0		22.2		17.6		10.8		14.2
Chloride	mg/l				30		35		44		22		33
Sulphate	mg/L				7		6		6		4		5
Bromide	mg/L			<	1.0	<	03		03	<	03	<	03
Nitrite (N)	mg/L			-	0.011	È	0.0	/	0.03	-	0.0	`	0.0
Nitroto (N)	mg/L				0.011		1 1 2	-	1.00		1.25		1.24
Nitrate Nitrite (N)	mg/L				0.77		1.12		1.22	_	1.20		1.24
Moroury (dissolved)	ng/L	1	0.20	/	0.10		0.01	/	0.01	/	0.01	/	0.01
	µg/L	1	0.29	`	0.10		0.01	`	40.4	`	0.01	`	0.01
Hardness (dissolved)	mg/L as CaCO ₃				400		3996		404		547		476
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L			<	5		4		86		3		45
Arsenic (dissolved)	µg/L	25	1900		1.9		2.4		1.5		1.6		1.6
Barium (dissolved)	µg/L	1000	29000		225		192		170		104		137
Beryllium (dissolved)	µg/L		67	<	0.50		0.009	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L	5000	45000		1350		1150		487		809		648
Bismuth (dissolved)	µg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L				120000		131000		133000		114000		123500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1		0.008	<	0.003		0.010		0.007
Cobalt (dissolved)	µg/L		66		4.10		4.90		3.08		3.66		3.37
Chromium (dissolved)	µg/L		810	<	5.0		0.53		0.27		0.35		0.31
Copper (dissolved)	µg/L	1000	87	<	1.0		1.3		0.9		1.2		1.1
Iron (dissolved)	µg/L				4000		3770		2120		1720		1920
Potassium (dissolved)	µg/L				36000		35850		27400		15800		21600
Magnesium (dissolved)	µg/L				22500		21750		17800		15700		16750
Manganese (dissolved)	µg/L				735		706		825		584		705
Molybdenum (dissolved)	µg/L		9200	۷	0.50		0.18		1.04		0.12		0.58
Sodium (dissolved)	µg/L				35500		36100		20300		24200		22250
Nickel (dissolved)	µg/L		490		4.8		4.9		1.5		2.2		1.9
Phosphorus (total)	µg/L				20850		22		9		14		12
Lead (dissolved)	ua/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	ua/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	ua/l	10	63	<	2.0		0.2		0.21		0.20		0.21
Tin (dissolved)	ua/L			<	1.0		0.26		0.12		0.10	_	0.11
Strontium (dissolved)	ug/l			_	490		506		496		335		416
Titanium (dissolved)	ug/l			<	5.0		0.39		0.09	<	0.05		0.07
Thallium (dissolved)	ng/L		510	<	0.05		0.078		0.064	F.	0.040		0.052
I Iranium (dissolved)	µg/⊏ ug/l	20	420	-	31		90		5		4		5
Vanadium (dissolved)	µg/L	20	250		0.70	-	1.00		1 16		0.83		1.00
Zipo (diocolvod)	µg/L		230	/	5.0	/	1.09	/	2	/	0.00	/	1.00
	µy/L Da/l	0.20	1100		0.10	-	2		2	È	2		2
Leau-210	By/L	0.20		`	0.10	`	0.02	`	0.02	<u>`</u>	0.02	`	0.02
Raulul (1-220 Thorium 220	Bq/L	0.49		<	0.040	-	0.02	<	0.01	-	0.03	-	0.02
Therium 222	Bq/L	0.65		~	0.070	×	0.02	~	0.02	Ň	0.02	~	0.02
Inorium-232	Bd/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters					1		1	_				_	
ODO % Sat	mg/L				-'		-'		28.1		65.2	_	
ORP	mV				-'		-'		-33.5		21.2		
SPC	us/cm				-'		-'		1050.0		740.0		
Temperature	°C				-'		-'		9.821		10.8		
Turbidity	FNU				-1		-1		815.79		861.3		
pН	Units				-1		-1		6.87		6.95		
COPC = Contaminants of F	Potential Concern	criteria for	Potable G	rou	ndwater Co	ond	itions deriv	ved	from Port	Hop	e Screeni	ng F	Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

Criteria PH-95-18 COPC Table 3 2019 2020 2021 Units Well Damaged Analysis (MECP) Average 6.5-8.5 Hα 6.5-9.0 Hа 7.14 mg/L as CaCO3 Alkalinity 870 Carbonate mg/L as CaCO₃ 1.1 mg/L as CaCO3 860 Bicarbonate Total Dissolved Solids mg/L 1080 Fluoride mg/L 1.5 0.10 Total Organic Carbon mg/L 11.0 8.8 **Dissolved Organic Carbon** mg/L Total Ammonia-N mg/l 40.00 Chloride mg/L 46 Sulphate 120.0 mg/L 1.0 Bromide mg/L Nitrite (N) mg/L 0.010 Nitrate (N) 0.59 mg/L Nitrate + Nitrite (N) 0.59 mg/L Mercurv (dissolved) 0.29 0.10 µg/L 1 Hardness (dissolved) mg/L as CaCO 710 1.5 0.1 Silver (dissolved) µg/L Aluminum (dissolved) 250.0 µg/L Arsenic (dissolved) µg/L 25 1900 10 Barium (dissolved) 1000 29000 160 µg/L 67 0.50 Beryllium (dissolved) μg/L 5000 45000 Boron (dissolved) µg/L 2000 Bismuth (dissolved) µg/L 1.0 Calcium (dissolved) µg/L 220000 Cadmium (dissolved) 0.1 μg/L 5 2.7 Cobalt (dissolved) µg/L 66 18 00 Chromium (dissolved) µg/L 810 5.0 1000 18.0 Copper (dissolved) µg/L 87 430 Iron (dissolved) µg/L Potassium (dissolved) µg/L 61000 Magnesium (dissolved) µg/L 42000 Manganese (dissolved) 5700 µg/L Molybdenum (dissolved) 9200 0.57 µg/L Sodium (dissolved) µg/L 48000 490 15.0 Nickel (dissolved) μg/L 1800 Phosphorus (total) µq/L Lead (dissolved) µg/L 10 25 0.51 Antimony (dissolved) 20000 0.50 µg/L 6 10 Selenium (dissolved) 2.0 µg/L 63 1.0 Tin (dissolved) µg/L Strontium (dissolved) µg/L 1100 11.0 Titanium (dissolved) µg/L Thallium (dissolved) 510 0.27 µg/L 20 Uranium (dissolved) µg/L 420 5000 Vanadium (dissolved) µg/L 250 1.40 Zinc (dissolved) 5.2 µg/L 1100 Lead-210 0.20 0.10 Ba/L Radium-226 Bq/L 0.49 0.040 Thorium-230 Bq/L 0.65 0.070 Thorium-232 Bq/L 0.060 Field Parameters ODO % Sat mg/L ORP mV 1 SPC us/cm Temperature °C Turbidity FNU Units COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from

Table 127: PH-95-18

Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition,

Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria

Field parameters included for current sampling year only.

		Crit	eria	0.000 0000			PH-M-19						
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	e	20	21/03/31	20	21/11/25	Α	verage
pН	pН	6.5-8.5	6.5-9.0		7.85		7.57		7.55		7.4		7.48
Alkalinity	mg/L as CaCO ₃				370		363		361		587		474
Carbonate	mg/L as CaCO ₃				2.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				365		363		361		587		474
Total Dissolved Solids	mg/L				820		737		911		760		836
Fluoride	mg/L	1.5		<	0.10		0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				3		2		1		1		1
Dissolved Organic Carbon	mg/L				2		2		2		2		2
Total Ammonia-N	mg/l				0.1	<	0.04		0.05	<	0.04		0.05
Chloride	mg/L				250		235		380		290		335
Sulphate	ma/L				11		9		10		10		10
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	ma/L			<	0.010	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (N)	ma/L				1.11		0.93		1.02		0.64		0.83
Nitrate + Nitrite (N)	ma/L				1.11		0.93		1.02		0.64		0.83
Mercury (dissolved)	ua/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₂				365		676		491		347		419
Silver (dissolved)	ug/L do odoo3		15	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	ug/L		1.5	<	5	<u> </u>	6	<	1	<	1	<	1
Arsenic (dissolved)	ug/L	25	1900	È	310	-	379	È	370	È	339	-	355
Barium (dissolved)	µg/L	1000	20000		50	-	48		63		50		56
Beryllium (dissolved)	µg/∟ ug/l	1000	23000	/	0.50	-	0.017	/	0.007	/	0.007	/	0.007
Berghull (dissolved)	µg/L	5000	45000	Ì	0.00	-	22	Ì	20	È	0.007	<u>`</u>	0.007
Diamuth (dissolved)	µg/L	5000	45000		10	-	0.007	-	29		24		21
Calaium (dissolved)	µg/L			<	115000	< <u> </u>	110000	<	154000	< <u> </u>	110000		0.009
Calcium (dissolved)	µg/L				115000	-	110000	-	154000	-	116000		135000
Cadmum (dissolved)	µg/L	5	2.7	<	0.1	-	0.004		0.006		0.008		0.007
Cobalt (dissolved)	µg/L		66	<	0.50	_	0.11		0.10	-	0.14		0.12
Chromium (dissolved)	µg/L		810	<	5.0	_	0.65		0.74	-	0.32		0.53
Copper (dissolved)	µg/L	1000	87	<	1.0	_	0.6		0.4	<u> </u>	0.5		0.5
Iron (dissolved)	µg/L			<	100	_	10		22	<	/		15
Potassium (dissolved)	µg/L				935	_	1055		1150	-	913		1032
Magnesium (dissolved)	µg/L				16000	_	12550		18000		16300		1/150
Manganese (dissolved)	µg/L				2	_	5		1		5		3
Molybdenum (dissolved)	µg/L		9200		0.73	_	0.91		0.82		0.89		0.86
Sodium (dissolved)	µg/L				170000	_	164000		218000		197000		207500
Nickel (dissolved)	µg/L		490	<	1.0		0.3		0.1		0.2		0.2
Phosphorus (total)	µg/L				330		28		7		13		10
Lead (dissolved)	µg/L	10	25	<	0.50		0.03	<	0.01	<	0.09		0.05
Antimony (dissolved)	µg/L	6	20000		3.20		2.70		3.80		3.60		3.70
Selenium (dissolved)	µg/L	10	63	<	2.0		1.5		1.70		1.10		1.40
Tin (dissolved)	µg/L			<	1.0	<	0.06	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L				375		334		456		371		414
Titanium (dissolved)	µg/L			<	5.0		0.49		0.15		0.11		0.13
Thallium (dissolved)	µg/L		510	<	0.05	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420		225		187		229		178		204
Vanadium (dissolved)	µg/L		250		4.10		5.19		6.60		4.16		5.38
Zinc (dissolved)	µg/L		1100	<	5.0	<	2	<	2	<	2	<	2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.040	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Ba/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	ma/L				_1		_1		_2		_2		
ORP	mV				_1		_1		_2		2		
SPC	us/cm				_1		_1		_2		2		
Temperature	°C				_1		_1		2		2		
Turbidity	ENLL				_1		_1		_2		2		
	Linite				-	\vdash	-		2	-	2		
CORC - Contominants of	Detential Constant	L	Detable C		-	l and	- itiana d:	Lad	-	110	-		 Donort
COPC = Contaminants of I	-olential Concern	i criteria foi	Potable G	rou	nawater C	ondi	uons aeri	ved	from Port	пор	e Screeni	ng I	Report.

Table 128: PH-M-19

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

EA FOLLOW-UP PROGRAM SUMMARY TABLE Appendix E

Table 129: Scope of biophysical effects EA Follow-Up Monitoring Plan, 2021

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Atmospheric Environment		·			·	·
Air Quality 24-hour average Ambient Air Quality Criteria (AAQC) will be exceeded for arsenic and cobalt on occasions at offsite locations, including public receptor locations. Total suspended particulates of PM ₁₀ , PM _{2.5} and NO ₂ will exceed the 24-hour AAQC at some offsite locations.	Reduce travel distances within LTWMF from 200 m to 50 m, for equipment distributing off-loaded contaminants. Install a fence-type barrier or other movable barrier at specific targeted locations. Construction equipment to meet Off-Road Compression- Ignition Engine Emission Regulations for use in areas of denser urbanization, where practicable.	No residual adverse effects.	Construction equipment met Off-Road Compression- Ignition Engine Emission Regulations for PH LTWMF activities.	 Verify implementation of mitigation measures. Monitor arsenic and cobalt at offsite locations, including public receptor locations. Compare measured concentrations to predictions. Monitor levels of PM_{2.5} at offsite locations. Compare measured levels of PM_{2.5} to correlate the predicted air quality relationships between PM₁₀ and PM_{2.5}; and relationships between NO₂ and PM_{2.5}. 	There were no exceedances of the 24-hour AAQC [1] for arsenic or cobalt in 2021. CCME adopted the Air Quality Management System [2]. Canadian Ambient Air Quality Standards (CAAQS) for Fine Particulate Matter (PM _{2.5}) are included, which replace the Canada-wide standards developed in 2000. A 2020 value of 27 µg/m ³ is used for PM _{2.5} (98 th percentile averaged over 3 years) was not exceeded in 2021. As described in the <i>Port</i> <i>Hope Environmental and</i> <i>Biophysical Monitoring Plan</i> [3], compliance with this criterion will also be protective of the potential effects from PM ₁₀ and NO ₂ .	Air quality monitoring was conducted throughout 2021 at the PH LTWMF Site. A holiday shutdown took place from 2021 December 24 to 2022 January 04. The Overriding Limit of 120 μg/m ³ for TSP, as defined in the Dust Management Requirements and Plan [4] was not exceeded in 2021. The CAAQS for PM _{2.5} of 27 μg/m ³ (98 th percentile averaged over 3 years) was not exceeded in 2021. The sample containing the highest net weight of TSP collected each week at each of the monitoring stations was sent for additional analysis to determine the concentration of metals and radionuclides in suspended dust. There were no exceedances of the AAQC [1] for metals in 2021. Radionuclide analysis results are discussed under <i>Radiological, Particulate Radioactivity</i> .

UNRESTRICTED Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 229 of 246

Predicted Environmental	Mitigation Measure	Residual Environmental Effect (remaining after	Status of Mitigation Measures – 2021	EA Follow-up Monitoring	Predicted Environmental	Status of EA Commitments - 2021
Odour MOE guideline for odour may be exceeded at properties near Highland Drive Landfill and the Port Hope Harbour.	Lime may be added to waste, for sulphur-related odours; foaming agents may be used to minimize surface odours; odour suppression sprays may be used.	No residual adverse effects.	Dredging at the Port Hope Harbour commenced in 2021 July. A 3 rd party odour monitoring consultant performed twice daily off- site upwind and downwind odour measurements when dredging was taking place in 2021. There were 0 confirmed instances when the threshold level of 5 D/T was reached during dredging activities at Port Hope Harbour off-site receptors. Remediation at the Highland Drive Landfill to commence in 2022.	During pre-construction and construction phases, conduct odour analysis at Highland Drive Landfill and Port Hope Harbour sites. Implement mitigation measures if odour analysis indicates they are necessary.	A 3 rd party odour monitoring contractor performed pre- construction and construction phase odour monitoring to support the dredging activities at the Port Hope Harbour in 2021. Pre-construction odour monitoring was conducted in 2021 June ahead of the commencement of dredging in 2021 July. Construction phase odour monitoring was conducted twice daily off-site upwind and downwind measurements when dredging was taking place in 2021.	A 3 rd party odour monitoring contractor was procured in 2020 to support the monitoring during dredging in the Port Hope Harbour. Odour monitoring commenced in 2021 June. Remediation at the Highland Drive Landfill to commence in 2022.
Noise Noise levels will increase by 12 dBA, to 63 dBA, for residents adjacent to the LTWMF, during construction and development; by 13 dBA, to 67 dBA, for residents adjacent to the Alexander Ravine; and by 12 dBA, to 61 dBA, for residents along the Strachan Street transportation route.	Hours of work will comply with Port Hope By-Law No 30/2002, which prohibits construction between 11:00 pm and 7:00 am. At small and medium scale remediation sites in residential areas, activities would be limited to daylight hours and would conclude by 7:00 p.m. Construction equipment will comply with emission standards as outlined in NPC- 115 of the Ontario Model	Nuisance noise impacts on local receptors.	Complied with Port Hope By- Law No 30/2002 and World Health Organization's 70 dBA over a 24-hour period [5]. Trucks and other equipment will be equipped with mufflers. Tailgate banging was avoided. Physical and operational elements were built into the design of the new access road; construction of a berm and installation of traffic lights.	Verify implementation of mitigation measures. Measure noise levels at the LTWMF including the intersection of the proposed access road [now constructed] and Toronto Road during construction; at Alexander Ravine during remediation; and along the Strachan Street transportation route, to verify accuracy of predictions and effectiveness of mitigation measures.	Noise monitoring was conducted around the LTWMF in 2021. If 2021 results are compared to 2015 results prior to the start of the EW3a construction (when levels of activity around the site were comparatively low), it can be observed that the 2021 results are similar to 2020 with no notable increases of results. All values were below the predicted range of 12 dBA and the World Health	Implementation of mitigation measures is verified during compliance inspections. Work was scheduled in compliance with local by laws. Four main monitoring campaigns (January, April, August, and November) were completed for noise monitoring in 2021 at the PH LTWMF. The 2021 results are similar to 2020 with no notable increases.

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
	Municipal Noise Control By- Law. Trucks and other equipment will be equipped with mufflers. Tailgate banging will be avoided. Empty trucks will be required to reduce speed at construction sites and on local roads to avoid excessive cargo box and tray noise. Construction hoarding will be erected where practical. Develop and implement a noise mitigation plan for the intersection of the new access road and Toronto Road involving physical (e.g., berms) and operational (e.g., transportation protocols) elements.			Monitor noise levels for compliance with appropriate by laws and regulations governing hours of work and levels of noise.	Organization's Guideline for Community Noise level of 70 dBA over a 24-hour period [5]. The North, South and Central Transportation Routes were also monitored in 2021. Monitoring along the Transportation Routes showed little to no increase from the baseline monitoring that took place prior to the remedial activities.	The North, South and Central Transportation Routes were also monitored in 2021. Please note, the Central Transportation Route monitoring incorporates Strachan Street Consolidation Site. Remediation commenced at the Strachan Street Consolidation Site On 2021 October 28. Monitoring along the Transportation Routes showed little to no increase from the baseline monitoring that took place prior to the remedial activities.
Radiological, Radon Annual average radon concentrations, downwind from the LTWMF during construction and development, are expected to be 25.3 Bq/m ³ . The radon pathway will be eliminated.	Covering stockpiles and exposed areas overnight and on weekends. Applying dust suppressants. Restricting or ceasing work under high wind conditions. Minimizing the exposed working face.	No residual adverse effects.	CNL approved dust suppressants are used. Work was restricted or ceased under high wind conditions Revegetation of the work areas is to be completed at the end of the PH LTWMF project.	Stockpiles and exposed areas were covered with spray-on technology at the end of each workday. CNL approved dust suppressants are used. Work was restricted or ceased under high wind conditions	Radon measurements are taken monthly at the fenceline as a representative reading to the public and around the existing mound. Measurements taken are located at the fenceline around boundary. At the fenceline, the average radon measurements ranged between 22 Bq/m ³ to 118 Bq/m ³ .	Radon gas and radon progeny was monitored on a routine monthly basis at the LTWMF during the 2021 calendar year.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 231 of 246

Re-vegetation of completed cells and excavation areas as soon as possible.Modify methane gas piping exit vents to mitigate radon gas emanating from Cell 3 of the LTWMF.Radiological, Particulate RadioactivityImplement watering, to control dust on unpaved roads and excavation areas.The predicted levels for the following radionuclides are below Health Canada reference levels: 226 Ra (0.00049 Bq/m³, compared with 0.05 Bq/m³); 230 Th (0.00042 Bq/m³, compared with 0.01 Bq/m³), 232 Th (0.00057 µg/m³ compared with 0.006 Bq/m³); and µranium (0.0018 µg/m³		Remediation activity began in 2017 December and included the arsenic pile and marginally contaminated soil.	Revegetation of the work areas is to be completed at the end of the PH LTWMF project.		
Radiological, Particulate RadioactivityImplement watering, to control dust on unpaved roads and excavation areas.The predicted levels for the following radionuclides are below Health Canada reference levels: 226 Ra (0.000049 Bq/m³, compared with 0.05 Bq/m³); 230 Th (0.000057 µg/m³ compared with 0.01 Bq/m³), 232 Th (0.000057 µg/m³ compared with 0.006 Bq/m³); and uranium (0.0018 µg/m³Implement watering, to control dust on unpaved roads and excavation areas.					
compared with 4.07 µg/m ³).	No residual adverse effects.	Watering trucks and spray on technology used in areas of excavation.	Verify implementation of mitigation measures. Measure levels of ²²⁶ Ra; ²³⁰ Th; ²³² Th, and uranium at work sites and along haul roads, to verify modelling predictions.	TSP high volume air sampler filters were sent for additional laboratory analysis in 2021. Radium-226 thorium-232, and uranium exceeded the predicted values for some of the filters in 2021; however, they remained well below the Health Canada reference values. It should be noted that the exceedances of the predicted values appear to be related to laboratory detection limits (uncalculated laboratory results were less than the limit of detection for radium- 226 and thorium-232). The predicted values were based on modeling PM ₁₀ concentrations. Comparing particulate radioactivity on TSP filters to the modelled predictions is taking a conservative approach.	The sample containing the highest net weight of TSP collected each week at each of the monitoring stations was sent for additional analysis to determine the concentration of COPCs in suspended dust.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 232 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Sediment Quality (Sculthorpe Marsh) If remediation work is carried out in the Sculthorpe Marsh, the effect resulting from the sediment removal is expected to reduce invertebrate productivity temporarily. (See also, Terrestrial Environment Component)	Conduct sediment toxicity testing to confirm the need for remediation and /or refine area/extent/scope of any required sediment removal. Develop a Marsh Protection and Restoration Plan, which could include replacement of coarse organic matter and re-planting of shoreline vegetation.	No residual adverse effects.	Remediation is still being discussed with MPH. Site Specific Risk Assessment will be conducted prior to any remediation activities.	The remediation of the Sculthorpe Marsh is not required at this time. The following follow up actions with respect to the Sculthorpe Marsh; monitor recovery of benthic invertebrates and aquatic communities against predicted timelines are not incorporated into this plan.	Remediation is still being discussed with MPH. Site Specific Risk Assessment will be conducted prior to any remediation activities.	Remediation is still being discussed with MPH. Site Specific Risk Assessment will be conducted prior to any remediation activities.
Surface water Quality, Radiological Concentrations of arsenic and uranium will decrease by 78-88 % in the Highland Drive, South Creek, and Brewery Creek. Concentrations of uranium and ²²⁶ Ra would decrease similarly in Alexander Creek. Concentrations of ²²⁶ Ra and uranium are expected to increase in the area between the harbour and the Ganaraska River, during dredging of the harbour, but to remain below Provincial Water Quality Guidelines (PWQOs). Uranium concentrations in the groundwater and down-	include the design (e.g., the low-permeability cover on the LTWMF and permeable reactive barriers installed in Highland Drive South Ravine), operation and management (e.g., storm water management) features of the project proposal. The detailed design (PHP- PHH-N-031) includes a temporary wave attenuator and use of a turbidity curtain for construction of the wave attenuator. An Emergency Response Plan will be developed to address unexpected events. A Spill Contingency Plan will be developed to deal with		 Temporary wave attenuation curtain to be installed during construction of wave attenuation. A Spill Contingency Plan has been developed to deal with unexpected spills of fuels and lubricants. Spill control and clean-up equipment is provided in all work locations. Erosion and sediment control structures are in place and are inspected and maintained regularly. 	 Inteasure concentrations of arsenic and uranium at the Highland Drive South Creek and Brewery Creek; and concentrations of uranium and ²²⁶Ra in Alexander Creek; concentrations of ²²⁶Ra and uranium in the area between the harbour and the Ganaraska River during dredging of the harbour; and uranium concentrations in the groundwater and downgradient surface water in the area of the LTWMF, to verify accuracy of predictions. Review Emergency Response Plan, Spill Contingency Plan and require revisions if necessary, until plans are deemed acceptable. Verify presence of spill 	 No residual adverse effects on surface water. There was no observable decrease in uranium concentrations in Brand Creek (downgradient of the LTWMF). This is not expected until the project evolves, and the waste is remediated. In the Port Hope Harbour, uranium concentrations were observed to exceed the PWQO [15] during dredging. The original EA prediction used theoretical/predicted data inputs to the model. Actual conditions related to daily inputs of water to the inner harbour during dredging have resulted in a different set of conditions, requiring that the proposed EA mitigation measures be 	 Pre-construction monitoring of surface water at the Highland Drive South Ravine Creek, Brewery Creek and Alexander Creek was completed in 2013. Confirmatory sampling took place in 2021, in anticipation of the start of construction at various remediation sites. Surface water sampling was completed during the Port Hope Harbour dredging activities. Uranium exceeded the PWQO [6] and CWQG [7] at PHH-2 in 2021 June and November. Monitoring of the surface water downgradient of the LTWMF (including Lake Ontario) is performed on a continuous, quarterly basis. (Section 10.3.4.1)

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
area of the LTWMF are expected to decrease by 63 %.	and lubricants. Spill control and clean-up equipment will be provided in all work locations. Erosion and sediment control structures will be in place and will be inspected and maintained regularly.			equipment at all work locations. Verify presence of erosion and sediment control structures, and review inspection and maintenance protocol.	Responsible Authorities to ensure a path forward for the protection of Lake Ontario and the Ganaraska River. This has resulted in the creation of a robust monitoring program to ensure the protection of the aquatic environment while dredging activities continue at the Port Hope Harbour.	personnel to confirm the suitability, implementation and effectiveness of processes applied to PHAI project activities in order to comply with contractual obligations, licensing requirements, federal/provincial acts and regulations, environmental management and protection plans, compliance plans and technical specifications. Oversight is applied by CNL taking into consideration the importance and complexity of activities and the organization(s) involved in the management of these activities. Activities performed by PHAI consultants, contractors and service providers are subject to oversight.
Surface Water Quality, Non-Radiological	Groundwater, stormwater, and drainage water	No residual adverse effects.	Required sampling of groundwater, storm water	Verify predicted improvements in surface	There was no observable decrease in contaminant	Pre-construction monitoring of surface water at the
down-gradient surface water quality; reduced	systems, including flow control and quality control,		place during the PH LTWMF construction activities.	Proponent must ensure that	downgradient Brand Creek; however, this is not expected	Alexander Creek was
contaminant loadings to down-gradient streams; and	will be in place.		No residual adverse effects	discharge is not deleterious to aquatic environment (fish)	the waste is remediated.	completed in 2013. Confirmatory sampling is
Ganaraska River are the effects predicted.	isolate harbour work from Lake Ontario.		construction work.	appropriate monitoring must be employed to confirm this. Monitor contaminant	Confirmatory sampling took place at Highland Drive South Ravine Creek, Brewery	anticipation of the start of construction at various remediation sites.
Any storm water flow which permeates the dike during harbour cleanup is not	It is to be noted that subsequent to the acceptance of the		place at Highland Drive South Ravine Creek, Brewery Creek, and Alexander Creek	concentrations in the harbour and Ganaraska River	Creek, and Alexander Creek in 2021 in anticipation of construction activities.	Monitoring of surface water at the Port Hope Harbour

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 234 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
expected to raise contaminant concentrations above PWQOs in the harbour or Ganaraska River. Surface water infiltration into and through contaminated materials, to groundwater and down- gradient surface water, is expected to decrease. Contaminant loadings from LTWMF leachate, discharging to the lake, would be reduced by 44 %.	Environmental Assessment by the RAs, the preliminary design for the Port Hope Project continued to be refined in support of the licence application and some changes to preliminary design concepts were made. Among the design changes was the substitution of the proposed dike for purposes of separating the Approach Channel and Turning Basin from the Outer Harbour during dredging operations with a series of silt curtains to prevent transmission of suspended solids out of the Harbour during dredging; with the curtains being protected from wave damage by a floating wave attenuator designed for the dissipation of wave energy in harbours. This (and all other design refinements), and the potential environmental effects associated with the change, were described in the Engineering Change Summary Report, which was submitted to, and approved by, the RAs. Therefore, the		in 2021 and will continue to take place in 2022.	 during the harbour cleanup following any storms. Monitor mercury and levels of other contaminant of potential concern (COPC) in fish tissue to verify predictions. Verify reduction of contaminant loadings due to leachate discharging to Lake Ontario. Monitor the maintenance of silt curtains. 		 and Ganaraska River Confluence was completed in 2020 and will continue in 2021. Monitoring of the surface water downgradient of the LTWMF (including Lake Ontario) is performed on a continuous, quarterly basis. The PH LTWMF construction activities did not appear to be affecting surface water quality. (Section 10.3.3) Monitoring of COPCs in fish tissue to occur in the project's Maintenance and Monitoring of the silt curtains will occur during the construction period around water features at Alexander Creek, Brand Creek, if necessary, and near Lake Ontario.
	slit barrier and wave attenuator are incorporated					

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 235 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
	into the detailed design description report.					
Sediment Quality (Harbour) A long-term improvement to harbour sediment quality and habitat conditions is predicted.	Beneficial effects will be enhanced by the development of fish habitat enhancement incorporated into the harbour detailed design.	Beneficial effect.	Design of harbour incorporates enhancement to fish habitat. Monitoring to take place in the maintenance and monitoring phase.	Verify design enhancements have improved the fish habitat in the harbour. Monitor sediment quality and habitat conditions.	Not applicable. Expected to be a beneficial effect. Monitoring to take place in the maintenance and monitoring phase.	Monitoring to occur during Maintenance and Monitoring Phase.
Geology and Groundwater En	vironment			1		
Soil Quality, Radiological The mean incremental concentrations of radiological contaminants are expected to be less than 10 % of background at remediation sites. The incremental concentrations at the LTWMF would be less than 20 % of background. The exception is ²³⁰ Th, with an expected 63 % increase in concentration over baseline, during construction and development of the LTWMF, to a predicted mean concentration of 97.7 Bq/kg, with a maximum predicted concentration of 141.9 Bq/kg.	Reduce travel distances within LTWMF from 200 m to 50 m, for equipment distributing off-loaded contaminants. Implementation of a Dust Management Requirements and Plan.	No residual adverse effects.	The Dust Management and Requirements Plan [4] was implemented during the PH LTWMF construction activities and Waterfront sites remediation activities. The Dust Management and Requirements Plan – Small- Scale Sites Remediation [8] was implemented and used for the Package 3, 4 and 5 Small-Scale Sites remediation in 2021.	Measure concentrations of all radiological contaminants at all remediation sites and at the LTWMF to verify modelling predictions. Monitor concentrations of 230Th at the LTWMF perimeter fence, and in the surface soils adjacent to it.	No residual adverse effects. LTWMF: In 2021, Thorium-230 soil concentrations have not increased from baseline (Section 10.3.3.3) Highland Drive: Remediation activities have not commenced at the Highland Drive Site; therefore, the data collected in 2021 can be used to supplement existing baseline data. The 2021 results are similar to the data collected in previous years.	Surface soil monitoring for radiological contaminants of interest around the PH LTWMF and the Highland Drive Landfill Site were monitored in 2021. Monitoring is planned annually for the remainder of the project for both Sites.
Soil Quality, Non-Radiological	See Atmospheric Environment Component.	No residual adverse effects.	No residual adverse effects for PH LTWMF construction work.	Verify predicted soil concentrations of arsenic	LTWMF: In 2021, concentrations of arsenic 5.3 µg/g and 19 µg/g)	Surface soil monitoring for non-radiological contaminants of interest

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Relates to potential disposition of contaminants on surface at perimeter of LTWMF (see <i>Atmospheric</i> <i>Environmental Component</i>). Predicted maximum concentrations: arsenic 4.7 mg/kg; cobalt – 6.67 mg/kg.			Watering trucks and spray on technology used in areas of excavation.	and cobalt at perimeter of LTWMF.	were greater than the predicted concentrations at PH-WWMF-SS-01 and PH- WWWMF-SS-05, respectively. All other sampling locations were below predicted concentrations. (Section 10.3.3.3) There are no immediate environmental concerns.	around the perimeter of the PH LTWMF and the Highland Drive Landfill Site occurred in the 2021. Remediation activities have not commenced at the Highland Drive Site; therefore, the data collected in 2021 can be used to supplement existing baseline data. The 2021 results are similar to the data collected in previous years. Monitoring is planned annually for the remainder of the project for both Sites.
Groundwater Quality, Radiological With removal of source contamination, uranium concentrations at Mill Street and Alexander Street sites are predicted to decline below applicable criterion value within approximately 25 years.	No mitigation required.	No residual effects	Pre-construction ground water monitoring at the Mill Street South site occurred in 2012-2013. Monitoring of selected remediated sites will occur following remediation to verify EA predictions.	Measure uranium concentrations at remediated Mill Street and Alexander Street sites. Report measurements annually to verify modelling predictions.	No residual adverse effects.	Pre-construction ground water monitoring at the Mill Street South site occurred in 2012-2013. Monitoring of selected remediated sites will occur following remediation to verify EA predictions.
Groundwater Quality Volume of groundwater collected for treatment in the LTWMF groundwater drainage water collection system would decrease by approximately 30%; contaminant concentrations expected to decline over time.	Collected groundwater water will be treated to requirements set by the CNSC during licensing of the LTWMF.	No residual adverse effects.	WWTP construction was completed in 2016 – active commissioning commenced in the Fall of 2016.	Measure volume and concentrations of contaminants in LTWMF groundwater collection system annually to verify predictions.	Changes in drainage water quality and volume are expected to occur after remediation work commences. It should be noted that drainage water on site is treated prior to release to the environment.	Monitoring of LTWMF groundwater-drainage water collection system occurred in 2021. Increases in average metal concentrations (including arsenic and uranium) were observed in 2021 compared to 2020. The drainage water location WC- SW4-02 was unable to be

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
						sampled in 2021as this location due to insufficient water. This location has been historically intermittent, and samples have not always been able to be collected. Monitoring of groundwater and drainage water will continue throughout the Construction and Development Phase.
Drainage water volume A 66 % reduction is predicted for the volume of drainage water to be collected in the groundwater/drainage water collection and treatment system, to 27,380 m ³ /a after the cover is placed on the LTWMF.	No applicable.	No applicable.	Not applicable.	Measure volume of drainage water at the LTWMF annually to verify predictions.	Not applicable.	Monitoring of groundwater and drainage water will continue throughout the Construction and Development Phase.
A reduction of 92,110 m ³ /a to 116,280 m ³ /a is predicted for the sum of groundwater and drainage water discharge, an overall volume reduction of 44 %.						
Groundwater Flow It is predicted that the water table will be lower by 10 m, and that the groundwater mounding under the existing facility will dissipate. Groundwater discharge to Brand Creek is predicted to	Not applicable.	Not applicable.	Not applicable.	Confirm lowering of water table. Confirm dissipation of mounding by monitoring water table beneath and adjacent to the LTWMF. Monitor stream flow and	No residual adverse effects.	The average water levels in groundwater monitoring wells in 2021 are generally comparable to previous years. Monitoring will continue throughout the Construction and Development Phase.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 238 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Groundwater discharge to the onsite drainage system is predicted to decrease by 30 %. The treated effluent volume to be discharged to Lake Ontario is predicted to decrease by 42 %.				separation to get groundwater discharge, to confirm 2 % decrease is not exceeded, and that there is a 30 % decrease in groundwater discharge to the onsite drainage system, and a 42 % decrease in the volume of treated effluent discharged to Lake Ontario. Monitor groundwater flow and direction to verify assessment assumption. Continue monitoring to increase understanding		effluent discharged to Lake Ontario is monitored on a continuous basis. Monthly Effluent volumes discharged to Lake Ontario are provided in Section 4.1.6. The total effluent volume in 2021 was 125,000 m ³ .
Groundwater Quality and Quantity No measurable changes of quality or quantity of groundwater and drainage water during LTWMF construction.	Not applicable.	Not applicable.	Not applicable.	Monitor quantity and quality of groundwater and drainage water intercepted during construction to confirm prediction of no measurable change.	No measurable change to groundwater quality was observed in 2021 sampling results. (Section 10.3.3.1).	Drainage water and groundwater was monitored in 2021 and will continue to be monitored throughout the Construction and Development Phase.
Maximum breakthrough of Contaminants of Potential Concern (COPCs) through the LTWMF would be 1 % of PWQO and Ontario Drinking Water Standards (ODWS) criteria.						
Design of LTWMF, including liners and covers Primary and secondary liner units would have maximum hydraulic conductivity of 1x10 ⁻⁷ cm/s. Cover would	Not applicable.	Not applicable.	Not applicable.	Monitor leakage through the primary liner using collection system installed between the primary and secondary liners to verify hydraulic conductivity of the liner units.	Not applicable until maintenance and monitoring.	Monitoring to occur in the Maintenance and Monitoring Phase.

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
have a maximum hydraulic conductivity of 10 ⁻⁸ cm/s. Volume (annual) of leachate generated within the LTWMF is predicted to be 150 m ³ based on the assumption of 1 mm/a leakage through the cover.				Monitor settlement of the LTWMF cover, to confirm the assumption that there will not be excessive settlements of the waste under the cover that would compromise the cover performance. Monitor rate of infiltration through the LTWMF cover to verify the hydraulic conductivity of the cover and confirm the assumed leakage rate through the cover system.		
Volumes of Excavated Wastes Volumes of excavated wastes to be stored in the LTWMF are predicted to be as follows: 620,000 m ³ of low-level radioactive waste (LLRW); 572,000 m ³ of material mixed with LLRW; 51,250 m3 of industrial waste; and 150,000 m3 of Cameco decommissioning and stored waste. Predictions of contaminant concentrations are found in Tables 9.2.2-1 and 9.2.1-2 of the EA Study Report.	Not applicable.	Not applicable.	Not applicable.	Verify the volume and concentrations of excavated waste prior to emplacement in the LTWMF, to confirm the source term volumes and contaminant concentrations used to predict long-term environmental effects.	On-site waste movement occurred from 2021 January 01 to 2021 December 31 (Section 12.1.2).	Volume of waste will be monitored as waste is placed in the cells of the PH LTWMF.

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 240 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Terrestrial Environment						
Preparation of the LTWMF	Relocation of the LTWMF	No residual adverse effects.	CNL performed oversight on	Verify relocation of	No residual adverse effects.	Monitoring planned for
site will result in temporary	storm water management		a regular basis to ensure	stormwater management		active construction phase.
loss of vegetation of 3 % in	pond out of the wooded area		compliance with the	pond.		
Local Study Area and 11 % in	into an area of Cultural		approved Environmental			CNL performed oversight on
Site Study Area, with	Meadow vegetation.		protection and management	Verify development of		a regular basis to ensure
permanent conversion of			plans.	protection and rehabilitation		compliance with the
vegetation communities in	Development of new			plans for the fen and beach		approved Environmental
11 % of Local Study Area and	vegetation communities at		CNL-approved dust	vegetation at the		protection and management
47 % of Site Study Area.	the LTWMF site, rather than		suppressant was used when	Waterworks site.		plans.
	re-establishing pre-		needed to aid in the dust			More details of the
Remediation of sites within	construction conditions.		management for the	Verify implementation of		compliance oversight are
Ward 1 will result in			construction activities.	erosion and sediment		discussed in Section 2.3.
temporary loss of 7.6 % of	Development of a protection			control structures;		
vegetation within Local	and rehabilitation plan for		The construction activities	application of dust		A Dust Monitoring Program
Study Area and 53 % in Site	the fen and beach vegetation		were completed outside the	suppression techniques; and		was carried out by an
Study Area.	at the waterworks site.		migratory bird breeding	rehabilitation of sites.		independent contractor (not
			season.			the prime contractor or CNL)
Remediation of sites outside	Implementation of erosion			Verify extent and duration of		for the PH LTWMF activities
the Highland Drive Site Local	and sediment control		Site-specific rehabilitation	temporary and permanent		to ensure that perceived
Study Area will result in	structures around cleared		and landscape plan will be	loss/change.		organizational conflicts
temporary loss of 34 % (18.3	sites.		created at the end of the			regarding dust monitoring
ha) of vegetation.			construction and	Confirm that no vegetation		results and work activities
	Application of dust		remediation activities.	clearing is occurring during		had been avoided.
	suppression techniques.			breeding season. In		Continuous monitoring
				exceptions, confirm that nest		occurs during the work hours
	Rehabilitation of sites after			survey was conducted and		and results are reported on a
	completion of waste			reviewed.		15-minute interval. Any
	removal.					exceedances as identified in
				Review site-specific		Dust Management and
	Development of a site-			remediation plans to confirm		Requirements Plan [4] are
	specific landscape plan of			incorporation of structural		immediately reported to CNL
	each work site.			habitat qualities and		and the prime contractor to
				variability.		initiate corrective action.
	Vegetation clearing should					
	not take place in migratory					CNL-approved dust
	bird habitat during the					suppressant was used when
	breeding season. In					needed to aid in the dust

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 241 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
	exceptions, when the					management for the PH
	breeding season cannot be					LTWMF construction
	avoided, an avian biologist					activities.
	will conduct a nest survey					
	immediately prior (e.g.,					The PH LTWMF site clearing
	within 2 days) to starting any					activities were completed
	work potentially impacting					from November-March
	migratory bird habitat, to					which is outside the
	identify and locate active					migratory bird breeding
	nests of species covered by					season for this area.
	the Migratory Birds					
	Convention Act. A mitigation					
	plan would be developed to					
	address any potential					
	impacts on migratory birds					
	or their active nests and					
	forwarded for review to					
	Environment Canada prior to					
	implementation.					
	Site-specific rehabilitation					
	plans will incorporate					
	features to re-establish					
	structural habitat qualities					
	and variability for sites					
	(including at Sculthorpe					
	Marsh, if its remediation is					
	warranted).					
Terrestrial (Sculthorpe	If remediation occurs (in the		Not currently applicable,	Follow-up actions with	Not currently applicable,	Remediation of Sculthorpe
Marsh)	Marsh), a Protection and		remediation is still being	respect to the Sculthorpe	remediation is still being	Marsh is still being discussed
	Restoration Plan would be		discussed with MPH. A Site	Marsh, including the	discussed with MPH. An	with MPH. A Site Specific
	developed to ensure no net		Specific Risk Assessment will	requirement for its	MECP approved Site Specific	Risk Assessment will be
	loss of wetland function, and		be conducted prior to any	remediation, are the subjects	Risk Assessment will be	conducted prior to any
	should include:		remediation activities.	of a separate report.	conducted prior to any remediation activities.	remediation activities.
	No excavation into beach			Should remediation of		
	bar;			Sculthorpe Marsh be		

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 242 of 246

Effect	Mitigation Measure	Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
	Protection of willow trees along public trails, from excavation or onsite movement of machinery; Erosion prevention, and; Accelerated soil stabilization and plant growth.			required, EA follow-up monitoring would comprise: Verify development of Protection and Restoration Plan that is acceptable to provincial and federal regulatory agencies. Verify no net loss of wetland		
Human Health and Safety				Tunctions.		
Workers, Non-RadiologicalMaximum dust exposures tonon-radiologicalconventional contaminants -within established weightedaverage criteria (AAQC) foracute 8-hour exposures.For construction activities:annual accident rate of 2.0to 3.0 Lost time Accidents,and 8.0 to 10.0 TotalRecordable Accidents per100 workers. This equates to24.4 recordable accidentsduring construction anddevelopment, with 7.3 of theaccidents resulting in losttime; 7.8 recordableaccidents during siteremediation work, with 2.3of the accidents resulting inlost time.	(See Atmospheric Environmental Component). Personal protection equipment would be supplied to mitigate noise effects. All workers would be provided with and required to implement worker protection measures as set out by the Port Hope Site Health and Safety Plan. Implement a policy that all occupational illnesses and injuries are preventable and adopt an operational objective of zero occupational illnesses and injuries (For details, see the specific elements of this policy as listed under Mitigation Measures in Table 11.9.1 of the Screening	No residual adverse effects.	CNL reviewed and approved contractor plan for Health and Safety for the PH LTWMF projects. Construction contractors will be required to adhere to federal and provincial legislation related to the protection of health and safety. Compliance oversights occurred during the PH LTWMF activities. A discussion of the compliance oversight is in Section 9.	Monitor compliance with relevant federal legislation related to protection of health and safety. Monitor accident rate. Verify the development of an operational policy, and confirm the details conform to the elements proposed as mitigation measures. (Note that some follow-up elements in the Atmospheric Environment are also relevant in that they are fundamentally intended for the protection of worker health and safety).	No residual adverse effects. For construction activities there were three recordable accidents in 2021, none of which resulted in lost time.	Construction contractors will be required to adhere to federal and provincial legislation related to the protection of health and safety. Compliance oversight occurred during the PH LTWMF activities. A discussion of the compliance oversight is in Section 9. Incident rates are being monitored. (Section 9). Contractors conducting work on behalf of the PHAI submit health and safety plans, for CNL's review and acceptance, which are consistent with the requirements of the PHAI OSH Plan [9].

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 243 of 246

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
Noise levels would reach 88 to 96 dBA in construction areas.	Implement a Health and Safety Plan procedure and an Environmental Protection Plan protocol to address the demolition of buildings and the appropriate management of debris materials generated from these activities.		demolition of buildings and the appropriate management of debris materials generated from these activities. Residents were notified when activities were expected to result in a 6 dBA increase in noise.			the PH LTWMF. It can be observed that there are some increases in 2021 but below the predicted range of 12 dBA and the <i>World Health</i> <i>Organization's Guideline for</i> <i>Community Noise</i> level of 70 dBA over a 24-hour period [5].
	Notify residents when activities are expected to result in a 6 dBA increase in noise.		Noise levels at the fenceline of the Port Hope LTWMF did not exceed 70 dBA.			
	Establish an operational protocol that will maintain noise levels at the fenceline below 70 dBA.		Public access was restricted to the PH LTWMF site.			
	Prevent public access to areas where noise levels may exceed 70 dBA.					
Members of the Public, Non-Radiological Air quality; Noise and Non radiological contaminants: See Atmospheric Environment Component for predicted effects; mitigation measures; residual effects after mitigation; and follow- up program features. General Health and Well- being. 22 % of people surveyed expect their level of satisfaction with the community to increase with	(See Atmospheric Environmental Component) Implement protocols for delivering information to and receiving concerns from, residents to address their concerns for health, sense of well-being, feelings of safety and security and of satisfaction with their community.	Increased stress and adverse effects to health and general well-being resulting from negative changes to people's feelings of health and sense of well-being, feelings of personal security, and feelings of satisfaction with their community.	In 2021, twenty-two Tier 1 complaints were received and resolved at the CNL level. Five Tier 2 complaints were received and two were resolved at the CNL level. The remaining three complaints are on hold until spring of 2022 to be re- assessed at that time. Public attitude survey was completed in 2018. Next public attitude survey was to take place in 2020, and 2021 but has been postponed due	Monitor communications protocol. Survey members of the public to confirm level of satisfaction with the community.	Public attitude survey was completed in 2018. Next public attitude survey to take place in 2022.	Since 2002, the CNL has commissioned bi-annual public attitude surveys to monitor public awareness of the PHAI, identify issues and concerns, determine communication needs of the public, and provide data regarding public attitudes. (Section 1) discusses PHAI interactions within the community of Port Hope. The next scheduled public attitude survey will take place in 2022.

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
completion of the project; 14 %, to decrease.						
Workers, Radiological Workers excavating onsite wastes and placing on- and offsite wastes are expected to receive annual radiation doses between 1.6 and 2.7 mSv/a. Workers dewatering sediment during harbour cleanup are expected to receive doses up to 7.6 mSv/a.	(See Atmospheric Environmental Component) PHAI Radiation Protection Plan includes the ALARA principle. Other requirements of the plan include completion of Radiation Safety Assessments, use of Work Permits/Assessments and worker rotation in and out of positions where there is a risk of receiving a higher dose.	No residual adverse effects.	On-site remediation continued in 2021. Activity involved hauling of on-site Arsenic waste and some quantity of Marginally Contaminated Waste. Hauling of off-site waste to LTWMF began in 2018.	Monitor radiation doses to confirm accuracy of predictions. (Note that some follow-up elements in the Atmospheric Environment are also relevant in that they are fundamentally intended for the protection of worker health and safety).	For Port Hope Sites, individual annual doses ranged from 0.01 mSv to 0.38 mSv. The collective radiation dose was 11.63 person-mSv. The average annual dose was 0.02 mSv.	Upon comparison between the actual and predicted doses, the doses exposed to the workers were below the predicted levels. This has proven the mitigation measures were effectively executed.
Members of the Public, Radiological During remediation, Ward 1 adjacent residents: radiation dose of 0.074 mSv/a for adult on median diet, 0.16 mSv/a, for infant on upper bound diet. During construction and development, Ward 1 residents: 0.06 mSv/a for an adult, to 0.25 mSv/a, for an infant. Ward 2 residents: 0.12 mSv/a, for an adult on a median diet, to 0.25 mSv/a, for an infant on an upper bound diet.	(See Atmospheric Environment Component) No additional proposed mitigation.	No residual adverse effects.	Remediation activities continued in 2021.	Monitor radiation doses to confirm accuracy of predictions. (Note that some follow-up elements in the Atmospheric Environment are also relevant in that they are fundamentally intended for the protection of the health and safety of members of the public).	Fenceline gamma dose in 2021 contributed to less than 1 % of the annual dose limited for occupational exposures for members of the public of 1 mSv/a. Total dose to the public was assessed with the inclusion of radon exposure at the fenceline. A total effective dose was estimated to be 2 % for occupational exposures for members of the public.	The radiation dose to public was measured to be 0.02 mSv/a, which is 2 % of the annual dose limit for occupational exposures for members of the public of 1 mSv/a (1000 µSv/a).
Cumulative Effect (in the Biop	hysical Environment)	Ι		_		
Radiological Incremental annual average radon concentrations would	(See Atmospheric Environment Component).	No residual adverse effects.	Remediation activities continued in 2021.	Verify radon concentrations, radiological constituents of re suspended dust, at	Radon monitoring commenced at 4 locations around the PH LTWMF in	Assessment of average radon concentrations at 2 km will be performed on a quarterly

Port Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 245 of 246

Port

Predicted Environmental Effect	Mitigation Measure	Residual Environmental Effect (remaining after mitigation)	Status of Mitigation Measures – 2021	EA Follow-up Monitoring Requirement	Predicted Environmental Effect - 2021	Status of EA Commitments - 2021
be indistinguishable from				distance of 2 km and 1 km,	2018. These locations were	basis to receive better
background at a distance of				respectively.	positioned at approximately	statistics.
2 km; radiological					2 km distance from the	
constituents of re-suspended				(Note that this follow-up	LTWMF Controlled Area	In 2018 July, CNL deployed a
dust would not be				monitoring requirement is	fenced boundary. The	dust fall jar monthly,
measurable beyond				incorporated into the	average radon concentration	following the MECP siting
approximately 1 km.				Atmospheric Environment	for 2021 across all locations	requirements, to measure
				follow-up program.)	was calculated to be 26.4	the potential dust deposition
					Bq/m ³ . The highest noted	at 1 km from the site. The
					radon concentration level	location was approximately 1
					was 37 Bq/m ³ which is below	km north of the PH LTWMF
					the environmental trigger	site. The dustfall jar was
					level for radon 150 Bq/m ³ .	deployed until one year of
						data was collected, in which
						the EA prediction that
						radiological constituents of
						re-suspended dust will not
						be measurable beyond
						approximately 1 km from the
						Site was verified.

rt Hope Project Annual Compliance Monitoring Report for 2021 4501-508760-ACMR-004 Rev. 1 Page 246 of 246