Rapport annuel de surveillance de la conformité

Rapport annuel de surveillance de la conformité de 2021

4501-508760-ACMR-004

Révision 1

Préparé par :

Préparé par :			2023-01-09
	C. O'Neill		Date
	Responsable de		
	l'intégration réglementaire		
Révisé par :			2023/01/09
		,	
	C. O'Neill		Date
	Responsable de		
	l'intégration réglementaire		
Approuvé par :			2023/01/09
	S. Morris		Date
			24.0
	Gestionnaire, Programmes		

et conformité

Cette page concerne les contrôles de contenu qui s'appliquent à ce document. Si aucun contrôle de contenu ne s'applique, la liste sera vide.

Historique des révisions

Nº de la révision	Date	Détails de la révision	Préparé par	Commentaire/Examiné par	Approuvé par
R1	2023-01-09	Révisé pour tenir compte des commentaires du personnel de la Commission canadienne de sûreté nucléaire et d'Environnement et Changement climatique Canada, tel que précisé dans le document 4500- CNNO-22-0018-L.	C. O'Neill	C. OʻNeill	S. Morris
RO	2022-04-29	Document émis comme étant « approuvé pour utilisation ».	C. O'Neill	S. Morris	M. Conan
D1	2022-04-07	Document émis pour « révision et commentaires ».	C. O'Neill	M. Conan	
DO	2022-01-06	Document émis pour « révision et commentaires ».	M. Healy	S. Anderson. C. Staff S. D. Beauchamp Manager C. Bobzener P. Estrada- Evans K. Fraser M. Galanter A. Golbabai A. Ghuman B. Gummow M. Jones P. LeBel A. McMurray S. Morris C. O'Neill M. Owen L. Reed B. Smith D. Snowden D. Thiru N. van Dijk S. Weeks	

Rapport annuel	de	sur	veilla	ance	de	la
conformité						

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1

		S. Whillier	

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 5 de 120

SOMMAIRE

Ce rapport annuel de surveillance de la conformité pour l'année civile 2021 a été établi conformément à la condition 2.3 du permis WNSL-W1-2310.02/2022 (permis du PPH) [1] et au Manuel des conditions du permis du Projet de gestion à long terme des déchets radioactifs de faible activité de Port Hope (MCP-PPH)[2]. Il s'agit du rapport sommaire de la surveillance de la conformité et du rendement opérationnel.

Le Bureau de gestion du Programme des déchets historiques (BG-PDH) des LNC et les projets de l'Initiative dans la région de Port Hope sont situés sur les terres visées par le traité des Premières Nations signataires des traités Williams, plus précisément le traité signé avec les Premières Nations des Mississaugas d'Alderville, de Curve Lake, de Hiawatha et de Scugog Island.

Les Premières Nations des Mississaugas sont également signataires de divers traités datant des $18^{\rm e}$ et $19^{\rm e}$ siècles qui couvraient des territoires situés dans différentes parties du Centre-Sud de l'Ontario. En 1923, les Premières Nations des Mississaugas et les Premières Nations Chippewa de Rama, Beausoleil et Georgina Island ont signé les traités Williams et, plus de 90 ans plus tard, en juin 2018, elles se sont unies pour veiller à ce que leurs droits sur ces terres et la relation qu'elles entretiennent avec celles-ci soient respectés grâce à un accord renouvelé avec le Canada et la province de l'Ontario.

La zone dans laquelle nous sommes situés abrite également des peuples autochtones des quatre coins de la région et du Canada. Les LNC remercient ces peuples de pouvoir travailler sur ces terres et d'utiliser ces cours d'eau d'importance traditionnelle et culturelle.

Le Projet de gestion à long terme des déchets radioactifs de faible activité de Port Hope (PPH) fait partie de l'Initiative dans la région de Port Hope (IRPH). L'IRPH est un projet communautaire visant à mettre au point et à appliquer localement une solution sécuritaire de gestion à long terme des déchets radioactifs historiques de faible activité (DRFA) dans les municipalités de Port Hope et de Clarington. L'IRPH a été établie en vertu de l'*Entente pour le nettoyage et la gestion sécuritaire à long terme des déchets radioactifs de faible activité situés dans la ville de Port Hope, le canton de Hope et la municipalité de Clarington (l'« entente en droit »)[3]. Cette entente, conclue entre le gouvernement du Canada et les municipalités de Port Hope et de Clarington en vue de gérer les déchets radioactifs de faible activité dans chaque collectivité, est entrée en vigueur le 29 mars 2001.*

Les Laboratoires nucléaires canadiens (LNC) sont chargés de diriger et d'exécuter l'IRPH conformément à l'entente en droit [3], aux permis qui leur ont été accordés et aux conclusions des évaluations environnementales (EE). Les LNC assument la responsabilité globale de la gestion de l'IRPH au nom d'Énergie atomique du Canada limitée (EACL), une société d'État fédérale.

L'information sur les différents sites fournie dans le présent rapport complète les données du Rapport annuel de surveillance de la conformité des Laboratoires nucléaires canadiens [4], qui

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 6 de 120

fait le point sur 14 domaines de sûreté et de réglementation (DSR) s'appliquant aux LNC. On trouvera ci-dessous un aperçu du rendement des activités réalisées en 2021.

Communications et consultation dans le cadre de l'IRPH

- Les relations avec les communautés autochtones, les consultations publiques et les activités visant les intervenants et le public se sont poursuivies, conformément au Programme d'information publique de l'IRPH.
- En 2021, les LNC ont reçu 22 plaintes de niveau 1 qui ont toutes été résolues par les LNC. Ils ont également reçu cinq plaintes de niveau 2, dont deux ont été résolues par les LNC. Les trois autres plaintes sont en suspens et devraient faire l'objet d'une nouvelle évaluation au printemps 2022.

Système de gestion

- Les LNC ont produit tous les rapports obligatoires, conformément à la section 3.2.3 du *Manuel des conditions de permis*[2].
- En 2020, tous les sites du Bureau de gestion du Programme des déchets historiques ont fait l'objet d'un plan d'auto-évaluation annuel pour l'exercice 2020-2021. Ce plan découle du plan d'évaluation intégré des LNC.
- En 2021, SAI Global a réalisé une vérification externe pour le maintien de la certification ISO 9001:2015 attribuée aux LNC pour le PPH.

Gestion de la performance humaine

- Un large éventail d'activités de formation obligatoires, et d'autres activités de formation ciblées, ont été menées en 2021 afin de s'assurer que tous les employés et entrepreneurs du PPH suivent la formation obligatoire (y compris la formation de mise à niveau) correspondant à leurs fonctions et leur permettant de veiller à l'exploitation sûre de l'installation du PPH et d'exécuter des travaux en vertu du permis du PPH[1].
- Le comité de révision des programmes a poursuivi ses réunions en 2021 afin d'appuyer l'approche systématique de l'IRPH en matière de formation.

Installations et équipement

- Installation de gestion à long terme des déchets de Port Hope (IGLTD PH) : en 2021, on a continué à placer des déchets dans le monticule.
- Sites à petite échelle : la caractérisation et la conception des propriétés et des routes se sont poursuivies tout au long de l'année 2021. Parmi les progrès, signalons que 4 609 propriétés avec lots extérieurs ont été caractérisées et que l'on a trouvé des DRFA sur 1 098 lots.
 - Par ailleurs, 4 075 propriétés avec des espaces intérieurs ont été caractérisées et 218 d'entre elles contenaient des DRFA.
 - En 2021, un nouveau contrat a été attribué (Contrat 3 visant les emprises routières)
 pour caractériser 56 emprises routières figurant au nombre de sites prioritaires. Le

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 7 de 120

- travail sur le terrain a commencé en octobre 2012 et, en vertu de ce contrat, des travaux de forage ont été effectués sur 13 emprises routières en 2021.
- La caractérisation des propriétés intérieures est restée en suspens en 2021 en raison des restrictions liées à la pandémie de COVID-19.
- En tout, 49 plans de nettoyage de propriétés extérieures et cinq plans de nettoyage d'emprises routières ont été réalisés, tandis que 127 plans de nettoyage de propriétés extérieures et 11 plans de nettoyage d'emprises routières sont en cours de réalisation, ce qui révèle une production importante de plans de nettoyage.
- L'excavation des déchets historiques de faible activité à l'extérieur et le remblayage et le nivelage aux niveaux existants ont été réalisés sur 29 propriétés.
- L'intérieur d'une propriété a été assaini.
- Sites de stockage temporaires : Aucune activité d'assainissement n'a été réalisée en 2021 sur des sites de stockage temporaire, tous ces sites ayant déjà été assainis.
- Secteur riverain :
 - Le site des viaducs a fait l'objet d'un projet de délimitation poussée qui s'est terminé au printemps 2021.
 - Les travaux d'assainissement ont pris fin au cours de l'été 2021 sur le site du 95, rue Mill.
 - Les travaux d'assainissement ont commencé en octobre 2021 sur le site des viaducs.
 - Les travaux d'assainissement ont commencé au cours de l'été 2021 sur le site de regroupement de la rue Strachan et on a fini de retirer les déchets en mars 2022.
 - Le dragage mécanique des sédiments du port de Port Hope a commencé en juin 2021.
 - La mise à niveau du système de traitement des eaux du port a commencé au printemps 2021 et prendra bientôt fin. La mise en service est prévue à la fin du mois de mars 2022.
 - L'appel d'offres pour le secteur des aqueducs ouest et du ravin de la rue Alexander a été publié sur Merx en janvier 2022.
- Secteur de la promenade Highland :
 - On a mis la dernière main aux plans de nettoyage, aux spécifications techniques et au cahier des charges en vue de décontaminer la décharge de la promenade Highland.
 - On a mis au point un nouveau plan conceptuel pour assainir le ravin de la promenade Highland Sud et installer une barrière réactive perméable.
 - Une enquête sur les substances désignées (DSS) a été menée dans le hangar à bateaux du ravin de la promenade Highland Sud.
 - Le conseil de la municipalité de Port Hope a approuvé le morcellement de la propriété du ravin de la promenade Highland Sud afin de séparer la maison du 28, rue Bedford du lot du ravin visé par les travaux d'assainissement.
- Sites industriels :

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 8 de 120

- Quai central : L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué.
- Parc Lion : L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué.
- Usine de gazéification du charbon : L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué.
- La lagune Chemetron : Le plan d'assainissement a été mis à jour en 2021 en fonction de l'échantillonnage de l'eau et des sédiments effectué en 2020.
- Les systèmes de traitement des eaux de l'usine de traitement des eaux usées de Port Hope ont eu un temps de fonctionnement opérationnel supérieur à 98 %.
- 291 100 m³ d'influents ont été prélevés par l'usine de traitement des eaux usées de Port Hope en 2021. Cela représente une diminution de 2 % du volume par rapport aux volumes enregistrés en 2020.

Conception matérielle

- Le PPH adhère au Programme de conception des LNC et fait appel à CRL Design Engineering pour effectuer des modifications et des mises à niveau de l'équipement existant, conformément au processus de contrôle des modifications techniques des LNC.
- En 2021, les modifications et mises à niveau planifiées comprenaient ce qui suit :
 - Optimisation des systèmes mécaniques et de contrôle du processus de l'évaporateur afin de maximiser son efficacité opérationnelle.
 - Modifications mineures au processus de circulation de l'eau de service afin d'améliorer la performance des sous-systèmes dépendants et de mieux conserver l'eau traitée.
 - Finalisation de la planification et installation d'une unité supplémentaire d'osmose inverse pour augmenter la capacité de traitement de l'eau.
 - Poursuite de la planification de l'installation de réservoirs de stockage plus grands pour contenir un volume accru de soude, d'hydroxyde de sodium et d'acide sulfurique.
 - Modifications supplémentaires au processus de traitement du concentré (saumure) pour améliorer l'élimination du sel et l'équilibre du retour dans le bassin.
 - Fin de l'installation et optimisation du fonctionnement des processus perfectionnés de récupération de chaleur. Ces changements ont donné de très bons résultats en ce qui concerne l'efficacité du traitement primaire et la réduction de l'encrassement du système en général.

Radioprotection

• Les activités et initiatives reposant sur le principe ALARA (niveau le plus faible qu'il soit raisonnablement possible d'atteindre) continuent d'être au premier plan du programme de radioprotection du Projet de Port Hope (PPH).

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 9 de 120

- Les doses de rayonnement auxquelles sont exposés les travailleurs ont été maintenues au niveau le plus faible qu'il soit raisonnablement possible d'atteindre (principe ALARA) et les doses auxquelles le public a été exposé sont restées bien en deçà des limites réglementaires.
- Une formation d'appoint a été dispensée sur l'efficacité du processus de planification du travail sous rayonnement. Cette formation traitait également du processus d'autorisation du travail sous rayonnement qu'il faut suivre en vertu du programme de contrôle intégré du travail.
- Il n'y a pas eu de dépassement des limites réglementaires et des niveaux d'intervention dans le programme de surveillance des doses.

Santé et sécurité classiques

- Toutes les activités autorisées continuent d'être menées en toute sécurité.
- Le Comité sur la santé et la sécurité au travail du Bureau de gestion du Programme des déchets historiques s'est concentré sur l'ampleur de la pandémie de COVID-19 et sur la transition d'un grand nombre des effectifs vers le télétravail.
- Le projet a été interrompu provisoirement pour des raisons de sécurité, des accidents liés à l'équipement lourd ayant été évités de justesse et les cas de blessures corporelles ayant enregistré une hausse. Pendant cette pause, on a procédé à une évaluation de l'ensemble du projet puis à une vérification des dispositifs de contrôle et des risques liés aux équipements.
- En tout, 310 inspections de santé et sécurité ont été réalisées en 2021.

Protection de l'environnement

 Les efforts déployés en vue de protéger l'environnement et d'atténuer les effets du projet sont toujours efficaces; les changements par rapport aux valeurs de référence sont minimes et généralement conformes aux prévisions de l'évaluation environnementale (EE). Le suivi de l'EE et la surveillance opérationnelle se sont poursuivis en 2021.

Gestion des urgences et protection-incendie

- Tous les exercices annuels d'intervention en cas d'incendie ont été réalisés conformément aux exigences du programme et de la réglementation.
- Les plans d'urgence du site ont été mis à jour en fonction des changements de personnel et des processus touchés par les restrictions liées à la pandémie de COVID-19.
- Un plan quinquennal d'exercices de l'IRPH a été élaboré afin d'améliorer la planification et le suivi des attentes en matière d'exercices annuels.
- Pendant que les plans d'urgence étaient mis à jour, les délégués aux urgences et le responsable du personnel des LNC ont suivi des ateliers de recyclage.
- La formation du personnel sur les procédures d'urgence a été effectuée parallèlement à la mise à niveau de l'infrastructure de notification d'urgence.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 10 de 120

• Les projets d'investissement et d'entretien et de réparation ont fait l'objet d'évaluations de dépistage des incendies dans le cadre du processus de contrôle des modifications techniques des LNC.

Gestion des déchets

- L'installation de gestion à long terme des déchets et l'usine de traitement des eaux usées de Port Hope ont continué à fonctionner conformément au *Manuel des conditions de permis*[2].
- Le déplacement des déchets sur le site a eu lieu du 1^{er} janvier 2021 au 31 décembre 2021. Outre les déchets transférés d'un endroit à l'autre sur le site même, les déchets livrés à l'installation de gestion à long terme des déchets de Port Hope provenaient de divers endroits, notamment de Cameco, des sites du secteur riverain, de sites à petite échelle et du port (les sédiments).
- De plus, 22 tonnes de déchets résiduels de traitement provenant de l'usine de traitement des eaux usées de Port Granby ont été placées pour y être gérées à long terme.
- L'usine de traitement des eaux usées de Port Hope a reçu 4 446 tonnes de concentrats provenant de l'usine de traitement des eaux usées de Port Granby.

Sécurité

- Les entrepreneurs exécutant des travaux sur le site du PPH ont continué à se conformer aux politiques et programmes de sécurité des LNC, y compris au plan de sécurité de l'Initiative dans la région de Port Hope (IRPH), comme le confirment les résultats du programme de surveillance des LNC.
- En 2021, aucun événement de sécurité ne s'est produit dans le cadre du PPH.

Garanties et non-prolifération

- Le PPH a continué à adhérer au programme de gestion des matières nucléaires et des garanties des LNC.
- Environ 25 428 kgU de déchets provenant de Cameco ont été reçus dans la zone de bilan matière et stockés à l'installation de gestion à long terme des déchets de Port Hope.
- L'inventaire des matières nucléaires dans la zone de bilan matières CN-2 contenait trois articles en moins en 2021 (deux articles de source anonyme et un flacon souvenir). Ces articles ont été envoyés à Chalk River à des fins de gestion et de réaffectation à long terme.
- En août 2021, l'Agence internationale de l'énergie atomique (AIEA) a procédé au remplacement de routine des scellés du moniteur du portail de l'AIEA.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 11 de 120

Emballage et transport

- En vertu du Programme de transport de marchandises dangereuses de l'IRPH, on a continué à assurer la sécurité du transport et de l'expédition de marchandises dangereuses hors site, conformément à toutes les lois et réglementations applicables, ainsi qu'aux politiques et procédures de l'entreprise.
- Le site du PPH a continué de recevoir des marchandises dangereuses provenant de fournisseurs hors site (produits chimiques consommables, carburant diesel et propane).
- En 2021, il n'y a pas eu d'événements à déclarer liés au programme de transport de marchandises dangereuses.

Les LNC sont résolus à respecter des normes élevées en matière de sûreté et de sécurité opérationnelles. L'information et les données présentées dans ce rapport appuient la conclusion selon laquelle le site du PPH a atteint un rendement sûr et sécuritaire en 2021 et que des efforts ont été déployés pour améliorer encore davantage les résultats.

Pour obtenir une description détaillée des initiatives rigoureuses d'atténuation et de contrôle que les LNC ont mis en place pour protéger leurs employés, entrepreneurs, visiteurs, et pour assurer la sécurité des opérations du site pendant la pandémie de COVID-19, voir le résumé présenté dans le rapport annuel de surveillance de la conformité des LNC [4].

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 12 de 120

Table des matières

SECTION

P/	AGE
.1.1 Bureau d'information publique	24
.1.2 Site Web	24
.1.3 Médias sociaux	25
.1.4 Avis aux médias	25
.1.5 Bulletin d'information du projet	25
2.1 Rapports sur le rendement	26
.2.2 Divulgations publiques	26
.3.1 Communautés et organisations autochtones	27
.3.2 Travail de liaison	28
.3.3 Visites de sites	29
.3.4 Notifications directes	29
.4.1 Présentations	30
.4.2 Visites publiques du site	31
.4.3 Campagnes d'information ciblées	32
.4.4 Communications au sujet des sites à petite échelle	32
.5.1 Liaison municipale	34
5.2 Groupe de surveillance de l'entente en droit	34
5.3 Liaison avec la communauté des entreprises	34
.5.4 Communications internes	34
5.5 Énergie atomique du Canada limitée (EACL)	35
5.6 Commission canadienne de sûreté nucléaire (CCSN)	35
.2.1 Vérifications	36
2.2 Inspections	37
.2.3 Auto-évaluations	38
.2.1 Formation obligatoire	39
.2.2 Formation des entrepreneurs	42

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 13 de 120

3.2.3	Résumé des évaluations de la formation	42
4.1.1	Opérations d'assainissement de l'environnement	43
4.1.2	Infrastructure habilitante	43
4.1.3	Sites de petite échelle	44
4.1.4	Grands sites	46
4.1.5 Hope	Fonctionnement continu de la nouvelle usine de traitement des eaux usées de F 50	ort'
4.1.6	Usine de traitement des eaux usées de Port Hope	52
4.1.7	Dotation de l'installation	56
4.2.1	Événements devant être signalés à la CCSN	56
4.2.2	Événements devant être signalés à d'autres organismes de réglementation	57
4.2.3	Suivi des événements liés à l'exploitation	57
4.2.4	Notification de conflits ou d'incohérences	58
6.1.1	Ancien bâtiment de traitement des eaux de Welcome	60
6.1.2	Usine de traitement des eaux usées de Port Hope (UTEU-PH)	60
6.1.3	Niveaux d'intervention à l'usine de traitement des eaux usées de Port Hope	60
6.1.4	Mises à niveau techniques	61
8.1.1	Initiatives et activités ALARA	63
8.1.2	Contrôle de la contamination	64
8.1.3	Sources scellées	65
8.1.4	Interprétation des quantités de doses rapportées	66
8.2.1	Discussion des données sur les doses	71
8.2.2	Changements ou tendances des doses de rayonnement	71
8.2.3	Dépassement du programme	71
9.1.1	Comité local de santé et sécurité	72
9.1.2	Inspections	73
9.1.3 entraîr	Rapport d'enquête de situation comportant des risques (RESCR) et incidents nant une perte de temps (IEPT)	73
10.2.1	Surveillance de l'environnement	75
10.3.1	Méthodologie	77

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 14 de 120

10.3.	2 Surveillance de l'environnement atmosphérique
10.3	3 Surveillance géologique et phréatique
10.3	4 Surveillance de l'environnement aquatique
11.1.	1 Manœuvres et exercices
11.1.	2 Formation
11.1.	3 Collaborations externes
11.1.	4 Situations d'urgence imprévues 96
11.2.	1 Exercices d'intervention en cas d'incendie
11.2.	2 Collaborations externes
11.2.	3 Vérifications et inspections par des tiers
11.2.	4 Analyse des risques d'incendie
12.1.	1 Opérations de gestion des déchets
12.1.	2 Inventaire des déchets99
13.1.	1 Incident relatif à la sécurité
14.1.	1 Inventaire des matières nucléaires
14.1.	2 Activités de l'Agence internationale de l'énergie atomique (AIEA) 103
15.1.	1 Expédition
FIGURES	
Figure 1 :	Consultations de l'IRPH en 202123
Figure 2 :	Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (MST, pH et radium-226)54
Figure 3:	Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (plomb, uranium et zinc) 55
Figure 4:	Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (aluminium, arsenic et cuivre)55
Figure 5 :	Emplacement des échantillonneurs d'air à grand débit de l'IGLTD-PPH 111
Figure 6 :	Surveillance de la qualité de l'air – Site de regroupement du prolongement de la rue Pine
Figure 7 :	Lieux de surveillance du bruit à l'IGLTD-PH113
Figure 8 :	Lieux de surveillance du bruit sur l'itinéraire de transport du centre114

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 15 de 120

Figure 9 : Lieux de surveillance du bruit sur l'itinéraire de transport du nord 115
Figure 10 : Lieux de surveillance du bruit sur l'itinéraire de transport du sud 116
Figure 11 : Lieux de surveillance des eaux souterraines sur la promenade Highland 117
Figure 12 : Lieux de surveillance des eaux souterraines (EE-PPG)
Figure 13 : Lieux de surveillance des eaux souterraines sur la promenade Highland 119
TABLEAUX
Tableau 1 : Activités de communication en ligne de l'IRPH 2021
Tableau 2 : Activités de liaison de l'IRPH avec les Autochtones en 2021 29
Tableau 3 : Activités de communication et de mobilisation du public dans le cadre de l'IRPH en 2021
Tableau 4 : Vérifications externes
Tableau 5 : Formation du personnel d'exploitation de l'IRPH en 2021 41
Tableau 6 : Événements devant être signalés à la CCSN dans le cadre du PPH en 2021 56
Tableau 7 : Nombre des incidents enregistrés dans ImpActs (PPH)
Tableau 8 : Événements de contamination
Tableau 9 : Doses efficaces de rayonnement reçues par le personnel de l'IRPH, période de dosimétrie actuelle de 5 ans (2021-2025)
Tableau 10 : Dose efficace dans le cadre du PPH
Tableau 11 : Répartition de la dose équivalente à la peau pour le PPH 69
Tableau 12 : Résumé des composants de dose reçus dans le cadre d'activités autorisées en 2021 a
Tableau 13 : Résumé des taux de blessures dans le cadre du PPH
Tableau 14 : Déchets transférés à l'IGLTD-PH

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 16 de 120

Reconnaissance du territoire

Le Bureau de gestion du Programme des déchets historiques (BG-PDH) des LNC et les projets de l'Initiative dans la région de Port Hope sont situés sur les territoires traditionnels et ceux des Premières Nations visés par les traités Williams, plus précisément le traité signé avec les Premières Nations des Mississaugas d'Alderville, de Curve Lake, de Hiawatha et de Scugog Island.

Les Premières Nations des Mississaugas sont également signataires de divers traités datant des $18^{\rm e}$ et $19^{\rm e}$ siècles qui couvraient des territoires situés dans différentes parties du Centre-Sud de l'Ontario. En 1923, les Premières Nations des Mississaugas et les Premières Nations Chippewa de Rama, Beausoleil et Georgina Island ont signé les traités Williams et, plus de 90 ans plus tard, en 2018 juin, elles se sont unies pour veiller à ce que leurs droits sur ces terres et la relation qu'elles entretiennent avec celles-ci soient respectés grâce à un accord renouvelé avec le Canada et la province de l'Ontario.

La zone dans laquelle nous sommes situés abrite également des peuples autochtones des quatre coins de la région et du Canada. Les LNC remercient ces peuples de pouvoir travailler sur ces terres et d'utiliser ces cours d'eau d'importance traditionnelle et culturelle.

L'Initiative dans la région de Port Hope représente l'engagement du gouvernement du Canada à mettre en application les solutions demandées par la collectivité pour assurer le nettoyage et la gestion locale à long terme des déchets radioactifs historiques de faible activité se trouvant dans les municipalités de Port Hope et de Clarington. Les déchets sont le résultat des pratiques de raffinage de l'ancienne société d'État, Eldorado Nucléaire limitée, et de ses prédécesseurs du secteur privé. La raffinerie Eldorado a été établie dans les années 1930 sans que les peuples autochtones de la région ne soient consultés.

Une entente juridique conclue en mars 2001 entre le gouvernement du Canada et les deux municipalités définit le cadre et établit les responsabilités pour le PPH et le projet de Port Granby. Cet accord a marqué le lancement de l'IRPH.

Par l'entremise du Bureau de gestion du Programme des déchets historiques, les Laboratoires nucléaires canadiens (LNC) mettent en œuvre l'IRPH au nom d'Énergie atomique du Canada limitée, une société d'État fédérale.

Histoire autochtone de la région de Port Hope

Cette histoire autochtone nous a généreusement été fournie par les Premières Nations de Curve Lake - référence de la publication : *Gitiga Migizi and Julie Kapyrka, 2015 Before, During, and After: Mississauga Presence in the Kawarthas*. À Peterborough, Archaeology, Dirk Verhulst, éditeur, p. 127 à 136. Peterborough, Ontario : Chapitre de Peterborough de la Société archéologique de l'Ontario

Les terres ancestrales des Michi Saagiig (Anishinaabeg de Mississauga) englobent une vaste région de ce qu'on appelle aujourd'hui le sud de l'Ontario. Les Michi Saagiig sont connus

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 17 de 120

comme « les peuples de l'embouchure des grandes rivières » et étaient également connus comme « les peuples du saumon » qui occupaient la rive nord du lac Ontario, là où les divers affluents se déversaient dans le lac, et pêchaient à cet endroit. Leurs territoires s'étendaient vers le nord, jusque dans la région des lacs Kawarthas et au-delà. En hiver, ils se séparaient en petits groupes et chassaient et piégeaient sur ces terres. Au printemps, ils revenaient séjourner au bord des lacs et y restaient tout l'été.

Les Michi Saagiig étaient un peuple essentiellement nomade. Ils parcouraient de longues distances pour assurer leur subsistance. Parmi les nations autochtones, ils avaient aussi la réputation d'être des « gardiens de la paix ». Les terres natales des Michi Saagiig étaient situées directement entre deux confédérations très puissantes : La Confédération des Trois Feux, au nord, et la Confédération des Haudenosaunee, au sud. Les Michi Saagiig étaient les négociateurs, les messagers et les diplomates, et ils ont réussi à maintenir la paix dans cette région de l'Ontario pendant de nombreuses générations.

D'après la tradition orale, les Michi Saagiig habitent cette région de l'Ontario depuis des milliers d'années. Ces récits évoquent les « Anciens », qui parlaient un ancien dialecte algonquin. Ces histoires racontent que la phonologie ojibwée actuelle est le produit d'une longue évolution ayant connu cinq grandes périodes. Les origines de cette langue remonteraient donc à des temps très anciens. Les Michi Saagiig d'aujourd'hui sont les descendants des peuples anciens qui vivaient en Ontario durant les périodes archaïque et paléo-indienne. Ce sont les premiers habitants du sud de l'Ontario, et ils sont encore là aujourd'hui.

Les territoires traditionnels des Michi Saagiig s'étendent de Gananoque à l'est, tout le long de la rive nord du lac Ontario, à l'ouest jusqu'à la rive nord du lac Érié, à Long Point. Le territoire s'étend aussi loin au nord que les affluents qui se jettent dans ces lacs, de Bancroft et au nord des hautes terres de Haliburton. Cela comprend également tous les affluents qui s'écoulent de la hauteur des terres au nord de Toronto, comme la moraine d'Oak Ridges, et toutes les rivières qui se jettent dans le lac Ontario (la Rideau, la Salmon, la Ganaraska, la Moira, la Trent, la Don, la Rouge, l'Etobicoke, la Humber et la Credit, ainsi que les ruisseaux Wilmot et 16 Mile) en passant par la baie de Burlington et la région du Niagara, y compris les rivières Welland et Niagara, et au-delà. Le côté ouest de la Nation Michi Saagiig était situé autour de la rivière Grand, qui servait de route de portage, le portage de la Niagara étant trop dangereux. Les Michi Saagiig faisaient du portage depuis l'actuelle ville de Burlington jusqu'à la rivière Grand et voyageaient vers le sud jusqu'aux eaux libres du lac Érié.

Les histoires orales des Michi Saagiig parlent également de l'arrivée de personnes sur leurs territoires entre 500 et 1 000 ans après Jésus-Christ, qui cherchaient à établir des villages et une économie fondée sur la culture du maïs. Ces nouveaux arrivants comprenaient des peuples qui seront connus plus tard sous le nom de nations huronne-wendat, neutre, pétun et tabac. Les Michi Saagiig ont conclu des traités avec ces nouveaux arrivants et les ont autorisés à rester, étant entendu qu'ils étaient des visiteurs sur ces terres. Des wampums étaient fabriqués pour enregistrer ces contrats, des cérémonies liaient chaque nation à ses responsabilités respectives au sein de la relation politique, et ces contrats étaient renouvelés chaque année (voir Gitiga

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 18 de 120

Migizi et Kapyrka, 2015). Ces visiteurs ont connu un grand succès puisque leur économie du maïs s'est développée et que leur population s'est multipliée. Cependant, il était entendu par toutes les nations concernées que cette région de l'Ontario était le territoire d'origine des Michi Saagiig.

La nation Odawa a travaillé avec les Michi Saagiig pour rencontrer les Hurons-Wendats, les Petuns et les Neutres afin de poursuivre les relations politiques et économiques amicales qui existaient – une relation symbiotique qui était principalement contrôlée et appliquée par les Odawas. Les Michi Saagiig ont connu des problèmes dans les années 1600, lorsque le mode de vie européen a été introduit dans le sud de l'Ontario. De plus, à peu près à la même époque, les gouvernements coloniaux de New York et d'Albany ont remis des armes à feu aux Haudenosaunee, ce qui leur a finalement permis de conquérir des territoires appartenant aux Michi Saagiig. Ceci marque le début des escarmouches avec les différentes nations vivant en Ontario. Les Haudenosaunee se sont engagés dans des combats avec les Hurons-Wendat, ce qui, conjugué aux maladies transmises par les Européens, a décimé les peuples de langue iroquoienne de l'Ontario. Le début de la colonisation et l'arrivée des missionnaires ont gravement perturbé les relations que ces nations autochtones entretenaient à l'origine. Les maladies et les guerres ont eu un effet dévastateur sur les peuples autochtones de l'Ontario, en particulier sur les grands villages sédentaires, qui comprenaient surtout des peuples de langue iroquoienne. Les Michi Saagiig ont pu éviter la dévastation causée par ces processus en se retirant dans leurs zones d'hivernage au nord, attendant essentiellement que la fumée se dissipe.

L'aîné Michi Saagiig Gitiga Migizi (2017) raconte ceci¹:

« Nous avons été moins touchés que les villages plus grands, car nous avons appris à pagayer au loin pendant plusieurs années, jusqu'à ce que tout se calme. Et nous sommes revenus et avons essayé d'enterrer les ossements des Hurons, mais c'était accablant, il y en avait partout, il y avait des os partout – c'est notre histoire.

Il y a un malentendu ici, à savoir que cette région de l'Ontario ne serait pas notre territoire traditionnel et que nous serions arrivés ici après le départ ou la défaite des Hurons-Wendats, mais ce n'est pas vrai. C'est une interprétation complètement fausse de notre histoire et il faut la corriger. Nous sommes le peuple traditionnel, nous sommes ceux qui ont signé des traités avec la Couronne. Nous sommes reconnus comme ceux qui ont signé ces traités et c'est avec nous qu'il faut traiter officiellement pour toute question concernant le territoire du sud de l'Ontario.

Nous avons envoyé des pacificateurs chez les Haudenosaunee et nous avons vécu parmi eux afin de changer leurs habitudes. Nous avons également eu des échanges diplomatiques avec certains

¹ Ce contexte historique a été préparé par Gitiga Migizi, un aîné respecté et gardien du savoir de la nation Michi Saagiig.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 19 de 120

des chefs puissants du nord et avons essayé de faire la paix autant que possible. Nous avons donc joué un rôle de premier plan pour maintenir l'équilibre des relations et l'harmonie.

Certains des anciens chefs ont admis qu'il était devenu de plus en plus difficile de maintenir la paix après que les Européens aient introduit des fusils. Mais nous avons continué à nous rencontrer, et nous avons continué à avoir des wampums, ce qui ne veut pas dire que nous avons renié notre territoire ou que nous l'avons abandonné – nous n'avons pas fait cela. Nous estimons toujours être une nation souveraine, et ce, malgré les contestations juridiques. Nous nous considérons toujours comme une nation et le gouvernement doit négocier sur cette base. »

Souvent, le sud de l'Ontario est décrit comme étant « vacant » après la dispersion des Hurons-Wendats, en 1649 (qui ont fui vers l'est au Québec et vers le sud, aux États-Unis). Cette description est trompeuse, car ces territoires sont restés les terres d'origine de la nation Michi Saagiig.

De 1781 à 1923, les Michi Saagiig ont participé à dix-huit traités pour permettre au nombre croissant de colons européens de s'établir en Ontario. Les pressions exercées par la colonisation accrue ont forcé les Michi Saagiig à se déplacer lentement en petits groupes familiaux autour des communautés actuelles : Première Nation de Curve Lake, Première Nation de Hiawatha, Première Nation d'Alderville, Première Nation de Scugog Island, Première Nation de New Credit et Première Nation de Mississauga.

Les Michi Saagiig sont présents en Ontario depuis des milliers d'années, et ils y sont encore aujourd'hui.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 20 de 120

Introduction

Nom : Installation de gestion à long terme des déchets de Port Hope

Emplacement: Plan 9R-734, Lots 13 et 14, Concession 2

Port Hope, municipalité de Hope, comté de Northumberland (Ontario)

L1A 3V7

Renseignements sur le permis et période de référence

Le présent rapport annuel de surveillance de la conformité est produit conformément à la condition 2.3 du *Permis de déchets de substances nucléaires - Projet de gestion à long terme des déchets radioactifs de faible activité de Port Hope* (WNSL-W1-2310.02/2022)[1], ci-après dénommé le permis du PPH [1],conformément aux critères de vérification de la conformité se trouvant dans le *Manuel des conditions du permis du Projet de gestion des déchets radioactifs de faible activité de Port Hope* [2]. Les informations contenues dans le présent rapport concernent la période du 1^{er} janvier au 31 décembre 2021.

L'information sur les différents sites fournie dans le présent rapport complète les données du Rapport annuel de surveillance de la conformité des Laboratoires nucléaires canadiens (RASC-LNC) [4], qui fait le point sur 14 domaines de sûreté et de réglementation (DSR) s'appliquant aux LNC.

Ce rapport vise à fournir suffisamment de renseignements sur la conformité des programmes du PPH aux exigences réglementaires du permis du PPH [1 et du *Manuel des conditions de permis* du PPH [1].

Changements dans la structure organisationnelle

En février 2021, le Groupe de gestion de l'assainissement de l'environnement et du renouvellement de l'intendance des LNC a annoncé un changement de titulaire de permis de site pour les projets de gestion des déchets de Port Hope et de Port Granby [5].

Installations visées par le présent rapport

Les installations dont il est question dans le présent rapport comprennent l'installation de gestion à long terme des déchets de Port Hope (IGDLT-PH) et l'usine de traitement des eaux usées de Port Hope (UTEU-PH).

Résumé des activités autorisation

L'IRPH est définie par l'Entente pour le nettoyage et la gestion sécuritaire à long terme des déchets faiblement radioactifs situés dans la ville de Port Hope, le canton de Hope et la municipalité de Clarington[3], ci-après dénommé l'« entente en droit » [3], conclue le 29 mars 2001 entre le gouvernement du Canada et les municipalités de Port Hope et de Clarington en vue de gérer les déchets radioactifs de faible activité (DRFA), comme le prévoit le

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 21 de 120

PPH et le Projet de gestion à long terme des déchets radioactifs de faible activité de Port Granby (PPG).

L'Initiative dans la région de Port Hope (IRPH) comprend deux projets distincts :

- Le projet de gestion à long terme des déchets radioactifs de faible activité de Port Hope comprend la gestion à long terme des déchets radioactifs de faible activité (DRFA) qui se trouvent actuellement à l'installation de gestion des déchets de Welcome (IGDW), la construction d'une nouvelle installation de gestion à long terme des déchets à Port Hope (IGLTD-PH), l'assainissement des DRFA et de certains déchets industriels sur divers sites de la municipalité de Port Hope (MPH) et le transport sécuritaire des déchets vers la nouvelle IGLTD-PH pour un stockage à long terme.
- Projet de gestion à long terme des déchets radioactifs de faible activité de Port Granby (PPG).

Le PPH prévoit les activités suivantes :

- Décontaminer les sites contenant des DRFA historiques et d'autres déchets industriels spécifiés situés dans la municipalité de Port Hope (MPH). Ces sites sont décrits dans l'entente en droit[3].
- Regrouper et gérer ces déchets dans une nouvelle installation de gestion à long terme des déchets à Port Hope (IGLTD-PH), aménagée sur des terrains comprenant l'ancienne installation de Western et adjacents à celle-ci. Le contenu de l'ancienne installation de gestion des déchets de Welcome (IGDW) sera incorporé à la nouvelle installation de gestion à long terme des déchets de Port Hope (IGLTD-PH).

À l'heure actuelle, les DRFA historiques se trouvant dans la collectivité sont entreposés dans des installations temporaires et de gestion autorisées et sur divers sites d'assainissement non autorisés (y compris le port de Port Hope et l'ancienne décharge municipale).

Le PPH comprend les phases suivantes :

- Phase 1 (terminée) :
 - Obtention des approbations réglementaires.
 - Gestion des déchets dans l'installation de Welcome, qui appartient actuellement au gouvernement du Canada et qui est exploitée par les LNC pour le compte d'Énergie atomique du Canada limitée (EACL), une société d'État fédérale.
- Phase 2 (2012- 2025) :
 - Développement d'une nouvelle installation de gestion à long terme des déchets sur le site actuel de l'installation de Welcome.
 - Incorporation de l'inventaire actuel des déchets de l'installation de Welcome à la nouvelle installation de gestion à long terme des déchets.
 - Assainissement des sites de la municipalité de Port Hope qui sont contaminés par des DRFA historiques.
- Phase 3 (2025- 2120) :

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 22 de 120

 Entretien et surveillance à long terme de l'installation de gestion à long terme des déchets de Port Hope.

Autres activités autorisées

Un certain nombre de sites d'assainissement à Port Hope font l'objet de permis délivrés aux LNC en vertu de la *Loi sur la sûreté et la réglementation nucléaires* (LSRN) [6], chacun d'entre eux soumettant des rapports de conformité annuels indépendants à la Commission canadienne de sûreté nucléaire (CCSN), conformément aux exigences des permis *WNSL-W1-182.1/2022* [7] pour le *site de stockage temporaire du prolongement de la rue Pine* et *WNSL-W1-344-1.8/ind.* pour l'installation de gestion des déchets radioactifs de Port Hope. [8].

Comme pour tous les sites d'assainissement de l'IRPH, ceux qui font l'objet de ces permis seront assainis selon les critères d'assainissement spécifiques au projet dans le cadre du permis du PPH [1].

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 23 de 120

1 Communications et consultation dans le cadre de l'IRPH

Les LNC s'engagent à fournir au public un accès efficace à de l'information opportune au sujet de l'IRPH. Pour que les projets soient mieux compris et gagnent la confiance de tous, le public, les communautés et organisations autochtones et les principales parties prenantes sont tenus informés des travaux à venir et des activités du projet. Des rapports sont également produits sur les programmes, les calendriers, la protection de l'environnement et les mesures d'atténuation, les avantages à long terme et les débouchés économiques.

Les LNC répondent aux besoins divers d'un large éventail de publics afin d'accroître la sensibilisation aux projets et de renforcer les relations par le biais d'une variété d'approches, comme le montre la figure 1.

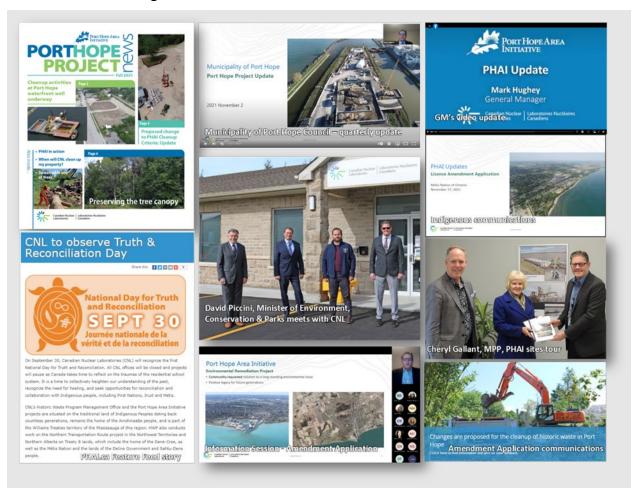


Figure 1: Consultations de l'IRPH en 2021

En raison des restrictions imposées par la COVID-19 en 2021, en matière de communication et de consultation concernant le PPH, dans la mesure du possible, les LNC ont recouru aux échanges par téléphone, courriel, en ligne et aux réunions, présentations, mises à jour communautaires et séances d'information virtuelles.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 24 de 120

1.1 Approche générale en matière de communication

1.1.1 Bureau d'information publique

Le Bureau d'information publique est ouvert du lundi au vendredi, de 8 h 30 à 16 h 30. On y trouve des publications fournissant de l'information sur la planification, la conception, la mise en œuvre de l'IRPH, ainsi que sur les évaluations environnementales, la surveillance des projets et les mesures d'atténuation, ainsi que sur le programme de règlement des plaintes et de protection de la valeur des biens immobiliers (PVBI). On y trouve aussi des maquettes en trois dimensions des installations de gestion à long terme des déchets de Port Hope et de Port Granby.

En raison des restrictions imposées par la COVID-19, le bureau a été fermé au public. Les membres du personnel étaient disponibles pour fournir des informations et répondre aux questions par courriel, téléphone et médias sociaux. Après les heures de travail, les appels sont reçus par une agence externe et acheminés vers un point de contact unique à des fins de suivi.

1.1.1.1 Programme de résolution des plaintes

Les LNC se concentrent sur la prévention des plaintes liées à l'IRPH. Pour ce faire, ils répondent de manière proactive aux préoccupations du public. Cependant, le programme de résolution des plaintes fournit un mécanisme permettant de recevoir, d'examiner et de résoudre les plaintes formelles de niveau 1 ou de niveau 2.

Les plaintes de niveau 1 se concentrent sur un règlement rapide par le dialogue. Les parties cernent ensemble le problème et s'entendent sur un règlement. Les plaintes de niveau 2 concernent les plaintes complexes pour lesquelles on n'arrive pas à s'entendre quant à la partie responsable du problème, à l'origine de ce dernier, à son incidence ou encore sur une résolution acceptable. Les plaintes de niveau 2 nécessitent souvent l'intervention d'un expert ou une consultation.

En 2021, les LNC ont reçu 22 plaintes de niveau 1 qui ont toutes été résolues par les LNC. Ils ont également reçu cinq plaintes de niveau 2, dont deux ont été résolues par les LNC. Les trois autres plaintes sont en suspens et devraient faire l'objet d'une nouvelle évaluation au printemps 2022.

1.1.2 Site Web

Le site Web de l'IRPH- PHAI.ca fournit des renseignements sur les projets de Port Hope et de Port Granby. On y trouve notamment de l'information sur les travaux en cours et les travaux à venir, sur les rapports de surveillance de l'environnement, les divulgations publiques et le programme de protection de la valeur des biens immobiliers. Le site Web fournit également le numéro de téléphone et l'adresse électronique de points de contact auxquels on peut adresser des demandes.

En 2021, le site Web de l'IRPH a reçu 33 519 visites, et les pages ont été vues 86 879 fois.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 25 de 120

1.1.3 Médias sociaux

Les comptes Facebook, Twitter, LinkedIn et Instagram de l'IRPH servent essentiellement à mobiliser la collectivité et à aiguiller les utilisateurs vers le site Web de l'IRPH où ils trouveront davantage de renseignements sur l'avancement des travaux de construction ou sur les événements. Dans un souci de suivre le rythme rapide des communications Internet, les LNC répondent dans les plus brefs délais aux questions ou commentaires publiés par les membres du public sur les comptes de médias sociaux. Les échanges concernant l'IRPH qui ont cours dans d'autres comptes de médias sociaux font l'objet d'un suivi et, lorsque l'information concernant l'IRPH est erronée, des correctifs sont publiés dans les plus brefs délais.

En 2021, 33 demandes de renseignements ont été reçues sur notre page Facebook. Les LNC ont publié 351 messages sur Facebook et Twitter, et 23 sur Instagram. Ces publications portaient sur différents sujets allant de mises à jour à des faits intéressants dans le cadre des travaux. En tout, nous avons réussi à rejoindre plus de 19 000 personnes.

Les communications en ligne de l'IRPH menées en 2021 sont résumées dans le tableau 1 tableau 1.

Com	Total			
Cita Mala DIIAI aa	Visites sur	Visites sur le site Web :		
Site Web – PHAI.ca	Page	Pages vues		
	Facebook	Publications	Portée utilisateurs	
		351	20 303	
Médias sociaux	Turibban	Gazouillis	Nombre de visites	
	Twitter	351	2649	
	la aka zuzana	Total des	messages	
	Instagram	23		

Tableau 1 : Activités de communication en ligne de l'IRPH 2021

1.1.4 Avis aux médias

En 2021, les LNC ont publié un communiqué de presse pour annoncer la nomination d'un nouveau directeur général pour le programme des déchets historiques. Les médias de la région de Port Hope, notamment *Northumberland News* et Classic Rock 107.9, ont été sollicités.

1.1.5 Bulletin d'information du projet

Les bulletins d'information renseignent la collectivité sur l'état d'avancement des projets, les travaux à venir et les modifications apportées aux travaux ou programmes prévus. Les bulletins sont distribués dans tous les foyers de la municipalité de Port Hope et à une longue liste

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 26 de 120

d'intervenants fédéraux, provinciaux, régionaux et municipaux; les bulletins sont également disponibles en ligne, à PHAI.ca.

Le bulletin d'information de l'automne 2021 a été distribué par courrier à environ 8 000 foyers, entreprises et exploitations agricoles de la municipalité de Port Hope et à environ 400 contacts par courriel.

Le bulletin a abordé une série de sujets, notamment des mises à jour sur l'engagement continu des LNC en matière de sécurité; les travaux en cours dans le secteur riverain, la demande des LNC à la CCSN en vue de modifier les critères de nettoyage de l'IRPH; une mise à jour sur l'assainissement des propriétés privées à Port Hope et l'utilisation durable des arbres abattus, qui ont été donnés à l'école secondaire de Port Hope afin de servir aux projets de menuiserie.

1.2 Rapport et divulgation

1.2.1 Rapports sur le rendement

Des informations sont publiées sur le site de l'IRPH, <u>PHAI.ca</u>, au sujet des performances environnementales, ce qui comprend les résultats du programme de surveillance environnementale et les rapports de conformité remis chaque année à la CCSN.

1.2.2 Divulgations publiques

En cas d'activités imprévues ou d'événements inhabituels entraînant des répercussions à l'extérieur des sites du projet ou qui pourraient susciter l'intérêt et les préoccupations du public ou l'attention des médias, les LNC produisent une divulgation publique ouverte et transparente, conformément au document d'application de la réglementation de la CCSN *REGDOC-3.2.1 Information et divulgation publiques* [9]. Les activités et les événements qui se produisent de manière imprévue, mais qui ont peu ou pas d'effet sur les personnes et l'environnement sont divulguées sur le site Web de l'IRPH, généralement dans un délai de quatre jours ouvrables, tandis que les principales parties prenantes sont normalement informées par contact direct.

Conformément au REGDOC-3.2,1 [9], les LNC informent la CCSN des divulgations effectuées de cette manière au moment de la divulgation ou avant celle-ci.

En 2021, les LNC ont rendu publiques deux divulgations relatives au PPH, l'une concernant de légers dépassements des objectifs provinciaux de qualité de l'eau dans l'arrière-port de Port Hope et l'autre concernant un camion à benne qui est entré en contact avec un câble électrique aérien sur un chantier de construction de l'IRPH.

Les divulgations publiques sont publiées sur le site Web de l'IRPH, à <u>PHAI.ca</u>, et diffusées par courrier électronique aux communautés et organisations autochtones qui ont demandé à les recevoir.

En 2021, la page Web consacrée aux divulgations publiques a reçu 518 visites.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 27 de 120

1.3 Relations avec les Autochtones

Les LNC s'engagent à reconnaître les droits et les intérêts constitutionnels des Autochtones et à resserrer ses relations avec eux par le biais d'un apprentissage continu de leurs valeurs et intérêts. L'objectif des LNC est de faire progresser la réconciliation par des actions concrètes, et nous prenons des dispositions pour favoriser une inclusion et une participation accrues des communautés autochtones. Par exemple, la planification des projets est axée sur la protection de l'environnement et la durabilité, et tient compte des systèmes de connaissances autochtones. De plus, les LNC s'attachent à améliorer leurs communications, plans et rapports afin de reconnaître les droits et points de vue constitutionnels des communautés autochtones et d'employer un libellé équilibré à cet égard.

Les LNC reconnaissent que le programme de liaison avec les Autochtones est une partie importante de l'Initiative dans la région de Port Hope. Ils sont également conscients de la nécessité de faire preuve d'ouverture, d'intégrité et de transparence dans le cadre des activités de communication et de consultation avec les détenteurs de droits et les parties intéressées.

Historiquement, la phase 2 du Programme d'information publique (PIP) de l'IRPH [10] a inclus les communautés et les organisations autochtones au nombre des publics cibles. Pour faire progresser la réconciliation au moyen de mesures concrètes et en favorisant une inclusion et une participation accrues des Autochtones, les LNC élaborent un programme de liaison avec les Autochtones, qui sera mis en œuvre en 2022, parallèlement aux révisions qu'ils apportent au Programme d'information publique de l'IRPH [10]. Le programme de liaison avec les Autochtones de l'IRPH tiendra compte du fait que les LNC sont résolus à reconnaître les droits et les intérêts constitutionnels des Autochtones, et à continuer de découvrir les valeurs et les intérêts des communautés de la région afin de tisser des relations durables.

Dans le cadre de son engagement à prendre des mesures concrètes pour promouvoir la vérité et la réconciliation, les LNC améliorent leur programme global de relations avec les Autochtones. En 2021, les LNC ont créé un nouveau poste de directeur des relations avec les Autochtones. La création de ce poste s'inscrit dans la volonté des LNC d'élaborer un programme complet de relations avec les Autochtones, notamment au moyen de nouvelles politiques et procédures, mais aussi en intégrant les considérations autochtones à tous les aspects des activités et opérations des LNC et en favorisant la création de relations permanentes avec les communautés autochtones et les possibilités pour les Autochtones au moyen d'un travail de liaison avec les communautés des Premières Nations et des Métis. D'ici à 2022, l'IRPH augmentera ses ressources avec l'arrivée d'un agent de liaison avec les Autochtones.

1.3.1 Communautés et organisations autochtones

Lorsque l'IRPH est passée à la phase de mise en œuvre, en 2012, les Premières Nations Mississaugas visées par les Traités Williams ont demandé à recevoir des mises à jour régulières sur les projets. Le personnel des LNC a rencontré au moins une fois par an des représentants de la Première Nation de Hiawatha, de la Première Nation de Curve Lake, de la Première Nation

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 28 de 120

des Mississaugas de Scugog Island et d'Alderville pour faire le point sur les projets et engager des discussions sur des sujets tels que la protection de l'environnement, les perspectives économiques et la protection des ressources du patrimoine. Au cours des dernières années, les LNC ont également établi des contacts, échangé des informations et partagé des mises à jour sur les projets avec des représentants de la Nation Anishinabek et de la Nation Métis de l'Ontario.

D'autres communautés autochtones, dont les Mohawks de la baie de Quinte et les conseils métis locaux, ont été identifiées comme ayant peut-être un intérêt pour les projets en raison de leur proximité et de leur intérêt pour d'autres projets de la région. Au fil des ans, les LNC ont acheminé à ces communautés de l'information sur les projets afin de les tenir au courant. Ils leur ont également fait parvenir des invitations à des événements spéciaux, comme la Journée de l'industrie, les salons de l'emploi et les séances d'information.

1.3.2 Travail de liaison

En mars 2012, les LNC ont fait une présentation devant des représentants de la Nation métisse de l'Ontario, le personnel et des conseillers des régions 5 et 6. En juin 2021, les représentants de la Nation métisse de l'Ontario ont participé à une séance plus ciblée sur l'assainissement des sites du port de Port Hope et du secteur riverain, et sur les suivis de l'évaluation environnementale et du programme de surveillance environnementale de l'IRPH.

À la demande de la Première Nation de Curve Lake, à partir de mars 2021, les représentants des Premières Nations de Curve Lake, Hiawatha, Mississaugas of Scugog Island et Alderville, et des représentants des nations Chippewa ont pu assister à des séances d'information et des mises à jour sur l'évolution du projet. Chaque réunion a été coordonnée et l'ordre du jour a été établi en consultation avec les représentants des communautés autochtones. Les tables rondes ont permis à chaque Nation de partager des informations et la discussion a porté sur un sujet ou un projet précis.

Des mises à jour sur l'IRPH ont également été fournies au personnel, aux consultants et aux représentants du Grand Conseil de la Nation Anishinabek. On leur a notamment donné une vue d'ensemble de l'IRPH. Des séances ciblées ont porté sur la radioprotection et la surveillance de l'environnement.

Les LNC ont tenu des réunions supplémentaires sur la demande à la CCSN visant à modifier les critères de décontamination de l'IRPH.

1.3.2.1 Réunions mensuelles des Premières Nations visées par les traités Williams

À la demande de la Première Nation de Curve Lake, l'équipe des LNC chargée de la liaison avec les Autochtones a organisé en 2021 des réunions mensuelles avec des représentants des Premières Nations des Mississaugas ainsi que des communautés Chippewa, (Beausoleil Première Nation de Beausoleil, de Georgina Island et de la Première nation de Rama). Ces réunions sont organisées avec l'aide des représentants des communautés. Chaque réunion est

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 29 de 120

axée sur les projets d'assainissement de l'environnement des LNC ou sur des questions d'intérêt pour les Premières Nations. En 2021, neuf réunions ont eu lieu, dont deux ont porté sur la demande des LNC de modifier les critères d'assainissement de l'IRPH.

1.3.3 Visites de sites

Les experts du Bureau de gestion de l'IRPH orchestrent des visites guidées des sites d'assainissement et des chantiers de construction de l'IRPH. Les visiteurs peuvent ainsi voir de leurs propres yeux les travaux réalisés dans le cadre de l'IRPH, et mieux comprendre et apprécier la complexité et l'importance de ces projets. Les visites mettent en valeur l'envergure du travail de planification et de mise en œuvre, y compris au regard de la protection environnementale; de la conformité avec les exigences en matière de santé et de sécurité; de la conformité avec les obligations relatives aux évaluations environnementales et des pratiques de gestion adaptative.

Des visites sont organisées, sur demande, pour les communautés et organisations autochtones, en complément de l'information fournie lors des réunions et des présentations. En raison des restrictions imposées par la COVID-19 en 2021, les communications des LNC ont été adaptées et des visites virtuelles ont été organisées à l'aide de photographies, de diagrammes et de vidéos détaillés.

1.3.4 Notifications directes

Les LNC distribuent régulièrement des bulletins d'information, des avis aux médias, des avis de divulgation publique et des invitations à des événements spéciaux à ces communautés et organisations autochtones. En 2021, des invitations à la journée de l'industrie et au salon de l'emploi des LNC ont également été envoyées aux contacts autochtones qui ont manifesté un intérêt à l'égard de possibilités commerciales et des processus de passation de marchés des LNC.

Les activités de communication et de consultation avec les Autochtones réalisées en 2021 dans le cadre du PPH de l'IRPH sont résumées dans le tableau suivant.

Tableau 2 : Activités de liaison de l'IRPH avec les Autochtones en 2021

Consultation des Autochtones		
Présentations	12	
Visites guidées	1	
Réunions mensuelles des Premières Nations visées par les traités Williams	9	
Notifications directes Communiqués de presse, invitations à des événements, offres d'emploi, divulgations publiques, communiqués de presse, bulletins d'information sur les projets, etc.	16	

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 30 de 120

1.4 Programme d'information publique

Des relations stratégiques sont établies et entretenues grâce à l'échange d'informations et au retour d'information, afin d'accroître le soutien et la coopération au fur et à mesure que le PPH progresse.

1.4.1 Présentations

Les activités réalisées (en cours et prévues) dans le cadre du projet et le Programme de protection de la valeur des biens immobiliers font l'objet de présentations auprès de divers publics, notamment de groupes et organisations autochtones, d'élus, du personnel de tous les paliers de gouvernement, de groupes communautaires, de clubs philanthropiques, et du milieu de l'éducation, des affaires, scientifique et technique à l'échelle locale, nationale et internationale.

Au cours de la période de référence, 16 présentations ont été faites au public sur l'IRPH et le PPH.

1.4.1.1 Communautés de l'éducation et des sciences de la technologie

Des présentations, des visites de sites ainsi que de l'information sur le programme et des démonstrations sont proposées aux élèves des écoles primaires, secondaires et des collèges et universités. De plus, les LNC siègent à des comités consultatifs sur les programmes pédagogiques afin de fournir le point de vue de l'industrie lors de l'élaboration de nouveaux programmes et cours.

Les LNC participent à l'événement annuel Invitons nos jeunes et à d'autres initiatives éducatifs, y compris au programme de JA, « un monde de possibilités ». De plus, nous faisons partie du jury de foires scientifiques locales. Des établissements d'enseignement nationaux et internationaux, des groupes industriels et professionnels participent également aux présentations de l'IRPH et aux visites guidées de sites, et les LNC continuent de mettre au point des activités de sensibilisation liées à l'enseignement des sciences, de la technologie, de l'ingénierie et des mathématiques (STIM).

Bien que ces activités aient été limitées en raison des restrictions imposées par la COVID-19, les LNC ont présenté une vue d'ensemble de la mise à jour de l'IRPH et ont organisé une visite virtuelle à l'intention de quatre groupes : Des étudiants en sciences de l'environnement de l'école secondaire de Port Hope, des étudiants en ingénierie nucléaire de l'Université technique de l'Ontario et deux classes de suivi de la gestion des déchets du Collège Fleming.

En tant que membre du comité consultatif du programme de gestion durable des déchets du Collège Fleming, les LNC avaient un représentant à la réunion annuelle du comité qui a eu lieu en novembre 2021.

Au cours de la période couverte par le rapport, 17 présentations ont été faites sur l'IRPH à l'intention des milieux de l'éducation, de la science et de la technologie.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 31 de 120

1.4.2 Visites publiques du site

En raison des restrictions imposées par la COVID-19 en 2021, les communications des LNC ont été adaptées et des visites virtuelles ont été organisées à l'aide de photographies, de diagrammes et de vidéos détaillés.

En novembre 2021, nous avons organisé une visite pour la députée Cheryl Gallant. La visite a été organisée conformément aux directives sanitaires en vigueur relatives à la COVID-19.

1.4.2.1 Séances d'information publique

Les séances d'information sont organisées au besoin, pour informer la collectivité des travaux à venir, effectuer des mises à jour sur les activités ou programmes prévus ou sur les modifications qui y seront apportées, et pour recevoir des commentaires du public. Au fur et à mesure que les travaux d'assainissement progressent, des séances d'information sont organisées à l'intention de groupes ciblés plus restreints, afin de leur transmettre de l'information au sujet des travaux de l'IRPH réalisés à proximité de chez eux et pour parler de leurs préoccupations.

Une séance d'information publique virtuelle a été organisée en octobre 2021 dans le cadre de la campagne de mobilisation du public. Elle portait sur la demande visant à modifier les critères de décontamination de l'IRPH. En tout, 75 personnes y ont participé. Cette séance a été enregistrée et publiée sur le site Web de l'IRPH (PHALCA) et a été consultée 95 fois en 2021.

1.4.2.2 Participation à des événements externes

En tant qu'ambassadeurs du projet, le personnel des LNC participe à des événements externes afin de fournir des informations sur les activités de l'IRPH à un public plus large et de mieux faire connaître et comprendre les projets.

En raison des restrictions imposées par la COVID-19 au cours de l'année, le personnel des LNC n'a pas participé à des événements externes en 2021.

1.4.2.3 Avis communautaires

Les résidents et commerçants se trouvant à proximité immédiate des activités de l'IRPH sont mis au courant des travaux prévus et des changements notables apportés au calendrier ou à la nature des travaux. Les avis sont donnés par divers moyens, selon le délai et la capacité des résidents de recevoir l'avis à temps, à savoir, par l'entremise du site Web, d'appels téléphoniques, de courriels, de visites à domicile et de la remise de documents d'information.

Au cours de la période considérée, le personnel des LNC a envoyé 14 notifications aux ménages et aux entreprises de Port Hope.

Les activités d'information publique de l'IRPH menées en 2021 sont résumées dans le tableau 3.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 32 de 120

Tableau 3 : Activités de communication et de mobilisation du public dans le cadre de l'IRPH en 2021

Approche	Total
Présentations	23
Visites guidées	1
Avis communautaires	14

1.4.3 Campagnes d'information ciblées

1.4.3.1 Demande de modification des critères de décontamination

En janvier 2021, les LNC ont soumis à la CCSN un rapport sur la mobilisation des parties intéressées et des Autochtones, qui fait état des activités menées entre septembre et décembre 2021 relativement à la demande visant à modifier le permis de déchets de substances nucléaires de Port Hope pour le projet de gestion à long terme des déchets radioactifs de faible activité (WNSL-W1-2310.02/2022) [1]. Cette demande résulte en partie des commentaires de la communauté sur les effets de l'IRPH. Les propriétaires fonciers et d'autres résidents ont exprimé une grande frustration quant aux délais et à l'étendue des nettoyages dans leurs quartiers. Nombreux sont ceux qui craignent que les travaux de l'IRPH n'entraînent d'importants changements indésirables dans le couvert végétal urbain, dont la préservation est importante pour de nombreux citoyens.

Les LNC sont résolus à poursuivre sa campagne d'information sur la proposition de modification des critères de nettoyage de l'IRPH afin de s'assurer que les publics identifiés reçoivent l'information la plus récente sur la proposition et qu'ils ont la possibilité de poser des questions et de faire des commentaires.

Les LNC prévoient aussi incorporer les commentaires des organismes de réglementation et des parties prenantes dans le matériel de communication. À l'automne 2021, les LNC ont entrepris une deuxième campagne d'information du public portant sur la gestion des risques dans le contexte du projet de modification du permis. Il a notamment été question des effets potentiels de l'arsenic et du type d'arsenic que l'on trouve dans les sols de Port Hope.

Cette campagne comprenait des mises à jour sur la page Web dédiée, des activités de consultation, de la publicité dans la presse et les médias sociaux, des présentations communautaires et une séance d'information virtuelle.

1.4.4 Communications au sujet des sites de petite échelle

Tous les propriétaires de la zone urbaine de Port Hope reçoivent une trousse de consentement et de prise de rendez-vous expliquant le processus de contrôle radiologique des propriétés et demandant une confirmation écrite de participation. Des appels téléphoniques individuels sont effectués afin de fixer des rendez-vous pour le contrôle et de remettre les résultats des tests

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 33 de 120

aux personnes dont la propriété contient des déchets radioactifs de faible activité et doit faire l'objet de mesures correctives. Des réunions de conception sont ensuite organisées avec les propriétaires pour examiner les plans d'assainissement et de restauration de chaque propriété, expliquer le processus et examiner le plan d'action d'assainissement. Avant le début des travaux, une séance d'information de quartier est organisée à l'intention des propriétaires et résidents habitant à proximité. Pendant cette séance, le personnel des LNC et l'entrepreneur présentent les plans de travail et répondent aux questions et aux préoccupations du public.

Le personnel des communications est disponible par téléphone, par courriel et en personne pour répondre aux demandes de renseignements et aux préoccupations des propriétaires, et le personnel des communications sur le terrain est présent pour répondre aux questions.

Plus de 5 181 interactions liées aux sites à petite échelle ont eu lieu en 2021, dont 3 359 appels téléphoniques et courriels, 243 réunions avec des propriétaires et 458 visites de sites.

Quand un propriétaire le demande, les LNC lui fournissent une lettre sur l'état radiologique de sa propriété. Cette lettre présente les résultats des enquêtes radiologiques et des activités d'assainissement qui ont été réalisées sur la propriété jusqu'à ce jour. En 2021, les LNC ont émis 349 lettres sur l'état radiologique de propriétés de Port Hope.

1.4.4.1 Campagne auprès des propriétaires récalcitrants

Dans un effort soutenu pour encourager tous les propriétaires fonciers à participer au programme de contrôle radiologique, les LNC ont envoyé 94 lettres aux propriétaires de Port Hope qui n'avaient pas encore donné leur accord ou qui avaient interrompu leur participation. Les lettres ont été envoyées dans le cadre de quatre campagnes distinctes afin de vérifier si les propriétaires concernés souhaitaient participer au programme de contrôle.

À la fin de l'année 2021, sur les 94 personnes contactées par lettre, 57 ont confirmé leur participation au programme de contrôle.

1.4.4.2 Possibilités de participer au Projet de Port Hope

Les LNC offrent aux propriétaires et aux membres de la communauté directement touchés par les activités de construction et de réhabilitation la possibilité de faire part de leurs commentaires sur le Programme d'information publique de l'IRPH par le biais de groupes de discussion ciblés, de séances d'information dans les quartiers et d'occasions d'observer les activités d'assainissement. Les LNC communiquent régulièrement des mises à jour à ces groupes.

En 2021, dans le cadre de la demande de modification des critères d'assainissement, les LNC ont organisé une séance d'information à laquelle ont participé environ 75 personnes.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 34 de 120

1.5 Liaison avec les principaux intervenants

1.5.1 Liaison municipale

Les LNC effectuent régulièrement la liaison avec les élus et le personnel des municipalités hôtes. En vertu du cadre de communication convenu avec les municipalités pour les tenir au courant des plans et des progrès de l'IRPH, les LNC font régulièrement des mises à jour auprès des conseils, des comités et du personnel des municipalités, et ce, au moyen d'une variété de supports, y compris des présentations effectuées sur demande.

En 2021, chaque trimestre, les LNC ont fait le point auprès de la municipalité de Port Hope sur les progrès de l'IRPH. Ils ont également tenu les parties prenantes informées de l'état de la demande de modification des critères d'assainissement.

1.5.2 Groupe de surveillance de l'entente en droit

Le groupe de surveillance de l'entente rassemble des représentants des deux municipalités, qui sont parties prenantes à l'entente en droit, ainsi que des représentants d'Énergie atomique du Canada limitée (EACL) et des LNC. Le groupe sur réunit chaque trimestre pour faire le point sur les activités, le budget et le calendrier du projet. Les réunions permettent également de veiller à ce que les engagements pris en vertu de l'entente soient respectés. Quatre réunions ont eu lieu en 2021.

1.5.3 Liaison avec la communauté des entreprises

Les LNC sont membres de la Chambre de commerce, de Port Hope et du district. Chaque mois, ils font le point auprès de la Chambre sur l'avancement du projet, les communications, et les débouchés économiques liés au PPH.

Le site Web de l'IRPH comprend des liens vers le portail des entrepreneurs, le portail des fournisseurs et des renseignements sur la manière de s'inscrire pour faire partie de la liste des fournisseurs des LNC. Ces portails permettent aux fournisseurs potentiels ou actuels d'obtenir des renseignements sur les possibilités de marchés (biens, services, équipements, déclassement et construction).

Les responsables des communications de l'IRPH ont participé à la journée annuelle de l'industrie et au salon de l'emploi organisés par les LNC. Ils ont donné un aperçu du projet et participé à deux séances de questions au cours de la journée. Les renseignements relatifs à ces activités ont été publiés sur le site Web de l'IRPH (PHALCA) et des invitations ont été transmises à la Chambre de commerce de Port Hope.

1.5.4 Communications internes

En tant que représentants de l'IRPH, les employés des LNC doivent être informés en permanence des activités du projet de l'IRPH. Une grande variété d'occasions permet de renseigner les employés à un rythme hebdomadaire, mensuel et trimestriel.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 35 de 120

En 2021, les LNC ont lancé 37 initiatives de communication interne - mises à jour hebdomadaires sur le projet, courriels à l'ensemble du personnel, cafés-causeries virtuels avec le directeur général, réunions trimestrielles avec tout le personnel et courriels réguliers de mise à jour. Un « coin du directeur général » a été ajouté à l'automne pour mettre en évidence les messages mensuels et les conseils de sécurité.

1.5.5 Énergie atomique du Canada limitée (EACL)

Le client des LNC, EACL, est tenu au courant des activités de communication des LNC grâce à des communications continues et à des mises à jour hebdomadaires et mensuelles. EACL est informée des questions de communication pertinentes et des divulgations publiques au fur et à mesure qu'elles se présentent.

En 2021, 47 notifications ont été transmises au personnel d'EACL sur des questions liées au PPH, et les LNC ont organisé une visite des sites du projet à l'intention du personnel d'EACL.

1.5.6 Commission canadienne de sûreté nucléaire (CCSN)

Les LNC tiennent la CCSN au courant de ses activités par le biais de rapports trimestriels et annuels et d'échanges continus relatifs à des questions réglementaires. Les interactions entre la CCSN et les LNC prennent aussi la forme de réunions régulières avec le personnel chargé de la réglementation, des permis, des projets et des programmes.

En 2021, les LNC ont fourni des rapports trimestriels sur les activités de communication réalisées dans le cadre du PPH.

1.6 Gestion des problèmes

Les programmes de protection de la valeur des biens immobiliers (PVBI) et de résolution des plaintes de l'IRPH ont toujours été administrés par la division des Communications et des relations avec les parties prenantes, qui était également chargée de la production de rapports.

En 2021, afin de rationaliser les processus internes et de disposer d'un personnel dédié à la gestion des problèmes, les LNC ont créé une division des programmes publics qui se concentre sur ces deux programmes. Le personnel chargé des communications et des relations avec les parties prenantes travaillera en étroite collaboration avec le personnel chargé des programmes publics pour veiller à ce que toutes les questions soient traitées rapidement et efficacement. À partir de 2021, la direction des Programmes publics se chargera de produire des rapports trimestriels et annuels sur ces deux programmes.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 36 de 120

2 Système de gestion

2.1 Programme du système de gestion

Le système de gestion des LNC s'applique au PPH. Pour plus de renseignements, voir la section 1 du Rapport annuel de surveillance de la conformité des Laboratoires nucléaires canadiens[4].

La Commission canadienne de sûreté nucléaire (CCSN) a déjà été informée des révisions apportées au plan d'assurance qualité du Programme des déchets historiques[11]. Le plan d'assurance qualité n'a pas fait l'objet d'une révision [11] en 2021.

2.2 Vérifications, inspections et auto-évaluations

Conformément aux exigences du système de gestion des LNC, les domaines de sûreté et de réglementation et les installations font l'objet de vérifications, d'inspections et d'auto-évaluations pour s'assurer que le système de gestion fonctionne conformément aux attentes ; et que toute lacune des politiques, programmes ou procédures est cernée et que les mesures voulues sont prises pour combler les lacunes en question.

2.2.1 Vérifications

On trouvera à la section 1.2 du *Rapport annuel de surveillance de la conformité* des LNC la liste de toutes les vérifications effectuées à l'échelle des LNC pendant l'année de référence (2021).

2.2.1.1 Vérifications externes

La vérification annuelle externe ISO 9001:2015 a été réalisé par le registraire ISO et tiers indépendant, SAI Global, pour la renouveler la certification du Bureau de gestion du Programme des déchets historiques. La vérification a permis de cerner une occasion d'amélioration, gérée par ImpAct CTA-21-1634-9. Le nécessaire a été fait.

En 2021, le PPH a fait l'objet d'une vérification externe, dont les résultats sont résumés dans le tableau 4.

Tableau 4: Vérifications externes

Titre	Type de vérification	Nbre de mesures à prendre	Nbre de mesures prises
ISO 9001:2015	ISO 9001:2015 Vérification en vue d'une nouvelle certification	1	1

a Une mesure a été proposée à des fins d'amélioration, et non pour des raisons de non-conformité.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 37 de 120

2.2.1.2 Vérifications internes de la qualité

La vérification interne triennale du Bureau de gestion du Programme des déchets historiques a été réalisée en deux volets cette année en raison des restrictions liées à la COVID-19. La première partie, en septembre 2020, a porté sur la documentation. La seconde partie a pris la forme de visites sur le terrain, qui ont permis d'observer les conditions matérielles ou les activités du Bureau Les mesures prises dans la foulée de la vérification ont été suivies par le biais du système ImpAct² des LNC. La vérification a permis de cerner un problème de nonconformité et une occasion d'amélioration. Ces cas ont été traités et sont considérés comme clos.

2.2.2 Inspections

Inspections de la CCSN

En 2021, cinq inspections de conformité de la CCSN ont été effectuées dans le cadre du PPH.

Une inspection des systèmes de gestion des projets de Port Hope et de Port Granby a été réalisée entre le 12 et le 15 janvier 2021. L'inspection a porté sur le système de gestion de l'IRPH, notamment sur des sujets tels que le contrôle des changements, la surveillance des entrepreneurs, le suivi des inspections précédentes et la culture générale en matière de sécurité.

Pour le Projet de Port Hope, une inspection de conformité à distance a eu lieu les 29 et 31 mars 2021 et s'est concentrée sur un domaine de sûreté et de réglementation (la radioprotection). L'inspection a porté sur la manière dont les LNC appliquent le principe ALARA (niveau le plus faible qu'il soit raisonnablement possible d'atteindre), le contrôle des doses reçues par les travailleurs, la performance du programme de radioprotection et le contrôle des risques radiologiques.

Une inspection de conformité de certains sites majeurs a été réalisée les 25 et 26 août 2021. L'inspection a permis de vérifier la conformité de plusieurs chantiers, notamment le site de stockage temporaire du prolongement de la rue Pine, les viaducs et le ravin de la rue Strachan. L'inspection s'est concentrée sur la radioprotection, la protection de l'environnement et le programme classique de santé et la sécurité.

Une inspection de conformité des zones d'assainissement du port et de la jetée centrale a été effectuée les 21 et 22 octobre. L'inspection a porté sur les activités qui se déroulent dans le port de Port Hope, y compris la zone de transit aménagée sur la jetée centrale pendant l'assainissement du port et la consolidation des murs d'enceinte du port.

² ImpAct – en anglais, abréviation signifiant « improvement » (« amélioration ») et « action » (mesure) - soit « mesure d'amélioration » en français. Il s'agit d'un mécanisme interne permettant d'identifier les événements, les problèmes, les cas de non-conformité, les possibilités d'amélioration et les blessures subies par le personnel. Le processus permet également d'identifier et de suivre les mesures prises pour corriger les problèmes.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 38 de 120

Une inspection des programmes de gestion des urgences et de protection contre les incendies des projets de Port Hope et de Port Granby a été effectuée entre le 10 et le 17 décembre 2021. L'inspection a essentiellement porté sur la gestion des urgences et sur la sécurité et le contrôle de la protection contre les incendies. On a particulièrement mis l'accent sur la protection contre les incendies.

Inspections par d'autres organismes de réglementation

Aucune inspection d'autres organismes de réglementation n'a eu lieu dans le cadre du PPH en 2021.

2.2.3 Auto-évaluations

En 2020, six auto-évaluations ont été programmées pour la période 2020-2021 sur l'ensemble des sites du Bureau de gestion du Programme des déchets historiques. Les auto-évaluations couvraient divers aspects du système de gestion, y compris les domaines de la sécurité et du contrôle. L'auto-évaluation du Programme de gestion des déchets historiques a fait l'objet d'un suivi par le biais du système d'amélioration de l'entreprise (ImpAct). Deux auto-évaluations ont été annulées en raison d'initiatives de programme déjà en cours et se chevauchant, et quatre ont été réalisées dans les délais prévus. L'auto-évaluation du Programme de gestion des déchets historiques de 2021-2022 est en cours. Neuf auto-évaluations ont été lancées pour cette période et seront résolues en 2022.

2.3 Surveillance de la conformité

Les LNC utilisent une approche intégrée de la surveillance, dans laquelle tous les DSR sont rationalisés en un seul processus, pour confirmer l'adéquation, la mise en œuvre et l'efficacité des processus appliqués aux activités de l'IRPH. Les objectifs de conformité pour les obligations contractuelles, les exigences en matière d'autorisation, les lois et règlements, les plans de gestion et de protection de l'environnement, les plans de conformité et les spécifications techniques sont décrits dans la procédure relative aux activités de surveillance sur le terrain du Bureau de gestion du Programme des déchets historiques [12].

Les activités réalisées par les LNC et les consultants, entrepreneurs et fournisseurs de services de l'IRPH sont soumises à la surveillance des LNC. Les recommandations d'amélioration formulées dans le cadre des activités de surveillance de la conformité des LNC sont traitées et mises en œuvre.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 39 de 120

3 Gestion de la performance humaine

3.1 Programme de la performance humaine

Le programme de performance humaine des LNC s'applique au PPH. Pour plus de renseignements, voir la section 2 du rapport annuel de surveillance de la conformité des LNC [4].

Tous les employés des LNC suivent une formation obligatoire en performance humaine. Au sein des LNC, une direction générale se consacre à la performance humaine. Elle offre des programmes et de l'aide afin de réduire l'erreur humaine, par conséquent, la fréquence et la gravité d'accidents aux LNC.

L'efficacité du programme de la performance humaine du PPH a été accrue grâce à la création des postes suivants :

- Spécialiste de la sécurité des LNC
- Technologue de l'environnement
- Physicien de la santé
- Expéditeur transport de marchandises dangereuses

En outre, une vigilance accrue a été exercée sur le respect des pratiques de travail concernant le levage et le gréage, le travail en solitaire, la sécurité des mains et les espaces confinés. Le projet a été interrompu provisoirement pour des raisons de sécurité, des accidents liés à l'équipement lourd ayant été évités de justesse et les cas de blessures corporelles ayant enregistré une hausse. Pendant cette pause, on a procédé à une évaluation de l'ensemble du projet puis à une vérification des dispositifs de contrôle et des risques liés aux équipements. Une évaluation de l'interface machine-piéton a été mise en œuvre pour les sites de projet à haut risque.

3.2 Programme de formation

Le programme de Formation des LNC s'applique au PPH. Pour plus de renseignements, voir la section 2 du rapport annuel de surveillance de la conformité des LNC [4]. Le *Plan de formation de l'Initiative dans la région de Port Hope* (le Plan de formation de l'IRPH) [14] est conforme aux politiques et programmes des LNC en matière de formation et répond aux conditions du *Manuel des conditions de permis* [2].

3.2.1 Formation obligatoire

Tout le personnel du PPH, tant les employés que les entrepreneurs, reçoit une formation adéquate (et des mises à niveau) pour assurer la sécurité de l'exploitation des installations et pour effectuer des travaux conformément aux exigences du permis du PPH [1]. La section 2 du rapport annuel de surveillance de la conformité des LNC [4] fait état de la formation que doivent suivre les employés et les gestionnaires et superviseurs des LNC en 2021. Le tableau 5 présente les cours imposés par la législation fédérale et provinciale qui figurent dans les plans

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 40 de 120

de formation spécifiques aux postes du PPH, ainsi que le nombre de participants à ces cours en 2021. En 2021, les LNC ont pu compter sur un nombre suffisant de travailleurs qualifiés pour réaliser en toute sécurité les activités autorisées.

Le Plan de formation de l'IRPH [14] définit les processus de formation appliqués aux travaux effectués dans le cadre du PPH et favorise la sécurité et l'efficacité des lieux de travail grâce à la coopération de la direction, des employés, des entrepreneurs et des visiteurs. Il garantit également que tout le personnel du projet (y compris les employés et les entrepreneurs des LNC) a les qualifications nécessaires pour assumer ses fonctions de manière sûre et efficace, en respectant les processus et les normes en vigueur.

Tous les travailleurs affectés au PPH doivent assister à une séance de sensibilisation à l'IRPH pour acquérir une compréhension générale du projet. Les entrepreneurs sont responsables de la qualification du personnel ainsi que du maintien et du contrôle de leur formation. Les dossiers sont régulièrement inspectés par le personnel des LNC lors des contrôles et des vérifications.

L'IRPH a mis en place un programme de formation reposant sur l'approche systématique à la formation pour le poste de superviseur des opérations et de technicien des opérations de l'usine de traitement des eaux usées de Port Hope. La formation reposant sur l'approche systématique comprend une analyse de formation spécifique élaborée à l'aide de la méthode d'analyse des tâches et des plans de formation. L'élaboration d'initiatives de formation reposant sur l'approche systématique à la formation a enregistré des progrès.

Un comité de révision des programmes, comprenant des représentants de la direction de l'usine de traitement des eaux usées de Port Hope et du soutien à la formation, a été créé et se réunit régulièrement. Son mandat comprend l'examen du rendement, les modifications au système et la conformité de la formation. Le comité s'est réuni quatre fois au cours de la période couverte par le présent rapport. Les mises à jour et les améliorations font l'objet d'un suivi dans la liste des actions en cours.

En 2021, le plan d'assurance qualité de l'IRPH [14] n'a fait l'objet d'aucune révision.

On trouvera dans le tableau 5 une liste des cours obligatoires en vertu des lois fédérales et provinciales, qui font partie des plans de formation propres à chaque poste de l'IRPH.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 41 de 120

Tableau 5 : Formation du personnel d'exploitation de l'IRPH en 2021

Code du cours	Titre du cours	Nbre de participants
OSH-1004-Online	Verrouillage et étiquetage	3
PHAI-2001	Verrouillage et étiquetage; Travail en hauteur et rappel de la sécurité préalable à l'emploi	1
OSH-1005-Online	Travail en hauteur Théorie	15
OSH-3005	Travail en hauteur Les mesures pratiques	4
OSH-1007	Module 6E sur l'amiante	3
OSH-1019-Online	Orientation sur la santé et la sécurité pour les nouveaux et les jeunes travailleurs	2
OSH-1020	Secourisme général	34
OSH-1001-Online	Grue (palan intérieur sûr) - Théorie	12
OSH-1002-Online	Fonctionnement d'un chariot élévateur - Théorie	10
OSH-3002	Transpalette - Usine de traitement des eaux usées	-
OSH-1003-Online	Plate-forme de travail aérienne - Théorie	6
OSH-9011-Online	Code canadien du travail	-
OSH-1047	Sécurité de l'observateur	9
OSH-9070-Online	Sécurité en cas d'éclair d'arc électrique au Canada	3
OSH-9071-Online	Introduction à la sécurité électrique au Canada	2
OSH-9076-Online	Décharges électriques	3
OSH-3017	Surveillant de sécurité - électricité	-
TDG-1007	Manutentionnaire - TMD	-
TDG-9003	Transport terrestre de marchandises dangereuses (toutes classes) pour les expéditeurs (initial)	2
OSH-1004	Verrouillage et étiquetage	3
OSH-1005	Travail en hauteur	-
OSH-1006	Entrée dans un espace confiné	-

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 42 de 120

3.2.2 Formation des entrepreneurs

Les dossiers de formation de tous les entrepreneurs font l'objet d'une vérification avant le début des travaux, puis régulièrement dans le cadre de nos activités de contrôle de la conformité.

Avant d'accéder au PPH, les entrepreneurs sont tenus de suivre la formation minimale suivante :

- Orientation en matière de sécurité pour les fournisseurs
- Groupe de radioprotection 4 (au besoin)
- Code de conduite des entrepreneurs des LNC
- Sensibilisation à la COVID LNC

3.2.3 Résumé des évaluations de la formation

Les entrepreneurs autoévaluent leurs dossiers et systèmes de formation.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 43 de 120

4 Rendement opérationnel

4.1 Programme d'exploitation

Les programmes d'exploitation et de déclassement des LNC s'appliquent au PPH. Pour plus de renseignements, voir la section 3.1 et la section 11.2 du *Rapport annuel de surveillance de la conformité* des LNC [4].

4.1.1 Opérations d'assainissement de l'environnement

Cette section présente un bref résumé des activités du projet en 2021. Des mises à jour plus détaillées sur les activités du PPH ainsi qu'un aperçu sur trois mois sont fournis à la CCSN tous les trimestres, conformément à la condition de l'article 2.3 du permis du PPH [1] et à la section 3.2.3 du *Manuel des conditions de permis* du PPH[2].

4.1.2 Infrastructure habilitante

Les activités d'infrastructure de la phase 2 décrites dans la présente section doivent être entreprises avant que le transfert des déchets ne puisse commencer dans le cadre de chacun des projets.

Les LNC ont continué à gérer le site du PPH pendant les activités de décontamination, conformément aux procédures approuvées, comme indiqué dans le *Manuel des conditions de permis* [2].

4.1.2.1 Installation de gestion à long terme des déchets de Port Hope (IGLTD PH) :

Pendant la phase 2, les activités associées à l'installation de gestion à long terme des déchets de Port Hope (IGLTD-PH), située sur le terrain de l'ancienne installation de gestion des déchets de Welcome et les terres adjacentes, comprennent la construction d'un monticule artificiel en surface et des infrastructures et installations auxiliaires. On trouvera ci-dessous un bilan des travaux :

- Construction d'infrastructures et d'installations auxiliaires temporaires sur le site, dans le cadre de l'exploitation de l'IGLTD-PH (en cours).
 - L'installation du système de transfert des lixiviats (p. ex. les stations de pompage) a été retardée en raison des restrictions liées à la pandémie de COVID19. Les activités d'approvisionnement et d'installation ont commencé en 2021.
- Construction du système de revêtement de base pour le monticule.
 - Le système de revêtement de base a été installé dans la cellule de confinement 2B.
 Cette dernière a été jugée prête à accueillir les déchets à l'automne 2021. Une couche de déchets respectant l'épaisseur prescrite a été placée dans la cellule 2B.
 Des déchets en vrac y seront stockés à la fin de l'année 2021.
- Les déchets provenant de l'installation de gestion des déchets de Welcome ont été stockés à l'installation de gestion des déchets à long terme de Port Hope (terminé).

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 44 de 120

- Poursuite des travaux d'excavation des terres contaminées résiduelles (panaches) de la zone marécageuse de faible altitude située à l'ouest du monticule, zone également connue sous le nom de « Future Brush Area to be Cleared », ou « FBAC ». Les activités d'excavation devraient prendre fin en 2022.
- Mise en place de déchets provenant d'autres sites du PPH dans l'installation de gestion à long terme des déchets de Port Hope (en cours).
 - Réception et stockage à long terme des déchets historiques de faible activité provenant de divers sites du PPH. L'entretien de l'installation de gestion à long terme des déchets de Port Hope a été effectué conformément aux procédures d'entretien et d'exploitation établies par les LNC et décrites à la section 3.2 Conditions du permis d'exploitation du Manuel des conditions de permis du PPH [2].
- Préparation du système de revêtement de la couverture et fermeture du monticule (en cours).
 - Surveillance continue du profil de conception et de la mise en forme des cellules 1, 3 et 2A; le recouvrement devrait commencer en 2023.

4.1.3 Sites de petite échelle

Les sites de petite échelle de l'IRPH comprennent les propriétés en zone urbaine (anciennement quartier 1) faisant l'objet d'un contrôle radiologique, et un certain nombre de propriétés de la zone rurale (anciennement quartier 2) de Port Hope (environ 5 512 propriétés et 409 routes au total) contenant des déchets radioactifs historiques de faible activité. Les activités ont consisté à assainir les propriétés sur lesquelles on avait trouvé des DRFA ou des artéfacts radioactifs, à remettre en état les propriétés après les travaux d'assainissement et à transporter les déchets jusqu'à l'installation de gestion à long terme des déchets de Port Hope. Les propriétés semblant contenir des taux élevés de radon sont encore en cours d'évaluation. Lorsque les restrictions liées à la pandémie de COVID-19 seront levées pour permettre l'accès aux résidences, les tâches intérieures visant à effectuer des relevés et à installer des systèmes d'atténuation du radon se poursuivront.

4.1.3.1 Caractérisation de l'extérieur des propriétés

Sur les 5 512 propriétés ayant des lots extérieurs, 4 817 ont été caractérisées et 1 098 ont été identifiées comme contenant des DRFA selon nos critères de nettoyage actuels. Sur les 695 propriétés extérieures restantes qui n'ont pas été caractérisées, 156 en sont à un stade quelconque de la planification ou de l'exécution des travaux de caractérisation sur le terrain ou attendent les résultats d'analyse; 413 ne sont pas accessibles, les propriétaires ayant refusé de participer à l'exercice ou ayant refusé l'accès à la propriété; et 126 représentent des propriétés dont l'accès n'a pas encore été déterminé (par exemple, des terrains ferroviaires et des propriétés de voies de circulation). Le nombre total de propriétés contenant des déchets radioactifs de faible activité à l'extérieur devrait s'élever à environ 1 181.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 45 de 120

4.1.3.2 Caractérisation de l'intérieur des propriétés

Par ailleurs, 4 422 propriétés avec des espaces intérieurs , 4 075 ont été caractérisées et 218 d'entre elles contenaient des DRFA. Sur les 347 espaces intérieurs restants qui n'ont pas été caractérisés, un est en cours et 30 propriétaires n'ont pas accordé l'accès aux LNC, et 11 l'ont récemment accordé. En outre, 305 propriétés feront l'objet d'une caractérisation lorsque les restrictions liées à la pandémie COVID-19 le permettront. Le nombre total d'intérieurs de propriétés contenant des DRFA est d'environ 237.

4.1.3.3 Caractérisation des routes

Les LNC ont révisé les limites de toutes les emprises routières et procédé à une nouvelle cartographie des sites pour que les sites situés sur des emprises routières soient alignés sur le système d'identification de site servant à décrire les limites et les emplacements des sites dans le cadre de la caractérisation des propriétés. Ce faisant, le nombre de sites sur des emprises routières a changé depuis le dernier rapport. Sur les 465 (auparavant 409) sites de Port Hope, 132 sites sur emprises routières (autrefois 163) se sont révélés présenter des zones à forte concentration gamma et ont été inclus dans le deuxième contrat visant l'examen souterrain des emprises routières (RAC2). En tout, 132 emprises routières ont été caractérisées et des DRFA ont été trouvés sur 91 (auparavant 98) d'entre elles. Le deuxième contrat (RAC2) a été conclu en 2020.

Les travaux de caractérisation des propriétés ont révélé que d'autres emprises routières de Port Hope devaient faire l'objet de tests plus poussés afin de vérifier s'il faudrait ou non les assainir en vertu des critères de nettoyage de l'IRPH. En mai 2021, un nouveau contrat a été attribué (RAC3) pour caractériser 56 sites hautement prioritaires sur des emprises routières qui, selon les résultats obtenus sur des propriétés adjacentes, sont soupçonnés de contenir des déchets radioactifs de faible activité. Les travaux sur le terrain ont débuté en octobre 2021 et, en vertu de ce contrat, 13 sites ont été forés en 2021. Toujours en 2021, un autre appel d'offres était en préparation pour caractériser toutes les emprises routières restantes (277 sites) qui, d'après les résultats obtenus sur des propriétés adjacentes dans le quartier 1 de Port Hope, sont soupçonnées de contenir des DRFA. Ce contrat sera octroyé en 2022.

4.1.3.4 Documents de conception - Propriétés extérieures

À ce jour, 212 plans de conception ont été élaborés et 240 sont en attente (enquête de préconception, conception à 60 %, conception à 80 %, etc.) Les activités d'avant-projet ont été maximisées au cours de l'été et de l'automne afin de préparer le prochain contrat de caractérisation, d'étude technique, d'assainissement et de restauration, tandis que la production d'études a intentionnellement diminué au cours de la dernière partie de l'année 2021 afin de préparer la documentation de l'ordre des tâches et la remise des travaux.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 46 de 120

4.1.3.5 Conception de l'assainissement pour les emprises routières

En tout, cinq plans de conception ont été préparés pour des emprises routières en 2021, et 11 plans sont en cours d'élaboration. Les travaux d'assainissement visant des emprises routières sont planifiés de manière stratégique afin de les coordonner avec les travaux d'assainissement réalisés dans les différents quartiers adjacents.

4.1.3.6 Assainissement des sites de petite échelle

En 2021, des déchets historiques de faible activité ont été retirés à l'extérieur de 29 propriétés. Les terrains ont ensuite été remblayés et nivelés aux niveaux existants.

L'intérieur d'une propriété a été assaini. L'assainissement des espaces intérieurs a été interrompu en raison des restrictions liées à la pandémie de COVID-19.

4.1.4 Grands sites

4.1.4.1 Les sites de stockage temporaires

Aucune activité d'assainissement des sites de stockage temporaire n'a été réalisée en 2021, car tous les sites de stockage temporaire sont passés par la phase d'assainissement.

4.1.4.2 Secteur riverain

Le secteur riverain comprend les sites suivants : La plage ouest (anciens aqueducs), le ravin de la rue Alexander, le quai central, le port de Port Hope, 95, rue Mill Sud, le secteur des viaducs du Canadien National et du Canadien Pacifique (CN/CP) et la rue Strachan. La rue Strachan fait partie du secteur riverain - Travaux du groupe B.

Le contrat à long terme pour les travaux restant au port de Port Hope et au quai central a été attribué. Le dragage mécanique a commencé en 2021 juin et se poursuit. Le dragage hydraulique devrait remplacer le dragage mécanique au printemps 2022, une fois que le système de traitement de l'eau portable sera mis en service et opérationnel. Les travaux de remplacement et de renforcement des murs d'enceinte de l'arrière-port devraient également commencer au printemps 2022.

On n'a pas pu rattraper les retards accumulés en 2019 dans le cadre des travaux d'assainissement de l'ancien site des aqueducs (est) en raison des niveaux records du lac Ontario, des eaux souterraines et de l'afflux d'eau lacustre. Vu les restrictions liées à la pandémie de COVID-19, le site a été maintenu dans un état de sécurité minimale de mars 2020 à juin 2020. À la fin de l'exercice 2019-2020, tous les sols contaminés du site des aqueducs ont été retirés et, à la fin de l'été 2020, les LNC et l'entrepreneur ont retiré des réservoirs enfouis autant de sédiments contaminés qu'il était possible de le faire du point de vue de la sécurité. Les LNC ont préparé deux demandes de circonstances spéciales, une pour chaque parcelle de propriété appartenant à Cameco et MPH, respectivement, pour les sédiments restant dans les réservoirs et pour les parois des réservoirs. La restauration du site s'est terminée en 2021.

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 47 de 120

En octobre 2020, les travaux d'assainissement ont commencé sur le site du 95, rue Mill. Les LNC ont travaillé avec l'entrepreneur pour mettre au point des systèmes permettant d'atténuer les problèmes liés aux eaux souterraines sans recourir à l'étayage. L'assainissement et la restauration du site ont été achevés à l'automne 2021; des travaux mineurs de nivellement seront effectués au printemps 2022.

Une nouvelle caractérisation des viaducs du CN et du CP a été mise au point afin de fournir des données plus précises sur le site avant l'assainissement. Ce travail de caractérisation a été réalisé avant le début des travaux d'assainissement en octobre 2021. Les travaux d'assainissement devraient se terminer à la fin de l'automne 2022, et la restauration doit prendre fin au printemps ou à l'été 2023.

En 2019-2020, un programme de caractérisation actualisé a été exécuté sur le site du ravin de la rue Strachan. Ces données ont été intégrées à un dossier de conception actualisé. Le contrat a été attribué en novembre 2020. L'examen du plan critique a progressé tout au long de l'hiver 2020-2021, la mobilisation étant prévue en mars 2021. Cependant, des problèmes avec l'entrepreneur ont retardé la mobilisation jusqu'à l'été 2021. Le site de la rue Strachan contenait environ 3 500 m³ de déchets de faible activité et a nécessité un effort important sous la forme d'un soutènement en palplanches pour la route voisine. Les travaux d'assainissement se sont terminés en mars 2022, mais il a été nécessaire de demander une dérogation pour circonstance spéciale visant les couches profondes de l'emprise routière. Le site sera restauré au cours de l'été 2022.

En 2019, les travaux du lot B comprenaient des forages de caractérisation supplémentaires sur le site des aqueducs ouest et la préparation d'un dossier de conception préliminaire pour l'examen de la constructibilité. Selon le dossier de conception, la délimitation doit être plus poussée à l'ouest du ruisseau qui traverse la propriété. Au courant de l'hiver 2021, des arbres ont été enlevés à l'ouest du ruisseau pour que d'autres travaux de délimitation et de caractérisation puissent être effectués. Dans le secteur de la plage, une dérogation pour circonstance spéciale vise une très petite zone bien circonscrite dont les couches profondes contiennent une forte concentration d'arsenic. Cette série de travaux fait actuellement l'objet d'un appel d'offres, la mobilisation étant prévue pour l'été 2022.

En raison de diverses contraintes environnementales, les LNC appliqueront le protocole des circonstances spéciales à une grande partie du site original de la rue Alexander et aux lots boisés appartenant à des résidents. Les LNC ont commencé à faire connaître ces demandes aux propriétaires fonciers et à la municipalité de Port Hope. Le dossier de décision relatif aux circonstances spéciales visant la plus grande partie de la propriété du ravin (propriété privée) est complet et le propriétaire a approuvé la décision. Les parcelles appartenant à la municipalité feront l'objet d'une réhabilitation ciblée. Le travail de conception et les circonstances spéciales connexes sont en cours. Ces travaux seront attribués dans le cadre du nouvel ordre de tâches (caractérisation, étude technique, assainissement et restauration).

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 48 de 120

4.1.4.3 Secteur de la promenade Highland

La zone de décharge de la promenade Highland est composée de trois (3) sites distincts et uniques : Site de la décharge de la promenade Highland, le site de regroupement de la rue Pine et le ravin de la promenade Highland sud.

En 2020, l'équipe de projet du site d'enfouissement de la promenade Highland a temporairement interrompu les plans de conception des travaux d'assainissement afin d'évaluer les options d'assainissement et de s'assurer que les plans de conception en cours étaient non seulement réalisables, mais qu'ils offraient aussi aux LNC et à EACL la meilleure solution d'assainissement possible. Ces options ont été présentées à EACL pour examen et ont servi de base à la conception de l'assainissement.

Le site de la décharge de la promenade Highland a franchi quelques étapes importantes au cours de l'année, la plus préoccupante pour le calendrier du projet étant la modification apportée à l'entente de coopération relative à l'exploration. L'équipe a également terminé les plans de conception de l'assainissement, les spécifications techniques et l'énoncé des travaux. Les travaux d'assainissement du site de la décharge de la promenade highland sont uniques en ce sens qu'ils comprennent le retrait des DRFA dans une décharge de déchets solides municipaux. C'est pourquoi on a mis au point une approche de vérification de l'assainissement spécifique au site.

Les travaux réalisés sur le site du ravin de la promenade Highland sud ont également franchi des étapes importantes. En 2020, l'équipe de projet avait suspendu les travaux de conception de l'assainissement afin d'évaluer la conception. En 2021, après avoir soigneusement étudié le résultat souhaité et discuté avec les laboratoires de Chalk River et EACL, l'équipe de projet a élaboré un nouveau plan conceptuel qui répondrait mieux aux préoccupations liées aux travaux dans le ravin. Le plan conceptuel comprend l'installation d'une barrière réactive perméable, l'assainissement des sédiments de l'étang et l'enlèvement d'une portion des sols contaminés par des DRFA. Le plan prévoit également le réalignement du ruisseau, le remplissage d'un étang et l'enlèvement du hangar à bateaux et des structures connexes. Afin de valider ce plan conceptuel, une étude sur les eaux souterraines et une évaluation des risques en vertu du protocole de dérogation pour circonstance spéciale ont été réalisées, et comme le plan prévoyait la destruction d'un bâtiment, le hangar à bateaux a fait l'objet d'une enquête sur les substances désignées (DSS). En 2021, un consultant externe a également élaboré des plans et des documents juridiques afin de séparer la maison située au 28, rue Bedford du lot du ravin. Les LNC pourront ainsi rester en contrôle du ravin pendant tous les travaux d'assainissement, et par la suite, pour exercer une surveillance soutenue. Grâce à la vente de la maison (et de la grande propriété), les LNC ont l'intention de récupérer une partie du coût de l'achat initial. La séparation a été approuvée par le Comité de dérogation, sous réserve de modification d'un règlement et d'un rapport d'impact sur le patrimoine culturel, la propriété étant désignée par la municipalité comme ayant une importance patrimoniale. Cette dernière activité sera achevée en 2022.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 49 de 120

Le nouveau contrat de caractérisation, d'étude technique, d'assainissement et de restauration et l'ordre de tâches 1 visant les grands sites ont été lancés en 2021. Pour la zone de la décharge de la promenade Highland, le site de la décharge de la promenade Highland, le ravin de la promenade Highland sud et la plate-forme du prolongement de la rue Pine Nord, il s'agissait de compiler toute la documentation nécessaire (dessins, spécifications techniques, énoncé des travaux, rapports historiques, etc.) ainsi que de créer un tableau de notation technique et des ensembles de questions techniques pour les promoteurs sélectionnés. L'équipe de projet a examiné les questions des soumissionnaires et fourni des réponses en temps voulu pour que le contrat puisse être attribué.

Tout au long de l'année de construction 2021, les améliorations du site se sont poursuivies sur site de regroupement du prolongement de la rue Pine Nord. L'équipe de projet a préparé le rapport sur l'enlèvement des arbres et a fait don de plusieurs chargements de troncs d'arbres à l'école secondaire locale pour ses programmes de travaux sur bois. L'infrastructure composée de bassins de gestion des eaux pluviales, de fossés de dérivation des eaux de surface et de bâtiments de contrôle de la contamination a été construite par un entrepreneur tandis qu'un autre terminait l'asphaltage de l'entrée de la rue Cavan et des 100 premiers mètres de la route d'accès. L'étape majeure du début de l'excavation des DRFA a été franchie le 27 mai 2021, avec un bref ralentissement des travaux pendant la pause de sécurité des LNC, en août 2021.

Conformément au permis du PPH, les LNC ont continué à entretenir, surveiller et inspecter le site du prolongement de la rue Pine Nord et le site de regroupement du ravin de la rue Strachan[1].

4.1.4.4 Sites industriels

Conformément à l'entente en droit[3], la municipalité de Port Hope et le gouvernement du Canada ont convenu que les LNC retireront un volume total de 51 250 m³ de déchets de sites industriels (non radioactifs), dans la municipalité de Port Hope. Ces sites sont les suivants : le quai central, le parc du centre récréatif Lions, l'ancienne usine de gazéification du charbon, la lagune Chemetron , et la cellule de stockage de l'usine de traitement des eaux usées. Les travaux prévoient également le dépôt d'un rapport sur l'état du site, conformément au règlement de l'Ontario 153/04, ce qui comprend une évaluation des risques de la contamination identifiée et l'application de mesures de gestion des risques.

Les travaux de caractérisation sur le terrain ont pris fin en 2019 et 2020. Le premier rapport sur l'état des lieux (« Record of site condition »), appelé « formulaire de pré soumission » (« Presubmission form ») a été soumis au conseil municipal de Port Hope en 2020. Les LNC ont ensuite soumis les rapports sur l'état des lieux des sites industriels au ministère de l'Environnement, de la Conservation et des Parcs de l'Ontario (MECP) en 2021. Le volume de DRFA attribué pour les sites industriels s'élève à 51 240 m³. Les activités d'assainissement devraient débuter en 2022.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 50 de 120

Les activités suivantes ont pris fin en 2021 sur les sites industriels :

- Quai central: L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué afin de constituer un ensemble de données. Le formulaire de pré soumission a été soumis au MECP. L'assainissement sera effectué après 2024 dans le cadre des travaux qui seront réalisés dans le port et sur le quai central.
- Parc Lion: L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué afin de constituer un ensemble de données. Le formulaire de pré soumission a été soumis au MECP. Les LNC ont procédé à d'autres évaluations des espèces en péril sur la propriété du parc Lions, ainsi qu'à une évaluation du boisé en fonction du plan officiel de la municipalité de Port Hope, qui désigne le site comme un élément du patrimoine naturel (boisé). L'évaluation des risques (qui suit l'analyse de l'état des lieux) a été lancée.
- Usine de gazéification du charbon : L'échantillonnage supplémentaire prévu dans le cadre de la phase 2 de l'évaluation environnementale du site (ESA) a été effectué afin de constituer un ensemble de données. Une partie de ce travail est le résultat direct des commentaires formulés par le MECP au sujet du formulaire de pré soumission. L'évaluation des risques (qui suit l'analyse de l'état des lieux) a été lancée.
- La lagune Chemetron : Fin 2020, les LNC ont procédé à un échantillonnage supplémentaire des boues et de l'eau dans la lagune afin de mieux déterminer la composition et la répartition de la contamination. En conséquence, la conception de l'assainissement a été mise à jour en 2021 et a été communiquée à la municipalité de Port Hope à des fins d'examen. Les LNC devraient commencer l'assainissement de ce site en 2022 et terminer le processus relatif à l'état des lieux dans les années suivantes.
- Le marais Sculthorpe: En 2021, les LNC ont continué à discuter avec la municipalité de Port Hope et les organismes de réglementation provinciaux de l'éventuelle remise en état du marais et de ses environs. Le MECP et le ministère du Développement du Nord, des Mines, des Richesses naturelles et des Forêts (MDNMRNF) ont donné leur avis, car le marais figure sur la liste des zones humides d'importance provinciale. La municipalité de Port Hope étudie les conseils fournis et d'autres discussions auront lieu en 2022 pour déterminer la voie à suivre.
- Cellule de stockage de l'usine de traitement des eaux usées (CSUTEU) La partie des travaux concernant le site industriel a été réalisée dans les années précédentes.

4.1.5 Fonctionnement continu de la nouvelle usine de traitement des eaux usées de Port Hope

La nouvelle usine de traitement des eaux usées de Port Hope a fonctionné à plein temps tout au long de la période 2021, à l'exception des périodes d'arrêt prévues pour l'entretien périodique. Ces activités ont nécessité un arrêt complet du système de traitement des affluents pendant un nombre total cumulé de quatre jours en août. En général, la productivité des systèmes de traitement des eaux de l'usine était supérieure à 98 %.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 51 de 120

4.1.5.1 Système de collecte et de traitement des eaux

Le système de collecte des eaux usées se compose de fossés d'interception, d'un bassin de collecte principal et de trois bassins de décantation. Les systèmes de traitement des eaux comprennent un ancien bâtiment de traitement de traitement des eaux, la nouvelle station d'épuration de Port Hope et deux canalisations de décharge. L'ancien bâtiment de traitement avait pour but de capter les eaux souterraines et les eaux de surface qui entraient en contact avec les matériaux contaminés déposés dans l'ancienne installation de gestion des déchets de Welcome. Le but de ce système était de traiter l'eau pour réduire les concentrations d'arsenic, de radium 226 et d'uranium, et de déverser l'eau traitée dans le lac Ontario.

La nouvelle usine de traitement des eaux usées de Port Hope a fonctionné normalement en 2021. Les interruptions de service étaient liées à des activités d'entretien, à des perturbations intermittentes du réseau électrique et des restrictions opérationnelles de l'installation de gestion à long terme des déchets de Port Hope (comme indiqué dans la section précédente).

Un résumé des données analytiques de l'échantillonnage de l'influent est fourni à l'annexe B, tableau 17.

En tout, 291 100m³ d'influents ont été collectés par l'usine de traitement des eaux usées de Port Hope en 2021. Cela représente une diminution de 2 % du volume par rapport aux volumes enregistrés en 2020.

4.1.5.2 Exploitation des systèmes de gestion des résidus

Les systèmes de gestion des résidus ont fonctionné régulièrement, parallèlement aux activités normales de traitement de l'eau, tout au long de l'année 2021. Les équipements de gestion des résidus comprennent les clarificateurs, les évaporateurs, les sécheurs de boues et les systèmes de presse à bande. Les flux de traitement des boues et résidus continuent d'être optimisés.

4.1.5.3 Échantillonnage hors site

Des échantillons d'eau ont été prélevés tous les mois dans un cours d'eau hors site (ruisseau Brand) situé dans le même bassin versant que l'installation. Les échantillons prélevés à cet endroit visent à détecter toute migration de contaminants par l'intermédiaire des lixiviats ou des eaux de ruissellement de l'installation de gestion à long terme des déchets de Port Hope. Le ruisseau Brand est le principal cours d'eau du bassin versant et il est situé à l'ouest de l'installation de gestion à long terme des déchets de Port Hope. Les échantillons sont prélevés à l'endroit où le ruisseau traverse le chemin Marsh. Les échantillons d'eau ont été analysés conformément aux paramètres des objectifs de conception de l'installation de gestion à long terme des déchets de Port Hope. En 2021, les résultats étaient généralement inférieurs aux objectifs provinciaux de qualité de l'eau de l'Ontario (PWQO) [15] et aux Recommandations pour la qualité des eaux au Canada visant la protection de la vie aquatique (CWQG) du Conseil canadien des ministres de l'Environnement (CCME) [16], à l'exception de l'aluminium qui a dépassé à la fois les objectifs provinciaux (PWQO) [15] et les Recommandations (CWQG) [16] de

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 52 de 120

janvier 2021 à décembre 2021. Dans l'échantillon prélevé en février 2021 [16] les concentrations de cuivre et de plomb dépassaient légèrement les Recommandations (CWQG), tandis que l'échantillon de février 2021 affichait des concentrations supérieures de cuivre et celui d'octobre 2021, des concentrations supérieures d'arsenic. Des renseignements supplémentaires sont fournis à l'annexe B, tableau B-5.

4.1.6 Usine de traitement des eaux usées de Port Hope

4.1.6.1 Traitement des déchets

La production et la manipulation des déchets résiduels générés par le processus de traitement de l'eau ont commencé lors de la mise en service finale de l'équipement de manipulation des déchets (décembre 2017). Après la mise en service, ces procédures et d'autres qui leur sont connexes ont fait l'objet de tests et ont été optimisés. Le traitement des solides générés par les opérations a commencé en avril 2018 et s'est poursuivi à temps plein depuis lors. Au total, environ 2 710 tonnes de déchets solides résiduels ont été produites et transférées dans les cellules de rétention de l'installation de gestion à long terme des déchets de Port Hope.

4.1.6.2 Traitement des eaux

Des fossés creusés autour du périmètre de la zone de stockage des déchets recueillent les eaux de ruissellement et les dirigent vers le quadrant nord-ouest de l'installation, là où les eaux de surface et les eaux souterraines sont interceptées par un grand fossé qui mène au bassin de collecte. Auparavant, l'eau était pompée du bassin de collecte vers le bâtiment de traitement où l'on ajoutait du chlorure ferrique, ce qui créait un précipité d'hydroxyde ferrique. L'eau traitée s'écoulait par gravité vers les bassins de traitement (sud, centre et nord) où le précipité d'hydroxyde ferrique se dépose et élimine l'arsenic et le radium de la solution/suspension. L'eau clarifiée dans le bassin de traitement nord était acheminée vers le bâtiment de traitement et pompée dans deux canalisations de 100 mm de diamètre qui s'étendent sur trois kilomètres sous terre, de l'installation de gestion à long terme des eaux usées de la station d'épuration de PH jusqu'au lac Ontario.

La nouvelle usine de traitement des eaux de Port Hope est dotée de technologies de pointe, notamment l'osmose inverse, la filtration sur sable, des évaporateurs à recompression mécanique des vapeurs, des sécheurs de boues et des clarificateurs à plaques inclinées, mais les fossés et le bassin de collecte sont les mêmes qu'auparavant. Ces technologies permettent d'éliminer plus de 99 % de l'arsenic, de l'uranium et d'autres métaux lourds présents dans l'eau entrante. Le système évacue les effluents liquides par les mêmes canalisations jumelées de quatre pouces qui étaient utilisées par l'ancien bâtiment de traitement des eaux.

4.1.6.3 Traitement et surveillance des eaux

En 2021, toutes les semaines, à intervalles fixes, des échantillons de l'influent et de l'effluent ont été prélevés à l'usine de traitement des eaux usées de Port Hope. Des échantillons instantanés d'eau avant traitement ont été prélevés à un point d'échantillonnage du conduit

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 53 de 120

alimentant le système de traitement. Des échantillons de l'effluent traité ont été prélevés à intervalles réguliers de manière continue. Un échantillon composite a été prélevé pour fournir des données sur le rejet de l'effluent.

Les échantillons d'eau traitée et non traitée ont été analysés chaque semaine en laboratoire afin de déterminer quelles étaient les concentrations des paramètres suivants :

- Aluminium
- Arsenic
- Cuivre
- Plomb
- Uranium
- Zinc
- pH
- Total des solides en suspension
- Radium 226

Pour la période de référence, les valeurs moyennes arithmétiques mensuelles des analyses hebdomadaires des paramètres énumérés ci-dessus ont été calculées et sont indiquées à l'annexe B, tableau 17.

Les limites de rejet des effluents de l'usine de traitement des eaux de Port Hope qui figurent à l'annexe B du permis du PPH [1], précisent que la concentration moyenne arithmétique mensuelle (totale) des contaminants préoccupants dans les eaux de rejet des effluents ne doit pas dépasser les limites de rejet indiquées. En outre, les analyses mensuelles des effluents doivent montrer qu'ils ne présentent pas de toxicité aiguë. Au cours de la période de référence, aucune des limites de rejet n'a été dépassée et les effluents ne se sont pas révélés toxiques. Un résumé de ces analyses figure à l'annexe B, tableau 16 (effluent final) et au tableau 19 (toxicité de l'effluent). Des histogrammes (figure 2, figure 3, et figure 4) ont été préparés afin de comparer les résultats des effluents finaux obtenus d'une année à l'autre, en 2020 et 2021.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 54 de 120

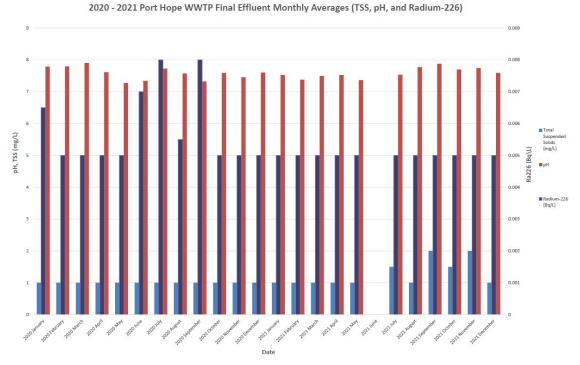



Figure 2 : Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (MST, pH et radium-226)

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 55 de 120

Figure 3 : Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (plomb, uranium et zinc)

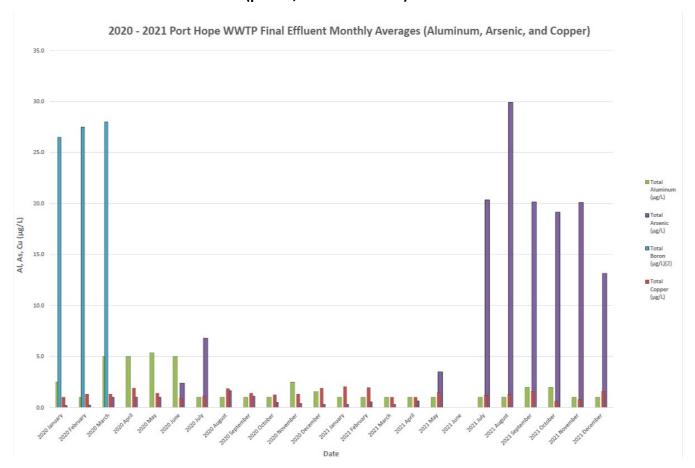


Figure 4 : Histogramme des moyennes mensuelles des effluents finaux de l'usine de traitement des eaux usées de PH de 2020 à 2021 (aluminium, arsenic et cuivre)

Au total, l'usine de traitement des eaux usées a rejeté 125 000 m³ d'effluents en 2021. Cela représente une diminution d'environ 11 % par rapport aux volumes enregistrés en 2020.

4.1.6.4 Traitement et élimination des solides résiduels

Comme prévu, l'usine de traitement des eaux usées de Port Hope a exploité deux flux de déchets solides en 2021. Comme mentionné ci-dessus, des optimisations clés ont été effectuées pour améliorer l'efficacité et le débit de ces processus. Les évaporateurs traitent le concentré produit par les systèmes d'osmose inverse et sont conçus pour réduire le volume global de ces déchets grâce à la production de condensat. Le condensat est combiné au perméat généré par les unités d'osmose inverse et finalement déversé dans le lac Ontario. Le concentré évaporé (boue) est acheminé vers des séchoirs mécaniques à des fins de

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 56 de 120

déshydratation plus poussée. La boue séchée est transférée dans des conteneurs de stockage en vrac sous forme de solide pouvant être fluidifié, qui est transféré à l'IGLTD-PH pour y être éliminé définitivement.

Les solides dissous dans le flux de déchets liquides entrant sont précipités chimiquement et recueillis sous forme de boue dans les cuves du clarificateur. Ces solides sont stabilisés à l'aide de composés polymères et conservés en lots avant d'être déshydratés dans le filtre-presse à bande. L'étape de la filtration permet d'éliminer l'excès d'eau des boues avant qu'elles ne soient déposées dans des bacs de stockage en vrac qui sont ensuite transférés dans l'IGLTD-PH, où la boue est définitivement éliminée. L'eau décantée est renvoyée dans le bassin de collecte principal pour un traitement de recirculation.

Un total combiné de 1 263 700 kg de déchets solides résiduels a été produit par l'usine de traitement des eaux usées de Port Hope en 2021. Cela représente une augmentation de 70 % de la production par rapport aux volumes enregistrés en 2019.

4.1.7 Dotation de l'installation

Les postes liés au permis du PPH n'ont connu aucun changement [1] en 2021.

Le PHP a continué à respecter les exigences minimales en matière de personnel afin de fournir le soutien opérationnel et de sécurité nécessaire.

IGLTD-PH: Aucun changement n'a été apporté aux postes de l'IGLTD-PH en 2021.

L'IGLTD-PH a continué à respecter les exigences minimales en matière de personnel afin de fournir le soutien opérationnel et de sécurité nécessaire.

L'effectif de l'IGLTD-PH était de 25 personnes à la fin de l'année 2021.

L'effectif de l'UTEU-PH était de 25 personnes à la fin de 2021.

Étant donné la portée et la surveillance accrues, les efforts de recrutement se poursuivent pour que les LNC disposent des ressources appropriées pendant toute la durée de la phase 2. L'augmentation des effectifs se poursuivra en 2022 avec l'accroissement des activités du PPH.

4.2 Exigences en matière de production de rapports

4.2.1 Événements devant être signalés à la CCSN

En 2021, dans le cadre du PPH, deux événements ont été jugés comme devant être signalés à la CCSN. Ils sont énumérés dans le tableau ci-dessous.

Tableau 6 : Événements devant être signalés à la CCSN dans le cadre du PPH en 2021

N° de l'événement	Titre	DSR	Installation (le cas échéant)
ERM-21-0596	PDH - PH HCP - Dépassement des rejets d'eaux pluviales	Protection de l'environnement	-

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 57 de 120

ERM-21-2269	HWP - PH SSS - Ligne aérienne de transport d'électricité heurtée	-	-
-------------	---	---	---

4.2.2 Événements devant être signalés à d'autres organismes de réglementation

Les rapports adressés à d'autres organismes de réglementation sont les suivants :

- Aucun rapport d'enquête sur les situations n'a été transmis à Emploi et Développement social Canada (pour plus de renseignements, voir la section 8 Programme classique de santé et sécurité).
- Aucun rapport n'a été fait à Environnement et Changement climatique Canada (pour plus de renseignements, voir la section 9 Protection de l'environnement).

4.2.3 Suivi des événements liés à l'exploitation

Les événements survenus dans le cadre du PPH sont enregistrés dans le système ImpAct. Ces informations sont régulièrement passées en revue afin d'y déceler d'éventuelles tendances.

En tout, dans le cadre du Programme des déchets historiques (PDH), quatre incidents avec analyse des tendances cognitives ont été ouverts dans ImpAct. Les recherches de tendances montrent que trois de ces quatre cas ne sont pas propres au PPH ou au Projet de Port Granby (PPG), tandis qu'un cas est propre au PPH. Les tendances de 2021 comprennent les types d'événements suivants :

- PDH UTEU PH/PG TENDANCE « Déversements, débordements et/ou fuites » Événements/incidents connexes.
- PDH BG-PH/PG TENDANCE « Laboratoire tiers » Problèmes/erreurs liés.
- PDH PG PH/PG TENDANCE défavorable « Équipement lourd » Événements/problèmes liés à la sécurité.
- PDH PH Activités TENDANCE Divergences dans les données et les rapports des entrepreneurs.

Trois des quatre incidents ont été traités dans ImpActs, et six mesures correctives ont été prises pour régler ce type d'incident et éliminer les facteurs qui y contribuent; l'un d'entre eux est en cours de règlement, les trois autres ont été fermés en janvier 2022.

On trouvera dans le tableau suivant le résumé des incidents soulevés dans ImpAct au cours des cinq dernières années, par niveau d'importance³.

Tableau 7 : Nombre des incidents enregistrés dans ImpActs (PPH)

Année	Niveau 0 Niveau 1		Niveau 2	Niveau 3	Niveau 4	Total
2017	0	0	1	6	87	94

³ Niveau d'importance : Niveaux attribués à un événement (SL1 étant le plus important, SL4 étant le moins important) en fonction du résultat réel ou potentiel en matière de sécurité, d'environnement ou de conséquences commerciales.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 58 de 120

2018	7	0	1	38	155	203
2019	0	0	1	21	122	150
2020	3	0	0	5	81	89
2021	1	0	5	31	132	169 ^{bc}

- Le niveau 0 sera attribué si l'incident (ImpAct) n'est pas considéré comme un problème et une recommandation de clôture de l'incident sera donnée.
- b Le total n'inclut pas 161 incidents enregistrés dans ImpActs (recommandation de comités).
- Le total n'inclut pas cinq autres incidents enregistrés dans ImpActs et un cas recommandé par le comité. Ces incidents ont été soulevés pour effectuer un suivi des initiatives réalisées dans le cadre des projets de l'IRPH.

4.2.4 Notification de conflits ou d'incohérences

En 2021, on n'a cerné aucun conflit ou incohérence entre les conditions de permis, les codes ou les normes, les opérations, les programmes, les méthodes ou les documents réglementaires mentionnés dans le permis du PPH [1] ou le *Manuel des conditions de permis* du PPH [2].

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 59 de 120

5 Analyse de la sûreté

5.1 Programme d'analyse de la sûreté

Conformément au *Manuel des conditions de permis* du PPH [2] le Programme d'analyse de la sûreté ne s'applique pas au PPH.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 60 de 120

6 Conception matérielle

6.1 Programme de conception

Le programme de conception des LNC s'applique au PPH. Pour plus de renseignements, voir la section 5.1 du rapport annuel de surveillance de la conformité des LNC [4].

6.1.1 Ancien bâtiment de traitement des eaux de Welcome

Après l'arrêt de l'exploitation continue du bâtiment de traitement des eaux de Welcome en décembre 2016, pendant toute l'année 2021, le système a été inspecté chaque semaine par les LNC afin de s'assurer qu'il est prêt à fonctionner en cas d'urgence.

Des ordres d'entretien préventif sont générés pour s'assurer que les composants clés du système de traitement des eaux usées font l'objet d'inspections de routine. Les LNC retiennent les services d'entrepreneurs certifiés pour fournir des services électriques et mécaniques au besoin.

Les activités opérationnelles suivantes ont eu lieu pendant la période de référence :

- Inspections hebdomadaires du bâtiment de traitement des eaux pour s'assurer qu'il est prêt à être mis en service.
- Les travaux d'entretien extérieur de routine comprennent la tonte du gazon, l'entretien des routes et le déneigement.

6.1.2 Usine de traitement des eaux usées de Port Hope (UTEU-PH)

Un système de télémétrie et d'acquisition de données à distance, doté d'alarmes de notification, permet de surveiller 24 heures sur 24 les niveaux d'eau et d'autres paramètres critiques du système. L'équipement de traitement de l'usine est doté d'une interface comprenant un système informatique de contrôle et d'acquisition de données (SCADA).

La nouvelle usine de traitement des eaux usées de Port Hope est dotée de technologies de pointe pour traiter l'eau selon des normes plus strictes que celles de l'ancienne usine.

L'usine de traitement des eaux usées de Port Hope comprend les éléments suivants :

- Des processus de traitement primaire de l'eau (clarificateurs, filtres à sable, osmose inverse, services aux bâtiments).
- Processus de gestion des résidus (évaporateurs, séchoirs à boue, presse à bande).

6.1.3 Niveaux d'intervention à l'usine de traitement des eaux usées de Port Hope

À partir de 2020, les seuils d'intervention approuvés ont été mis en œuvre à l'usine de traitement des eaux usées de Port Hope et mis à jour dans les rapports trimestriels sur les effluents produits dans le cadre du PPH. Conformément à la communication écrite de la CCSN adressée aux LNC [17], les limites de rejet ont été révisées en ce qui concerne les résultats des

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 61 de 120

échantillons composites hebdomadaires et le retrait du bore de la liste des contaminants préoccupants [17].

6.1.4 Mises à niveau techniques

Pour améliorer le fonctionnement de l'installation, les LNC ont fait appel à CRL Design Engineering afin d'effectuer des réparations et des mises à niveau de l'équipement existant, conformément au processus de contrôle des modifications techniques des LNC. Ces modifications et mises à niveau planifiées comprenaient ce qui suit :

- Optimisation des systèmes mécaniques et de contrôle du processus de l'évaporateur afin de maximiser son efficacité opérationnelle.
- Modifications mineures au processus de circulation de l'eau de service afin d'améliorer la performance des sous-systèmes dépendants et de mieux conserver l'eau traitée.
- Finalisation de la planification et installation d'une unité supplémentaire d'osmose inverse pour augmenter la capacité de traitement de l'eau.
- Poursuite de la planification de l'installation de réservoirs de stockage plus grands pour contenir un volume accru de soude, d'hydroxyde de sodium et d'acide sulfurique.
- Modifications supplémentaires au processus de traitement du concentré (saumure) pour améliorer l'élimination du sel et l'équilibre du retour dans le bassin.
- Installation de systèmes perfectionnés de récupération de chaleur et optimisation de leur fonctionnement. Ces changements ont donné de très bons résultats en ce qui concerne l'efficacité du traitement primaire et la réduction de l'encrassement du système en général.

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 62 de 120

7 Aptitude fonctionnelle

7.1 Programme d'aptitude fonctionnelle

Conformément au *Manuel des conditions de permis* du PPH [2], le Programme d'aptitude fonctionnelle ne s'applique pas au PPH.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 63 de 120

8 Radioprotection

8.1 Programme de radioprotection

Le programme de radioprotection des LNC s'applique au PPH. Pour plus de renseignements, voir la section 7 du rapport annuel de surveillance de la conformité des LNC [4].

Le plan de radioprotection de l'initiative dans la région de Port Hope (Plan RP-IRPH) [18] définit les mesures de radioprotection applicables aux projets de l'IRPH sur le site du PPH. Il est conforme aux exigences du programme de radioprotection des LNC[19]. Ces mesures de radioprotection visent à garantir que les projets de l'IRPH sont mis en œuvre conformément aux niveaux de radioprotection prescrits par le règlement d'application de la *Loi sur la sûreté et la réglementation nucléaires* [6] et pour s'assurer que les doses sont maintenues au niveau ALARA.

Les entrepreneurs des LNC responsables de l'exploitation de divers sites de l'IRPH ont recours à un fournisseur de services de dosimétrie autorisé par la CCSN, en particulier Santé Canada, pour surveiller la dosimétrie sur le site, tandis que le personnel du site et de l'installation des LNC (c'est-à-dire les employés des LNC, les travailleurs occasionnels et les sous-traitants) ont recours au fournisseur de services de dosimétrie autorisé par les Laboratoires de Chalk River (LCR). La dose reçue par le personnel du site et de l'installation des LNC n'est pas mesurée indépendamment – seule la dose totale par personne est enregistrée, quel que soit le site sur lequel la personne travaille (par exemple, activités autorisées à Port Hope et à Port Granby). Le personnel des LNC travaillant sur des sites ou dans l'installation ainsi que les entrepreneurs du PPH qui travaillent dans les zones contrôlées ou qui y pénètrent fréquemment se voient respectivement attribuer des dosimètres thermoluminescents ou des dosimètres à luminescence stimulée optiquement délivrés par Santé Canada, afin de contrôler les expositions aux rayonnements externes à doses profondes et à doses superficielles.

La CCSN a récemment été informée [20] des révisions apportées au plan de radioprotection de l'IRPH [18], qui a fait l'objet d'une sixième révision, conformément aux exigences du *Manuel des conditions de permis* du PPH [2].

8.1.1 Initiatives et activités ALARA

Les activités et initiatives reposant sur le principe ALARA (niveau le plus faible qu'il soit raisonnablement possible d'atteindre) continuent d'être à l'avant-plan du programme de radioprotection du Projet de Port Hope. Les récents changements de politique concernant les travailleurs du secteur nucléaire (TSN) ont déclenché une initiative visant à mettre à jour ou à enregistrer tous les membres du personnel des LNC, les entrepreneurs et les sous-traitants en tant que TSN. En 2021, une formation de remise à niveau a été proposée pour l'utilisation des formulaires de rejet inconditionnelle, le mouvement des matériaux et équipements n'étant pas des déchets, et l'analyse des filtres pour la surveillance des particules alpha à longue durée de vie. Les LNC ont dispensé au personnel chargé de la radioprotection une formation sur le remplacement des filtres à haute efficacité contre les particules (filtre HEPA) des épurateurs

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 64 de 120

d'air portables. En 2021, on a lancé une initiative visant à améliorer la signalisation et la démarcation des sites du projet; cette initiative est toujours en cours. Sur tous les sites du projet, les LNC ont renseigné les entrepreneurs et sous-traitants sur l'utilisation de la jauge de densité nucléaire. Cela a été fait sur tous les sites de projet où les LNC sont tenus de savoir à tout moment quelles sources nucléaires se trouvent sur les sites autorisés par la CCSN, ainsi que la partie responsable de leur entretien et de leur contrôle. Après avoir découvert une source non exemptée incorrectement étiquetée, les LNC ont procédé à une vérification de l'état de toutes les sources sur les sites de l'IRPH.

Les révisions apportées au Plan de radioprotection de l'IRPH [18] ont été mises en œuvre et comprennent des orientations supplémentaires sur les exigences en matière de dosimétrie interne et d'instrumentation. Les LNC ont demandé à leurs entrepreneurs de confirmer les choses suivantes :

- Les instruments et équipements de radioprotection utilisés pour mesurer les rayonnements sont sélectionnés, testés et calibrés en fonction de la tâche à laquelle ils serviront et des risques connexes.
- Les isotopes utilisés pour la vérification de l'efficacité de l'étalonnage des instruments sont approuvés par le responsable de la radioprotection du Bureau de gestion du Programme des déchets historiques et représentent fidèlement l'énergie et le type de rayonnement (α, β, γ) présents dans les déchets radioactifs de faible activité trouvés à Port Hope et à Port Granby.
- Les instruments et l'équipement utilisés pour mesurer les rayonnements sont sélectionnés, testés et étalonnés pour l'usage auquel ils sont destinés.
- Chaque instrument a été étalonné pour déterminer son efficacité de détection à l'aide de sources planes, uniformes et traçables dont la zone active a des dimensions similaires à celles du détecteur, lorsque cela est possible. La substance nucléaire utilisée doit émettre un rayonnement similaire à celui du contaminant potentiel.

Les initiatives et activités ALARA sont mises en pratique dans toutes les facettes des activités du PPH, et tout particulièrement en vertu du programme de surveillance environnementale du PPH qui prévoit le déploiement mensuel et trimestriel des moniteurs de radon et des dosimètres à thermoluminescence. Les résultats du programme de surveillance de 2021 confirment que l'estimation de la dose à laquelle le public est exposé est de 2,3 % de la limite annuelle. Ces résultats reposent sur les relevés maximaux des doses de radon et de dosimètres thermoluminescents mesurées le long de la ligne de clôture, selon une période d'occupation prudente de 60 heures par an. L'intégrité du programme ALARA fait l'objet d'une surveillance de routine et d'examens des enregistrements de doses afin de confirmer qu'aucune tendance négative ou dépassement ne s'est produit.

8.1.2 Contrôle de la contamination

La surveillance de routine dans l'ensemble du projet nous a permis de confirmer que les activités en cours ont été exécutées en minimisant la propagation de la contamination. Dans le

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 65 de 120

cadre du PPH 2021, il y a eu quatre cas de contamination personnelle et un dépassement des limites de la zone de sécurité radiologique. Aucun dépassement des seuils d'intervention ou des contrôles administratifs n'a été constaté à la suite de ces contaminations.

Le tableau 8 ci-dessous présente les événements de contamination qui se sont produits sur les sites du PPH en 2021 :

Contamination en milieu Contamination de la peau et des vêtements de travail Vêtements Vêtements Véhicules / de Surface^d Peau^a Total personnels^b **Matériel**e protection radiologique^c 2017 0 0 0 0 0 1 2018 0 0 1 2 0 1 2019 3 0 0 3 0 0 2020 0 1 2 4 0 1 2021 1 3 0 4 1 0

Tableau 8 : Événements de contamination

- a La contamination détectée est supérieure à 4 Bq/cm² en bêta-gamma ou à 0,1 Bq/cm² en alpha.
- b Contamination décelée sur les vêtements personnels supérieure au niveau de fond
- c La contamination détectée est supérieure à 850 Bq/cm² bêta/gamma ou supérieure à 30 Bq/cm² alpha.
- d Contamination fixe/libre dépassant les limites spécifiées pour la zone radiologique applicable.
- e Contamination de surface non fixée supérieure au niveau de fond.

Les événements de contamination notés dans le tableau ci-dessus se sont produits lors de travaux de routine planifiés et d'opérations régulières. La contamination fixe totale dans le pire des cas était de 0,38 Bq/cm² en alpha et de 0,47 Bq/cm² en bêta sur une surface de 10 cm². La dose cutanée maximale reçue par le travailleur concerné lors de l'événement de contamination cutanée a été évaluée à 1,91 μ Sv, soit 0,03 % du seuil d'intervention de l'IRPH et 0,004 % de la limite de dose publique fixée par la CCSN.

8.1.3 Sources scellées

Conformément au plan de radioprotection de l'IRPH [18], toutes les sources scellées qui sont utilisées dans le cadre du PPH doivent être inférieures à la quantité d'exemption d'une substance nucléaire, telle que définie dans le Règlement sur les substances nucléaires et les appareils à rayonnement de la CCSN. Si une source radioactive non exemptée doit être apportée sur le site, le responsable du programme de radioprotection du BG-PDH en sera informé, et une approbation sera fournie, le cas échéant. Dans le cadre du PPH, la principale fonction des sources scellées est de vérifier et de valider le fonctionnement des instruments de radioprotection. Toutes les sources contrôlées par les LNC et les entrepreneurs doivent être

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 66 de 120

conservées en sécurité dans une armoire verrouillée. Un inventaire des sources scellées est effectué au moins une fois par an.

Les LNC ont procédé à une évaluation de l'étendue des conditions pour toutes les sources enregistrées sur le site du PPH. D'après l'inventaire des sources scellées réalisé en 2021 sur les sites du PPH, trois sources appartenant aux LNC et six sources appartenant à des entrepreneurs qui dépassaient la quantité d'exemption sont sous le contrôle direct des LNC et du sous-traitant des LNC, respectivement.

Toutes les sources ont été prises en compte dans l'inventaire 2021.

8.1.4 Interprétation des quantités de doses rapportées

L'IRPH fait appel au fournisseur de services de dosimétrie autorisé par les Laboratoires de Chalk River (LCR) pour la dosimétrie externe et interne du personnel du BG-PDH, des travailleurs occasionnels et de certains sous-traitants. Le personnel du BG-PDH, les travailleurs occasionnels et les sous-traitants dont la dosimétrie externe et interne est contrôlée à l'aide des dosimètres des LCR ne font pas l'objet d'un contrôle en fonction du site où ils travaillent (c.-à-d. que le personnel ou le sous-traitant peut travailler sur plus d'un site de projet de l'IRPH); seule la dose totale par personne est enregistrée, quel que soit le site sur lequel la personne travaille. Pour ce qui est des entrepreneurs du PPH, ils font appel à un autre prestataire de service de dosimétrie autorisé par les LNC et la CCSN. Leurs doses sont contrôlées en fonction du site du PPH sur lequel ils travaillent. Dans certains cas, les entrepreneurs travaillent sur plusieurs sites.

Le personnel du BG-PDH, les travailleurs occasionnels et les sous-traitants qui travaillent dans la zone contrôlée ou qui y pénètrent fréquemment se voient attribuer un dosimètre à thermoluminescence (DLT) ou un dosimètre à luminescence stimulé optiquement (DLSO) pour contrôler les expositions externes à des doses profondes et superficielles de rayonnement. Par ailleurs, les travailleurs occasionnels et les sous-traitants utilisent des équivalents de dosimétrie par luminescence stimulée optiquement (OSLD) fournis par les prestataires autorisés par la CCSN. Les LNC ont mis en place une nouvelle période de dosimétrie trimestrielle à partir de janvier 2021, avec une transition vers la mise en œuvre par les sous-traitants lorsque cela est possible. Tous les dosimètres externes sont lus régulièrement. Les visiteurs et les personnes autres que les travailleurs du secteur nucléaire (TSN) reçoivent généralement des dosimètres électroniques personnels pour surveiller la dose reçue et s'assurer que les seuils de déclenchement des mesures correctives fixés dans le plan de radioprotection de l'IRPH [18] ne sont pas dépassés.

Le programme de dosimétrie interne est essentiellement destiné au personnel responsable des opérations et de la radioprotection des LNC qui travaille à l'usine de traitement des eaux usées de Port Hope, à proximité des endroits où il y a des risques radiologiques. Le test biologique vise à détecter la présence d'uranium par le biais d'échantillons in vivo. Tous les résultats de test biologique visant à détecter la présence d'uranium étaient bien inférieurs au niveau mineur recommandé par les LNC, ce qui indique que le potentiel d'absorption est faible ou nul.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 67 de 120

Le programme d'exposition au radon vise à surveiller l'exposition au radon du personnel du BG-PDH, des travailleurs occasionnels et des sous-traitants et entrepreneurs du PPH qui travaillent sur le site du PPH, en raison de l'intensification des travaux de construction pendant la phase 2. Les travailleurs de la phase 2 ont été équipés de détecteurs personnels de radon et les doses sont calculées et enregistrées si la moyenne mensuelle/trimestrielle dépasse le seuil de déclenchement de CNL de 150 Bq/m³. Aucun dépassement n'a été identifié.

Le PPH continue de veiller à ce que les doses reçues par le personnel et les entrepreneurs soient maintenues au niveau ALARA en se conformant strictement à son programme de dosimétrie, comme le stipule le plan de radioprotection de l'IRPH[18].

8.2 Dosimétrie

Dans tous les tableaux, les données sur les doses représentent les doses reçues par toutes les personnes ayant fait l'objet d'une surveillance, ce qui comprend les employés (y compris ceux qui ont un emploi temporaire comme les étudiants), entrepreneurs, sous-traitants et visiteurs du PPH. Le personnel du BG-PDH, les travailleurs occasionnels et les sous-traitants dont la dosimétrie externe et interne est contrôlée à l'aide des dosimètres des Laboratoires de Chalk River ne font pas l'objet d'un contrôle en fonction du site où ils travaillent (c.-à-d. que les personnes peuvent travailler sur plus d'un site de projet autorisé de l'IRPH); seule la dose totale par personne est enregistrée, indépendamment du site sur lequel la personne travaille. Les données sur les doses concernant le personnel du BG-PDH, les travailleurs occasionnels et les sous-traitants sont identiques à celles rapportées pour les doses du Projet de Port Granby.

Les doses n'ont pas été ventilées par installation, car les employés, les entrepreneurs et les visiteurs se déplacent régulièrement d'une installation à l'autre sans changer de dosimètres thermoluminescents, il est donc difficile de déterminer avec précision quelle est la dose reçue dans une installation donnée.

Pendant la période actuelle de cinq ans (du 1^{er} janvier 2021 au 31 décembre 2025, soit le 31 décembre 2021) (tableau 9) la dose efficace individuelle maximale (au 31 décembre 2021) est de 0,38 mSv, reçue par un ouvrier sous-traitant des LNC.

Tableau 9 : Doses efficaces de rayonnement reçues par le personnel de l'IRPH, période de dosimétrie actuelle de 5 ans (2021-2025)

Туре с	le personne		Dose efficace	individuelle m	aximum (mSv)	
со	ntrôlée	2021	2022	2023	2024	2025
TSN	Employé	0,26	-	-	-	-
	Entrepreneur	0,43	-	-	-	-
Non-TSN	Entrepreneur	0,00	-	-	-	-
	Visiteur	0,00	-	-	-	-

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1

Page 68 de 120

Tableau 10: Dose efficace dans le cadre du PPH

					D	osage (ms	Sv)							
Type de personne contrôlée		Nbre total de personnes	0	Paragr. Paragr. Paragr. Paragr. Paragr. Paragr. Paragr. Dose individuelle 0,01- 0,51- 1,01- 5,01- 10,01- >20,00 >20,00 Dose individuelle						Pose individuelle (mSv)		Dose collective (personne-		
					Nomb	re de per	sonnes	Max	Moy. Ø ^a	Moy. totale ^b	mSv)			
TCN	Employé	193	102	91	0	0	0	0	0	0,26	0,06	0,03	5,32	
TSN	Entrepreneur	726	609	117	0	0	0	0	0	0,43	0,09	0,01	10,65	
	Entrepreneur	2	2	0	0	0	0	0	0	0	-	0	0	
Non-TSN	Visiteur	345	345	0	0	0	0	0	0	0	-	0	0	
	Totaux 1266			208	0	0	0	0	0	0,43	0,08	0,01	15,97	

a Moyenne de toutes les doses mesurées qui excluent la valeur de la dose zéro, arrondie à deux décimales.

b Moyenne de toutes les doses mesurées incluant la valeur de la dose zéro, arrondie à deux décimales.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 69 de 120

Tableau 11 : Répartition de la dose équivalente à la peau pour le PPH

				Dosage (mSv)									D	
Type de personne contrôlée		Nbre total de	0	0,01- 0,50	0,51- 1,00	1,01- 5,01- 10,01- >20,00 Dose individuelle (ms						(mSv)	collective	
		personnes			Nomb	re de per	sonnes	Max	Moy. Ø ^a	Moy. totale ^b	(personne- mSv)			
TSN	Employé	193	101	92	0	0	0	0	0	0,32	0,07	0,03	6,14	
ISIN	Entrepreneur	726	647	79	0	0	0	0	0	0,44	0,09	0,01	7,34	
	Entrepreneur	2	2	0	0	0	0	0	0	0	-	0	0	
Non-TSN	Visiteur	345	345	0	0	0	0	0	0	0	-	0	0	
Totaux		1266	1095	171	0	0	0	0	0	0,44	0,08	0,01	13,48	

a Moyenne de toutes les doses mesurées qui excluent la valeur de la dose zéro, arrondie à deux décimales.

b Moyenne de toutes les doses mesurées incluant la valeur de la dose zéro, arrondie à deux décimales.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev.1 Page 70 de 120

Tableau 12 : Résumé des composants de dose reçus dans le cadre d'activités autorisées en 2021 a

			Dose ex	terne pén	étrante		Dose externe en surface					Dose aux extrémités				
Type de personne contrôlée		Nbre total de personn es	Dose collective (p-mSv)	Max	Moy. Ø b	Moy. totale ^c	Nbre total de personn es	Dose collective (p-mSv)	Max	Moy. Ø b	Moy. totale ^c	Nbre total de personn es	Dose collective (p-mSv)	Max	Moy. Ø b	Moy. totale ^c
	Employé	193	5,32	0,26	0,06	0,03	193	6,14	0,32	0,07	0,03	-	-	-	-	-
TSN	Entrepren eur	726	6,54	0,38	0,08	0,01	726	7,34	0,44	0,09	0,01	-	-	-	-	-
Non-	Entrepren eur	2	0	0	-	0	2	0	0	-	0	-	-	-	-	-
TSN	Visiteur	345	0	0	-	0	345	0	0	-	0	-	-	-	-	-
	Total	1266	11,86	0,38	0,07	0,01	1226	13,46	0,44	0,08	0,01-	-	-	-	-	-

- a Toutes les quantités sont mesurées en mSv, sauf indication contraire.
- b Moyenne de toutes les doses mesurées qui excluent la valeur de la dose zéro, arrondie à deux décimales.
- c Moyenne de toutes les doses mesurées incluant la valeur de la dose zéro, arrondie à deux décimales.
- d Les visiteurs TSN sont des personnes qui ont déjà travaillé (comme employés ou entrepreneurs) dans le secteur nucléaire, mais qui sont revenues au PPH à titre de visiteurs, tout en conservant leur statut historique de « travailleurs du secteur nucléaire (TSN) ».

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 71 de 120

8.2.1 Discussion des données sur les doses

Nous n'avons noté aucune anomalie dans les données ci-dessus. Toutes les doses mesurées étaient inférieures au point de contrôle de dose assigné (1 mSv) pour toutes les personnes du projet et bien en dessous de tous les seuils d'intervention du projet.

8.2.2 Changements ou tendances des doses de rayonnement

Au fur et à mesure que le projet avance, les doses de la phase 2 de la construction devraient rester inchangées par rapport à l'année civile 2020 précédente. La dose au corps entier de 2021 pour tous les travailleurs (employés, sous-traitants et étudiants) a été déterminée comme étant d'environ 0,01 mSv pour les deux catégories de travailleurs. Ces résultats devraient se répéter étant donné que la portée des travaux ne comportera aucun changement important.

8.2.3 Dépassement du programme

Pour l'année civile 2021, le programme de surveillance des doses n'a enregistré aucun dépassement des limites réglementaires et des niveaux d'intervention.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 72 de 120

9 Programme classique de Santé et sécurité

9.1 Aspects classiques de la santé et de la sécurité

Le PPH adhère au programme classique de santé et sécurité des LNC. Pour plus de renseignements, voir la section 8 du rapport annuel de surveillance de la conformité des LNC [4].

Le plan de santé et sécurité au travail de l'Initiative dans la région de Port Hope [13] a été mis au point pour définir le programme de santé et sécurité au travail (SST) s'appliquant aux projets de l'IRPH. Il est conforme au programme de SST des LNC. Les entrepreneurs effectuant des travaux dans le cadre du PPH soumettent à l'examen et à l'approbation des LNC des plans de santé et de sécurité spécifiques au site afin de garantir la conformité avec le plan de SST de l'IRPH [13].

La conformité des entrepreneurs avec leur plan de santé et de sécurité spécifique au projet est examinée dans le cadre du programme de surveillance des LNC. La surveillance de la conformité est une initiative de santé et de sécurité qui a été mise en œuvre pour assurer la cohérence des programmes spécifiques avec les exigences du plan de SST de l'IRPH [13]. Les LNC effectuent des contrôles de routine pour s'assurer que les activités de l'entrepreneur sont conformes au plan de SST spécifique au site qui a été approuvé.

En 2021, l'objectif principal des LNC a été de continuer à appliquer les mesures de sécurité visant à lutter contre la pandémie de COVID-19. Cela comprenait la gestion des cas possibles ou soupçonnés d'exposition ayant fait l'objet d'un signalement, la communication continue entre les LNC et le personnel de l'entrepreneur au sujet des derniers développements relatifs à la *Loi sur la santé et la sécurité au travail*, l'organisation du travail à distance et l'orientation des projets, les tests volontaires sur place par écouvillonnage nasal et la mise en œuvre de la politique de vaccination des LNC. L'accent a été mis sur l'ergonomie du travail à domicile et l'introduction d'une série de balados sur le bien-être.

En outre, une vigilance accrue a été exercée sur le respect des pratiques de travail concernant le levage et le gréage, le travail en solitaire, l'hygiène des mains et les espaces confinés. Le projet a été interrompu provisoirement pour des raisons de sécurité, des accidents liés à des équipements lourds ayant été évités de justesse, et les cas de blessures corporelles ayant enregistré une hausse. Une évaluation de l'interface machine-piéton a été mise en œuvre pour les sites de projet à haut risque.

La CCSN a été mise au courant [21] des révisions apportées au Plan de santé et sécurité de l'IRPH [13].

9.1.1 Comité local de santé et sécurité

En 2021, le comité local de santé et de sécurité a tenu neuf réunions régulières et une réunion spéciale en 2021.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 73 de 120

En 2021, le comité local de santé et de sécurité a tenu dix réunions régulières et une réunion spéciale.

Au cours de l'année 2021, le Comité sur la santé et la sécurité au travail du Programme des déchets historiques s'est concentré sur la pandémie de COVID-19, mais également sur la santé mentale, le stress au travail et le soutien au retour progressif à la « nouvelle normalité » au fur et à mesure que la pandémie le permettait. Un nombre important d'employés des sites du programme de santé et de sécurité au travail ont continué à travailler à distance, que ce soit à temps plein ou à temps partiel. Des inspections ont été menées avec succès sur les lieux de travail au cours de l'année 2021. La majorité des incidents entraînant une perte de temps étaient liés à la transmission de la COVID-19 en milieu de travail, notamment à un endroit particulier. Comité sur la santé et la sécurité au travail du Bureau de gestion du Programme des déchets historiques n'a participé à aucune enquête en 2021.

9.1.2 Inspections

En tout, 310 inspections de santé et sécurité ont été réalisées en 2021.

9.1.3 Rapport d'enquête de situation comportant des risques (RESCR) et incidents entraînant une perte de temps (IEPT)

En 2021, une situation comportant des risques dans le cadre du PPH a été signalée à Emploi et Développement social Canada Le personnel de la CCSN a reçu des copies de ces notifications, conformément aux exigences du REGDOC-3.1.2 [22.

Tableau 13 : Résumé des taux de blessures dans le cadre du PPH

Le tableau suivant est un résumé des données sur le taux de blessures des cinq dernières années.

2017 2018 2019 2020 2021

	2017	2018	2019	2020	2021
Projet de Port Hope.					
Heures-personnes travaillées			298378	391875	389, 016
Blessures avec arrêt de travail	0	0	1	0	2
Journées de travail perdues	0	0	33	0	12
Frequence ^a	0	0	0,68	0	1,03
Gravité ^b	0	0	22,57	0	6,17
Entrepreneurs du PPH ^c					
Blessures avec arrêt de travail	0	0	0	0	0

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 74 de 120

	2017	2018	2019	2020	2021
Journées de travail perdues	0	0	0	0	0

- a Le taux de fréquence est égal au nombre de blessures avec arrêt de travail x 200 000 heures d'exposition, divisé par les heures-personnes travaillées (sur la base de 100 travailleurs à temps plein).
- b Le taux de gravité est égal au nombre de journées de travail perdues x 200 000 heures d'exposition, divisé par les heures-personnes travaillées (sur la base de 100 travailleurs à temps plein).
- c Le nombre d'heures-personnes travaillées n'est pas divulgué par les entrepreneurs. les taux de fréquence et de gravité ne peuvent donc pas être calculés.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 75 de 120

10 Protection de l'environnement

10.1 Programme de protection de l'environnement

Le programme de protection de l'environnement des LNC s'applique au PPH. Pour plus de renseignements, voir la section 9 du rapport annuel de surveillance de la conformité[4] des LNC [4.

La CCSN a déjà été informée des révisions apportées aux documents relatifs à la protection de l'environnement, conformément au Manuel des conditions d'autorisation [2]

10.2 Surveillance de l'environnement et suivi de l'évaluation environnementale

10.2.1 Surveillance de l'environnement

Les LNC ont mené les activités de surveillance mentionnées dans cette section, y compris la collecte des données sur le terrain.

Les services d'analyse en laboratoire ont été fournis par un laboratoire agréé, qui est un fournisseur des LNC. Le laboratoire a reçu la certification ISO/IEC 17025 : 17025.

10.2.1.1 Méthodologie

Les méthodologies et protocoles suivis pour effectuer la surveillance environnementale sont décrits dans le *plan de surveillance environnementale et biophysique du PPH* [23].

Surveillance opérationnelle des eaux souterraines

Comme l'indique l'annexe B, des échantillons devaient être prélevés dans 14 puits d'observation situés sur le site de l'installation de gestion à long terme des déchets de Port Hope tableau 16. Le puits d'observation 1-75 a été mis hors service en 2016, car il se trouvait dans l'empreinte de l'installation de gestion à long terme des eaux usées, et il ne sera pas remplacé. Le puits d'observation 9-75 a été endommagé et a été remplacé par le WC-LTWMF MW-06 en 2017. Les puits d'observation 2-75, 12-75 et 18-76 ont été mis hors service en 2018 dans le cadre des activités de l'installation de gestion à long terme des déchets et il n'est pas prévu de les remplacer. Les puits d'observation 2-87 et 5-79 ont été mis hors service en 2017. La réinstallation des puits suivants a eu lieu en mai 2019 : WC-OW2-19 (2-87) et WC-OW5-19 (5-79). Le puits d'observation 36-76 ne peut être localisé et il n'est pas prévu de le remplacer. Des échantillons ont été prélevés dans les neuf autres puits au printemps et à l'automne 2021. Les emplacements des puits d'observation sont indiqués à l'annexe A, figure 12. Un résumé des résultats des analyses est inclus dans l'annexe B, tableau16. Les résultats complets sont fournis à l'annexe C. Ces résultats sont cohérents avec les données historiques.

Puits domestiques

En novembre 2021, les LNC ont pris l'initiative d'échantillonner des puits domestiques sur 14 propriétés résidentielles proches de l'installation de gestion des déchets de Welcome et ont

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 76 de 120

analysé les échantillons afin de déterminer leurs concentrations en arsenic, radium 226, uranium, nitrate et pH. Les résidents seront informés par écrit des résultats. Ces derniers sont en cours d'examen.

10.3 Suivi de l'EE et surveillance de l'environnement

La section 3.2.9, Protection et surveillance de l'environnement, conditions 2.9 à 2.11 du *Manuel des conditions de permis* du PPH [**2**] s'applique spécifiquement à l'environnement naturel et à la surveillance connexe.

Le programme de suivi de l'EE et du programme de surveillance de l'environnement connexe vise à confirmer que les effets environnementaux d'un projet sont conformes aux prévisions de l'EE et, dans le cas contraire, à cerner les mesures à prendre pour y remédier.

Les principaux objectifs du programme de surveillance de l'environnement sont les suivants :

- Confirmer les effets prévus par l'EE au moyen d'une surveillance, d'un échantillonnage, de mesures et d'analyses.
- Démontrer la conformité aux exigences du permis et du programme de suivi, comme stipulé dans le plan de surveillance environnemental et biophysique du Port Hope [23].
- Démontrer l'efficacité du confinement et du contrôle des effluents, et donner au public des garanties de cette efficacité.
- Fournir des données pour affiner les prévisions de l'EE et identifier tout écart, positif ou négatif, dans les paramètres environnementaux et les contaminants potentiellement préoccupants (CPP).

Les objectifs secondaires du programme sont les suivants :

- Fournir des données pour soutenir les opérations et planifier les phases de l'IRPH.
- Fournir des ressources et des données qui seront utiles en cas d'événement imprévu.
- Faire preuve de diligence raisonnable.
- Respecter les engagements des parties prenantes.

Le programme de surveillance de l'EE est structuré en fonction des six sous-programmes de mesures de suivi. Ensemble, ces programmes intègrent toutes les activités nécessaires pour retracer les mesures de suivi prescrites dans le rapport d'examen préalable du *projet de gestion à long terme des déchets radioactifs de faible activité de Port Hope* (PPH) [24] et comprennent la surveillance de l'environnement atmosphérique (pollution atmosphérique, pollution sonore), de la géologie et des eaux souterraines (débit et qualité des eaux souterraines) et de l'environnement aquatique (eaux de surface, qualité des eaux de drainage). Les détails du programme se trouvent dans le *programme de suivi de l'évaluation environnementale du PPH* (PPH) [25]. Le présent rapport contient les informations recueillies en 2021 dans le cadre des programmes de surveillance. L'état d'avancement des engagements en matière d'évaluation environnementale (EE) concernant le suivi des effets biophysiques est résumé à l'annexe E.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 77 de 120

10.3.1 Méthodologie

Les LNC ont mené les activités de surveillance mentionnées dans cette section, y compris la collecte des données sur le terrain. Les services d'analyse en laboratoire ont été fournis par un laboratoire ayant la certification ISO/IEC 17025, qui est un fournisseur des LNC.

Les méthodologies et protocoles suivis pour effectuer la surveillance environnementale sont décrits dans le plan de surveillance environnementale et biophysique du PPH [25.

10.3.2 Surveillance de l'environnement atmosphérique

Les activités de suivi de l'EE prescrites pour l'environnement atmosphérique comprennent des éléments associés à la qualité de l'air (paramètres radiologiques et non radiologiques), au bruit et, en raison du début des activités de dragage, d'assèchement et d'assainissement des sédiments dans le port de Port Hope, à la surveillance des composés organiques volatils (COV) et des odeurs.

10.3.2.1 Particules en suspension (PTS et PM_{2.5},5)

La surveillance de la qualité de l'air a porté sur les concentrations de particules en suspension qui pourraient avoir été causées par les activités du projet. Deux types de particules en suspension ont été mesurés :

- Les particules totales en suspension (PTS) comprenant des particules de taille < 44 μ m de diamètre.
- Les matières particulaires de 2,5 μ m (PM2,5), qui comprennent des particules de taille inférieure à 2,5 μ m de diamètre.

IGLTD de Port Hope

La surveillance de la qualité de l'air a été effectuée tout au long de l'année 2021 dans le périmètre de l'IGLTD-PH. L'IGLTD a été fermée pendant les Fêtes, du 24 décembre 2021 au 4 janvier 2022. Dans le cadre du programme de surveillance, des échantillonneurs d'air à haut volume (Hi-Vol) ont été installés à quatre endroits (Welcome Sud, Welcome Nord-ouest, station météorologique de Welcome et au 192, chemin Toronto) pour mesurer les PTS et les PM_{2,5}. Les emplacements de surveillance de la qualité de l'air sont indiqués à l'annexe A, figure 5 pour l'IGLTD-PH.

Entre 217 et 223 échantillons ont été prélevés dans chaque échantillonneur d'air (TSP et $PM_{2.5}$), à l'exception du 192, chemin Toronto. En 2021, la station du 192, chemin Toronto a connu des problèmes électriques qui ont été réglés en mars 2022. Au total, 1 559 échantillons ont été analysés au cours de l'année. On trouvera un résumé des résultats des échantillonnages à l'annexe B, tableau 21, tableau 22, tableau 23 tableau et dans le tableau 24. La limite prioritaire de 120 μ g/m³ pour les PTS, telle que définie dans les exigences et le plan de gestion des poussières de l'IRPH, [26] n'a pas été dépassée en 2021 à l'installation de gestion à long terme

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 78 de 120

des déchets de l'IGLTD-PH. Les LNC constatent que le même critère se trouve dans les critères de qualité de l'air ambiant (CQAA) de l'Ontario [27].

Il convient de noter qu'en 2012, le Conseil canadien des ministres de l'Environnement (CCME) a adopté le système de gestion de la qualité de l'air comme nouvelle approche globale de la gestion des problèmes atmosphériques [28]. Les Normes canadiennes de qualité de l'air ambiant (CAAQS) relatives aux particules fines (PM_{2,5}) sont incluses et remplacent les normes pancanadiennes élaborées en 2000. En 2020, une valeur de 27 µg/m³ est proposée pour les PM_{2,5}. Les résultats relatifs aux PM_{2,5} (98^e percentile en moyenne sur trois ans) ont été comparés à cette valeur, dans le cadre d'une approche proactive par rapport aux directives de l'industrie. Les valeurs de PM_{2,5} étaient inférieures à ce niveau. Le rapport d'examen préalable du PPH [24] prévoyait que les PM_{2,5} dépasseront les critères de qualité de l'air ambiant sur 24 heures [27] à certains endroits hors site.

Analyse supplémentaire – IGLTD-PH

L'échantillon contenant le poids net le plus élevé de PTS recueilli chaque semaine à chacun des postes de surveillance Hi-Vol a fait l'objet d'une analyse supplémentaire afin de déterminer la concentration de métaux et de radionucléides dans la poussière en suspension. Le rapport d'examen préalable du PPH [24] prévoyait que, sur 24 heures, les concentrations d'arsenic et de cobalt pourraient parfois être supérieures aux CQAA [27] à certains endroits hors site. Les concentrations d'arsenic et de cobalt n'ont pas dépassé les normes en 2021.

Les CQAA n'ont pas été dépassées [27] en 2021. On trouvera un résumé des résultats à l'annexe B, tableau 25, tableau 26, tableau 27, et tableau 28.

Le rapport d'examen préalable du PPH [24] a indiqué que les niveaux prévus de radionucléides seraient inférieurs aux niveaux de référence de Santé Canada. En 2021, le radium-226 et le thorium-232 l'ont dépassé les valeurs prévues dans certains filtres; toutefois, ils sont restés bien en deçà des valeurs de référence de Santé Canada. Il convient de noter que les dépassements des valeurs prédites semblent être liés aux limites de détection des laboratoires (les résultats non calculés des laboratoires étaient inférieurs à la limite de détection pour le radium 226 et le thorium 232).

En 2021, sur certains filtres, les concentrations d'uranium dépassaient les valeurs prévues dans le rapport d'examen préalable du PPH [24]. Les concentrations d'uranium supérieures aux valeurs prédites en 2021 n'ont pas été attribuées aux activités d'assainissement. Une augmentation de la limite de détection de l'uranium en laboratoire depuis 2020 a entraîné une moyenne annuelle élevée par rapport aux années précédentes. Les concentrations d'uranium sont restées bien inférieures aux valeurs de référence de Santé Canada.

Les valeurs prédites étaient basées sur la modélisation des concentrations de PM_{10} . En comparant la radioactivité particulaire sur les filtres PTS aux prédictions modélisées, on adopte une approche conservatrice.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 79 de 120

Assainissement du site de regroupement du prolongement de la rue Pine

La surveillance de la qualité de l'air a été effectuée tout au long de l'année 2021 autour du site de regroupement du prolongement de la rue Pine. Les stations Hi-Vol ont été installées au complexe sportif Jack Burger, à l'école secondaire de Port Hope, et Cavan Candies. La surveillance a commencé en janvier 2021 et s'est poursuivie lorsque des activités générant de la poussière se déroulaient sur le site. Les emplacements de surveillance de la qualité de l'air sont indiqués à l'annexe A,. Entre 172 et 179 échantillons ont été prélevés dans chaque échantillonneur d'air (PTS et PM_{2.5}).

On trouvera un résumé des résultats de l'échantillonnage à l'annexe B, tableau 29, tableau 30, et tableau 31. En 2021, la limite supérieure de 120 $\mu g/m^3$ pour les PTS, telle que définie dans le Plan et exigences de l'IRPH en matière de gestion de la poussière [26], n'a pas été dépassée sur ce site. Les LNC constatent que le même critère se trouve dans les critères de qualité de l'air ambiant (CQAA) de l'Ontario [27].

Il convient de noter qu'en 2012, le Conseil canadien des ministres de l'Environnement (CCME) a adopté le système de gestion de la qualité de l'air comme nouvelle approche globale de la gestion des problèmes atmosphériques [28]. Les normes canadiennes de qualité de l'air ambiant pour les particules fines sont incluses et remplacent les normes pancanadiennes élaborées en 2000. En 2020, une valeur de 27 µg/m³ est proposée pour les PM_{2,5}. Les résultats relatifs aux PM_{2,5} (98^e percentile en moyenne sur 3 ans) ont été comparés à cette valeur, conformément aux directives de l'industrie. Les valeurs de PM_{2,5} étaient inférieures à ce niveau. Le rapport d'examen préalable du PPH [24] prévoyait que les PM_{2,5} dépasseront les critères de qualité de l'air ambiant sur 24 heures [27] à certains endroits hors site.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 80 de 120

Analyse supplémentaire-Site de regroupement du prolongement de la rue Pine

L'échantillon contenant le poids net le plus élevé de PTS recueilli chaque semaine à chacun des postes de surveillance Hi-Vol a fait l'objet d'une analyse supplémentaire afin de déterminer la concentration de métaux et de radionucléides dans la poussière en suspension. Le rapport d'examen préalable du PPH [24] prévoyait que, sur 24 heures, les concentrations d'arsenic et de cobalt pourraient parfois être supérieures aux CQAA [27] à certains endroits hors site. Les concentrations d'arsenic et de cobalt n'ont pas dépassé les normes en 2021.

Les CQAA n'ont pas été dépassés [27] en 2021. On trouvera un résumé des résultats à l'annexe B, tableau 32, tableau 33, et tableau 34.

Le rapport d'examen préalable du PPH [24] a indiqué que les niveaux prédits de radionucléides seraient inférieurs aux niveaux de référence de Santé Canada. En 2021, le radium-226 et le thorium-232 ont dépassé les valeurs prévues dans certains filtres; toutefois, ils sont restés bien en deçà des valeurs de référence de Santé Canada. Il convient de noter que les dépassements des valeurs prédites semblent être liés aux limites de détection en laboratoire (les résultats de laboratoire non calculés étaient inférieurs à la limite de détection pour le radium 226 et le thorium 232).

Sur certains filtres, les concentrations d'uranium dépassaient les valeurs prévues dans le rapport d'examen préalable [24] du PPH. Les concentrations d'uranium supérieures aux valeurs prédites en 2021 n'ont pas été attribuées aux activités d'assainissement. Une augmentation de la limite de détection de l'uranium en laboratoire depuis 2020 a entraîné une moyenne annuelle élevée par rapport aux années précédentes. Les concentrations d'uranium sont restées bien inférieures aux valeurs de référence de Santé Canada. Les valeurs prédites étaient basées sur la modélisation des concentrations de PM₁₀. En comparant la radioactivité particulaire sur les filtres PTS aux prédictions modélisées, on adopte une approche conservatrice.

10.3.2.2 Surveillance de la poussière par un tiers

Conformément au *Plan et exigences en matière de gestion de la poussière de l'IRPH* [**26**], un programme indépendant de contrôle de la poussière est mis en œuvre par l'entrepreneur principal et par les LNC pour éviter les conflits organisationnels perçus concernant les résultats du contrôle de la poussière et les travaux. Le niveau de poussière fait l'objet d'une surveillance soutenue pendant les heures de travail, et les résultats sont rapportés toutes les 15 minutes.

L'entrepreneur indépendant chargé de la surveillance de la poussière utilise des moniteurs en temps réel pour mesurer les PTS sur le périmètre du chantier. Selon le *Plan et exigences en matière de gestion de la poussière de l'IRPH* [**26**], pour ce qui est des résultats de cet exercice, le seuil d'intervention est de > 120 μ g/m³ en moyenne sur 15 minutes. Si ce seuil est dépassé, les LNC et l'entrepreneur principal prennent des mesures immédiates afin de réduire les niveaux de poussière.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 81 de 120

En 2020, les travaux se déroulant sur le chantier de l'IGLTD-PH n'ont jamais provoqué un dépassement du seuil d'intervention. Les résultats obtenus en temps réel dans le cadre du programme indépendant de contrôle de la poussière pendant la construction de l'IGLTD-PH sont disponibles à PHAL.ca. Les rapports hebdomadaires comprennent des mesures de la poussière en temps réel, et une carte du site montrant les endroits où sont placés les moniteurs indépendants.

10.3.2.3 Composés organiques volatils (COV)

Un contrôle des composés organiques volatils (COV) est effectué chaque semaine pendant les activités de dragage dans le port de Port Hope. Dans le cadre du programme de surveillance, on utilise des cylindres summa fournis par le laboratoire tiers, placés dans le sens du vent et dans le sens inverse.

La surveillance des COV a débuté le 24 juin 2021 et des échantillons ont été prélevés chaque semaine pendant les activités de dragage du port de Port Hope. Veuillez noter que les activités de dragage n'ont pas été continues en 2021 pour plusieurs raisons indépendantes les unes des autres. Les résultats ont été comparés à la moyenne sur 24 heures des *critères de qualité de l'air ambiant* (CQAA) [27] de l'Ontario et il n'y a eu aucun dépassement en 2021. On trouvera un résumé des résultats à l'annexe B, tableau 35, tableau 36, tableau 37tableau et tableau 38.

10.3.2.4 Surveillance des odeurs

Conformément au plan de surveillance environnementale et biophysique de Port Hope [23], un programme de surveillance des odeurs est mis en œuvre pendant les activités de dragage, d'assèchement et d'assainissement des sédiments dans le port de Port Hope. Deux fois par jour, des mesures sont effectuées par un consultant tiers auprès des récepteurs hors site, dans le sens du vent et dans le sens inverse.

En partant du principe que la gêne occasionnée par la plupart des odeurs nauséabondes se situe environ à 5 du rapport « dilution sur seuil » (D / T), ce niveau a été retenu comme seuil audelà duquel les mesures d'atténuation sont déclenchées, conformément au plan de surveillance environnementale et biophysique de Port Hope [23].

La surveillance des odeurs a commencé en juin 2021, afin de recueillir des données de base sur les odeurs avant les activités de dragage. Selon les relevés des récepteurs installés hors site par rapport au port de Port Hope, le seuil de 5 D / T n'a jamais été atteint pendant les activités de dragage.

10.3.2.5 Surveillance du bruit

En ce qui concerne le bruit, le suivi de l'EE comprend la surveillance des niveaux de bruit à l'installation de gestion à long terme de Port Hope, à l'intersection de la route d'accès à l'installation de gestion à long terme et de la route de Toronto, sur les sites d'assainissement sélectionnés et le long des voies de transport afin de confirmer l'exactitude des prévisions faites au cours de l'EE et l'efficacité des mesures d'atténuation. Une surveillance supplémentaire du

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 82 de 120

bruit est également nécessaire sur les sites d'assainissement afin de confirmer la conformité avec les arrêtés et règlements appropriés (*Lignes directrices relatives au bruit dans l'environnement* de l'Organisation mondiale de la Santé) [**29**]. En 2021, une surveillance du bruit a été effectuée sur les sites de l'installation de gestion à long terme de Port Hope, de la promenade Highland et ses environs, ainsi que le long des voies de transport nord, centre et sud.

IGLTD-PH

Le bruit fait l'objet d'une surveillance trimestrielle, et ce, à plusieurs endroits autour de l'IGLTD-PH et à l'intersection de la route d'accès à l'IGLTD et du chemin Toronto afin de vérifier l'exactitude des prévisions faites pendant l'évaluation environnementale et l'efficacité des mesures d'atténuation. Quatre grandes campagnes de surveillance ont été menées en 2021 (janvier, avril, août et novembre). Les résultats des campagnes, dont la moyenne logarithmique est calculée sur trois jours ouvrables, sont présentés à l'annexe B, tableau 39. Les emplacements de surveillance du bruit sont présentés à l'annexe A, figure 7.

Le rapport d'examen préalable [24] du PPH prévoyait que, pendant les travaux de construction et d'aménagement de l'IGLTD, les résidents habitant à proximité de l'IGLTD subiraient une augmentation des niveaux de bruit de 12 dBA. Quand on compare les résultats de 2021 aux résultats de 2015, avant le début des travaux préliminaires TP3a/TP1 (alors que les niveaux d'activité autour du site étaient plus faibles), on remarque une légère augmentation du bruit en 2021. Cependant, sur une période de 24 heures, toutes les valeurs restent inférieures à la plage prédite de 12 dBA et au niveau de 70 dBA préconisé par l'OMS dans ses lignes directrices relatives au bruit dans les collectivités (*Guidelines for community noise*) [29]. Les résultats de 2021 sont semblables à 2020.

Décharge de la promenade Highland et sites voisins - site de regroupement du prolongement de la rue Pine Nord

La surveillance du bruit est effectuée à trois endroits autour du site de la promenade Highland et des sites avoisinants. Le site de regroupement du prolongement de la rue Pine Nord est considéré comme faisant partie des sites voisins. La surveillance du bruit a été effectuée pour confirmer l'exactitude des prévisions faites pendant l'évaluation environnementale et l'efficacité des mesures d'atténuation pendant les périodes de pointe de la construction. Deux grandes campagnes de surveillance ont été menées en 2021, au printemps/été (juin) et à l'automne/hiver (décembre), conformément au plan de surveillance environnementale et biophysique du PH [23]. Les résultats des campagnes, dont la moyenne logarithmique est calculée sur trois jours ouvrables, sont comparés aux résultats de référence de 2020. Les sites de surveillance du bruit sont présentés à l'annexe B, tableau 41. Les emplacements de surveillance du bruit sont présentés à l'annexe A, figure 11.

Par rapport aux résultats de 2020, les résultats de la surveillance des sites de la promenade Highland et de ses environs montrent une diminution du bruit à HD-N-0001, une légère augmentation à HD-N-0002 et peu ou pas de changement à HD-N-0003. Toutes les valeurs sont

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 83 de 120

inférieures au niveau de 70 dB sur une période de 24 heures, fixé par l'OMS dans ses lignes directrices relatives au bruit dans les collectivités (*Guidelines for community noise*).

Routes de transport nord, centre et sud

Une surveillance ponctuelle du bruit à intervalles d'une heure, le matin et le soir, est requise de manière saisonnière pendant les pics d'activités de transport, comme indiqué dans le plan de surveillance environnementale biophysique du PPH [23]. En 2021, le bruit a fait l'objet d'une surveillance le long des itinéraires de transport, notamment sur l'itinéraire de transport du nord, du centre et du sud, comme indiqué à l'annexe B, tableau 40. Les emplacements de surveillance du bruit sont présentés à l'annexe A, figure 8, figure 9, figure 10. Des données de référence supplémentaires ont été recueillies avant que les itinéraires de transport ne soient utilisés par les LNC en 2018, comme indiqué à l'annexe B, tableau 40. À chaque fois, les LNC ont recueilli des mesures horaires, entre 7 h et 19 h. Les moyennes journalières sont indiquées à l'annexe B, tableau 40. La surveillance a eu lieu en février, avril, septembre et décembre le long des voies de transport nord, sud et centrale.

Les résultats de l'axe de transport du sud ont montré peu ou pas d'augmentation par rapport aux donnés de référence remontant à 2018. En 2021, par rapport aux données de référence de 2018, les résultats montraient une augmentation du bruit sur l'itinéraire de transport central. Les résultats obtenus en 2021 pour l'itinéraire de transport du nord (NTR-001) montrent une légère augmentation par rapport aux données de référence révisées de 2020. En 2020, l'itinéraire NTR-002 de l'itinéraire de transport nord a été déplacé en raison de la perte d'un emplacement permettant de fixer en toute sécurité l'équipement de surveillance du bruit. Le nouvel emplacement de NTR-002 se trouve à quelques mètres de l'ancien. Toutes les valeurs étaient inférieures au niveau de 70 dB [29] sur une période de 24 heures, préconisé par l'OMS dans ses lignes directrices relatives au bruit dans les collectivités (*Guidelines for community noise*).

10.3.3 Surveillance géologique et phréatique

Les activités de suivi prescrites dans le domaine de la géologie et des eaux souterraines comprennent des éléments associés à la qualité du sol, à la qualité des eaux souterraines et à la qualité des eaux de drainage et des lixiviats. Les résultats de la surveillance sont résumés dans les sections suivantes.

10.3.3.1 Surveillance des eaux souterraines (débit et qualité)

La surveillance de l'écoulement et de la qualité des eaux souterraines est effectuée deux fois par an à l'IGLTD-PH et sur la promenade Highland dans le cadre du programme de suivi de l'évaluation environnementale du PPH [25].

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 84 de 120

IGLTD-PH

Sur les 23 puits sentinelles situés autour de l'IGLTD-PH et faisant l'objet d'un contrôle dans le cadre du programme de suivi de l'évaluation environnementale du PPH [25], 21 puits étaient appropriés pour la surveillance (niveaux et/ou qualité). Ces puits sont présentés à l'annexe A, figure 12, et à l'annexe C. Le puits de surveillance des eaux souterraines WC-MW2-02 n'a pu être localisé, car il est enfoui sous l'accotement du chemin Brand. Le puits WC-MW102 n'a pas fait l'objet d'un échantillonnage en 2021, car il doit faire l'objet- d'une inspection. Les LNC sont en train de préparer un cahier des charges pour l'entretien et la réparation des puits. Si les puits WC-MW1-02 et WC-MW2-02 ne peuvent pas être récupérés, ils seront réinstallés pendant la phase d'entretien et de surveillance. Notez que les puits WC-OW2A-75, WC-OW2-87 et WC-OW5-79 ont été mis hors service dans le cadre du projet d'agrandissement du bassin. La réinstallation de ces puits a eu lieu en mai 2019 : WC-OW2-19 (WC-OW2-87), WC-OW2A-19 (WC-OW2A-75) et WC-OW5-19 (WC OW5-79). En 2017, le puits WC-LTWMF-MW-06 a été installé pour remplacer le puits WC OW9-75, car il était endommagé et inopérant.

En 2021, des échantillons d'eau souterraine ont été prélevés et analysés à deux reprises pour y détecter d'éventuelles traces de contaminants. Les résultats de ces campagnes de surveillance sont présentés à l'annexe C. Les résultats ont été comparés aux critères de qualité de l'eau souterraine potable énumérés dans le tableau A2.5 du rapport d'examen préalable du PPH [24]. Il s'agit d'une approche prudente, l'eau n'étant pas potable sur le site, ce qui est cohérent avec les rapports des années précédentes. De plus, les résultats ont été comparés avec les normes du ministère de l'Environnement et de l'Énergie de l'Ontario relatives aux eaux souterraines, et tout particulièrement le tableau 3 (Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition) [30].

Les dépassements à proximité de l'usine de traitement des eaux usées sont liés aux effets de l'installation de gestion des déchets existante, qui n'a pas de revêtement artificiel ou de système de couverture. On continuera à surveiller la qualité des eaux souterraines pendant toutes les phases du projet et la qualité des eaux souterraines devrait s'améliorer naturellement au fur et à mesure de la réhabilitation de l'usine de traitement des eaux usées.

Les emplacements de surveillance des eaux souterraines sont décrits à l'annexe A, figure 12. Les niveaux des eaux souterraines ont été mesurés tous les trimestres en 2021 et sont présentés à l'annexe B, tableau 42. Les niveaux moyens des eaux souterraines dans les puits de surveillance sont généralement comparables à ceux des années précédentes.

La décharge de la promenade Highland

En 2021, avant les travaux d'assainissement, le site de la promenade Highland a servi de point de référence en matière de surveillance des eaux souterraines. Sur les 28 puits de surveillance situés autour du site de la promenade Highland et surveillés dans le cadre du plan de surveillance biophysique de l'environnement du PPH [23] pour la qualité des eaux souterraines, 24 puits ont été localisés et jugés convenables pour la surveillance de la qualité des eaux souterraines, voir l'annexe A, figure 13. En 2021, il n'a pas été possible de prélever

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 85 de 120

d'échantillons dans le puits PH-95-18, car il était endommagé. PH95-I a été mis hors service en 2021. PH-90-4-I a été bloqué et il n'a pas été possible de prélever un échantillon en 2021. PH-90-4-II était sec et il n'a pas été possible de prélever un échantillon en 2021. L'échantillonnage a eu lieu deux fois en 2021, comme l'exige le plan de surveillance biophysique de l'environnement du PPH [23].

En 2021, à deux reprises, on a prélevé des échantillons d'eau souterraine, qui ont été analysés pour déterminer la présence de contaminants, conformément au programme de suivi de l'évaluation environnementale du PPH [25]. Les résultats de ces campagnes de surveillance sont présentés à l'annexe C. Les résultats ont été comparés aux critères provinciaux de qualité de l'eau dans le cas d'une nappe phréatique non potable, dont il est d'ailleurs question dans le rapport d'examen préalable du PPH [24], notamment les critères décrits dans le tableau 3 (« Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition », disponible en anglais seulement) des normes de l'Ontario sur les sols, l'eau souterraine et les sédiments [30].

Les dépassements s'expliquent par le fait que des DRFA se sont mélangés avec des déchets solides municipaux sur le site d'enfouissement de la promenade Highland. On continuera à surveiller la qualité des eaux souterraines pendant toutes les phases du projet et la qualité des eaux souterraines devrait s'améliorer avec les travaux d'assainissement sur le site. Une fois le site restauré, il n'y aura plus d'effets sur la nappe phréatique et les eaux souterraines à proximité et en aval de la décharge se purifieront naturellement grâce à des mécanismes de rinçage et d'atténuation, mais aussi grâce à la présence d'une barrière réactive perméable, en aval de la décharge de la promenade Highland.

Les niveaux des eaux souterraines ont été mesurés tous les trimestres en 2021 et sont présentés à l'annexe B, tableau 43. Sur les 41 puits sentinelles qui devaient faire l'objet d'un contrôle dans le cadre du programme de suivi de l'EE, 33 puits ont été localisés et jugés appropriés pour contrôler le niveau des eaux souterraines. Parmi ces puits, 28 ont fait l'objet d'un calcul du niveau d'eau, les données relatives à l'élévation des eaux souterraines de référence n'étant pas disponibles pour cinq d'entre eux. Ces puits sont présentés à l'annexe A, figure 13, et à l'annexe D. Les niveaux d'eau souterraine ont légèrement diminué en 2021 par rapport aux résultats de 2020.

10.3.3.2 Puits sentinelles - IGLTD-PH

Des échantillons d'eau souterraine sont prélevés deux fois l'an, à l'automne et au printemps, à des fins de gestion de l'arsenic dans la cellule 1 et la cellule 2A/B de l'IGLTD-PH. Les résultats sont comparés aux moyennes des années précédentes pour cerner les tendances, comme indiqué dans le plan de surveillance environnementale et biophysique du PPH [23].

Pour l'arsenic, le seuil de déclenchement a été fixé à un niveau de concentration correspondant à 50 % des OPQE [15]. Les seuils de déclenchement ont été créés parce que le principal récepteur situé en aval des eaux souterraines quittant le site est l'affluent du ruisseau Brand, et que le ruisseau Brand est situé à l'ouest de l'IGLTD-PPH. Pour l'arsenic, l'OPQE [15] est de

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 86 de 120

100 μg/L. Par conséquent, aux puits sentinelles de l'IGLTD-PH, le seuil de déclenchement interne est fixé à 50 μg/L pour l'arsenic.

Les résultats du contrôle sont présentés à l'annexe B, tableau 44. En 2021, aucune donnée de surveillance des eaux souterraines n'a atteint le seuil de déclenchement interne de $50 \mu g/L$. Notez que les puits WC-OW2-87, WC-OW2A-75 et WC-OW5-79 ont été mis hors service dans le cadre du projet d'agrandissement du bassin. La réinstallation des puits suivants a eu lieu en mai 2019 : WC-OW2-19 (WC-OW2-87), WC-OW2A-75 (WC-OW2A-19) et WC-OW5-19 (WC-OW5-79).

10.3.3.3 Surveillance du sol

Dans le cadre des activités de surveillance du sol, nous avons prélevé et analysé des échantillons de sol de surface à des endroits situés à l'extérieur . du périmètre de l'IGLTD-PH et du site d'enfouissement de la promenade Highland afin de déterminer s'il y avait eu une augmentation des concentrations de contaminants dans ces zones en raison d'un dépôt de poussière qui aurait été apporté par le vent En 2021, le sol situé autour de l'IGLTD-PH et du site d'enfouissement de la promenade Highland a été échantillonné et analysé pour y détecter la présence de métaux et de radionucléides, comme le montre l'annexe B, tableau 45 à tableau 51. Les endroits où l'on a prélevé des échantillons de sol sont présentés à l'annexe A, figure 121 et figure 15.

IGLTD-PH

Le rapport d'examen préalable du PPH [24] prévoyait, sur le périmètre de l'IGLTD-PH, des concentrations maximales d'arsenic et de cobalt de 4,7 μ g/g et 6,67 μ g/g, respectivement. En 2021, les concentrations d'arsenic (5,3 μ g/g et 19 μ g/g) étaient supérieures à ces concentrations prévues aux stations PH-WWMF-SS-01 et PH-WWMF-SS-05, respectivement. Tous les autres lieux d'échantillonnage étaient inférieurs aux concentrations prévues. Des valeurs supérieures aux concentrations prédites avaient été observées à ces endroits au cours des années précédentes.

Le rapport d'examen préalable du PPH [24] indiquait également que les concentrations de thorium-230 devaient augmenter de 63 % par rapport aux valeurs de référence pendant la construction de l'IGLTD-PH, pour atteindre une concentration moyenne de 97,7 Bq/kg (0,0977 Bq/g) et une concentration maximale de 141,9 Bq/kg (0,1419 Bq/g). En 2021, à certains endroits, les concentrations de thorium-230 étaient supérieures aux valeurs moyennes et maximales prédites en raison de la limite de détection en laboratoire. Les résultats se trouvent à l'annexe B, tableau 45 à tableau 49. Les sites d'échantillonnage du sol de l'IGLTD sont décrits à l'annexe A, figure 14 .

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 87 de 120

Décharge de la promenade Highland

Les activités d'assainissement n'ont pas commencé sur la décharge du site de la promenade Highland. Par conséquent, les données fournies à l'annexe B, tableau 50 et tableau 51 seront utilisées en guise de complément aux données de référence existantes. Les lieux d'échantillonnage des sédiments sont fournis à l'annexe A, figure 15. Les résultats de 2021 sont similaires aux données recueillies les années précédentes.

10.3.4 Surveillance de l'environnement aquatique

Le programme de surveillance de l'environnement aquatique comprend l'échantillonnage des eaux de surface du ruisseau Brand et du lac Ontario pour vérifier l'exactitude des prévisions faites au cours de l'évaluation environnementale. À long terme, grâce au projet, la qualité de l'eau du ruisseau Brand devrait s'améliorer en raison de la diminution prévue de l'eau contaminée qui s'infiltre en ce moment dans les eaux souterraines sous-jacentes et qui finit par se déverser dans les eaux de surface. Autre effet environnemental bénéfique du projet à long terme : la charge de contaminants provenant des rejets de lixiviat devrait être considérablement réduite. Cependant, de légères augmentations sont prévues pendant la phase de construction et d'assainissement du projet. Par conséquent, chaque trimestre, ces endroits font toujours l'objet d'un contrôle afin de vérifier l'exactitude des prévisions de l'EE.

En 2021, en prévision des travaux d'assainissement à venir, des données supplémentaires de surveillance avant construction ont été obtenues pour le ruisseau Brewery, le ruisseau de la promenade Highland Sud, et le ruisseau Alexander. Les résultats de la surveillance sont résumés dans les sections suivantes.

10.3.4.1 Bassin versant du ruisseau Brand

Les résultats de la surveillance des eaux de surface – Ruisseau Brand

Tous les trimestres, un échantillon des eaux s'écoulant dans le ruisseau Brand est prélevé à quatre (4) différents endroits. L'emplacement BC-U n'a pas pu être échantillonné en août 2021 en raison d'un manque d'eau de surface. Les résultats ont été comparés aux objectifs provinciaux de qualité de l'eau de l'Ontario (PWQO) [15] et aux Recommandations pour la qualité des eaux au Canada visant la protection de la vie aquatique (CWQG) [16], le cas échéant. Les résultats de laboratoire de 2021 sont fournis à l'annexe B, tableau 52, tableau 53, tableau 54, et tableau 55. Les endroits où l'eau de surface fait l'objet d'un contrôle sont indiqués à l'annexe A, figure 16.

Les résultats sont généralement cohérents avec les données de surveillance obtenues de 2016 à 2021, ce qui suggère que la construction de l'IGLTD-PH n'a pas d'effet négatif sur la qualité de l'eau du ruisseau Brand.

On a observé une augmentation des concentrations d'uranium dans l'un des affluents du ruisseau Brand (emplacement d'échantillon BC-T) par rapport aux autres emplacements. Les échantillons prélevés entre janvier et avril 2020 montrent une concentration d'uranium

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 88 de 120

supérieure aux PWQO [15]. Pour le cobalt, des dépassements des PWQO [15] ont été observés au niveau de l'affluent (BC-T) en janvier, avril et novembre 2021. L'arsenic dépassait les CWQG [15] au niveau de l'affluent en août 2021. Cet affluent est alimenté principalement par le fossé Clark, qui reçoit les eaux de ruissellement de l'IGLTD-PH. Dans les années précédant la construction de l'IGLTD-PH, on avait déjà observé des concentrations d'uranium et d'arsenic supérieures aux OPQE. La qualité de l'eau de cet affluent s'améliore avec le temps, à mesure que les travaux d'assainissement progressent. En août 2021, le critère [16] CWQG pour l'arsenic a été dépassé en aval (BC-D).

Il convient de noter que, en 2021, les critères provinciaux et fédéraux relatifs au fer, au chlorure et au phosphore ont été dépassés à des endroits situés en aval ; toutefois, cela correspond aux données de surveillance des années précédentes. Comme indiqué dans le rapport d'examen préalable du PPH], les cours d'eau de la zone d'étude locale dépassent les niveaux de phosphore, de fer , et d'aluminium, ce qui est typique des bassins versants agricoles et urbains de la région. Cela suggère qu'une source hors site peut être responsable de cette situation. Les niveaux élevés de chlorure sont conformes aux données de surveillance des années précédentes. On soupçonne que la concentration élevée de chlorure pourrait être attribuable au sel de voirie, car l'autoroute 401 est située juste au nord de l'IGLTD-PH.

Surveillance des tempêtes

En 2021, pendant une tempête, le ruisseau Brand a fait l'objet d'une surveillance horaire. Les résultats de laboratoire sont fournis à l'annexe B, tableau 56. Pendant la tempête, on a prélevé un échantillon sur le site de surveillance des eaux de surface BC-M. Voir l'annexe A, figure 16. Les concentrations de contaminants ont atteint des sommets au moment de l'augmentation du total des matières solides en suspension. On a observé que les concentrations de phosphore, de chlorure et de fer dépassaient les PWQO [15] ou les CWQG [16] lorsque le total des matières solides augmentait. Comme indiqué ci-dessus, les concentrations élevées d'aluminium, de phosphore, de chlorure , et de fer sont typiques des bassins versants agricoles et urbains de la région. Une fois le projet terminé, il devrait y avoir moins de concentrations de contaminants potentiellement préoccupants associées à l'IRPH dans les eaux de surface.

Surveillance des eaux de surface – Diffuseur du lac Ontario

Les échantillons permettant de vérifier la qualité de l'eau de surface du lac Ontario sont prélevés à la hauteur du diffuseur de l'IRPH. On vérifie ainsi si la qualité de l'eau se trouvant à proximité de l'évacuation des lixiviats de l'IGLTD-PH et de la zone de mélange connexe est altérée par les activités de l'installation. La zone de mélange se trouve dans un rayon d'environ 12 mètres du diffuseur. L'échantillonnage est effectué à la hauteur du diffuseur (emplacement BC-LO-D) et à environ 20 mètres à l'est et à l'ouest du diffuseur (emplacements BC-LO-E et BC-LO-W respectivement), tel que présenté à l'annexe A, figure 16 figure A-12. Les résultats sont présentés à l'annexe B, tableau 57, tableau 58, et tableau 59.

Les PWQO et les CWQG n'ont pas fait l'objet de dépassements, à l'exception du fluorure, du phosphore et du fer. Des dépassements de fluorure ont été notés par rapport aux CWQG [16]

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 89 de 120

en juin et novembre 2021 à BC-LO-D et en septembre 2021 à BC-LO-E. En novembre 2021, à BC-LO-W, le phosphore dépassait les PWQO [15]. En novembre 2021, à BC-LO-W, le fer dépassait les PWQO [15] ou les CWQG [16].

Comme indiqué dans le rapport d'examen préalable du PPH [24], les concentrations de fluorure, de phosphore et de fer sont généralement élevées sur les rives du lac dans cette région. D'autres résultats de surveillance correspondent généralement avec les données de surveillance des dernières années, ce qui suggère que les opérations de l'IRPH n'ont pas d'effet négatif sur la qualité de l'eau.

Eaux de drainage - IGLTD-PH

En mai et en octobre 2021, on a prélevé des échantillons du lixiviat (eau de drainage) provenant du monticule de l'IGLTD-PH. On trouvera les résultats à l'annexe B, tableau 60, tableau 61, tableau 62, et tableau 63. Les emplacements de surveillance sont décrits à l'annexe A, figure 17. En 2021, il n'a pas été possible de prélever un échantillon à WC-SW4-02 en raison d'une pénurie d'eau. Depuis toujours, l'eau de drainage ne s'accumule qu'à l'occasion à cet endroit, on ne peut donc pas toujours y prélever des échantillons.

Lors de la campagne d'échantillonnage du printemps 2021, on a remarqué que les concentrations de contaminants potentiellement préoccupants (en particulier d'arsenic, d'uranium et de plomb-210)) étaient plus élevées que les années précédentes. Après avoir remarqué les résultats élevés, les LNC ont consulté l'équipe du projet. On a pensé que les concentrations élevées étaient liées au lixiviat des cellules. Les résultats de la campagne d'échantillonnage d'automne étaient semblables à ceux des années précédentes. La qualité et la quantité des eaux de drainage devraient changer dès le début des travaux d'assainissement. Il faut noter que les eaux de drainage du site sont traitées avant d'être rejetées dans l'environnement.

10.3.4.2 Le bassin versant du ruisseau Brewery

Surveillance des eaux de surface

Le rapport d'examen préalable du PPH [24] prévoyait que l'élimination des matériaux contaminés des sites d'assainissement devait permettre d'améliorer la qualité des eaux de surface en aval; par exemple, les concentrations d'arsenic et d'uranium dans le ruisseau Brewery devaient diminuer de 78 % à 88 % à long terme.

Tous les trimestres, un échantillon des eaux s'écoulant dans le ruisseau de Port Granby est prélevé à deux différents endroits. L'échantillonnage de 2021 doit être considéré comme un exercice précédant la phase de construction. Les résultats ont été comparés aux PWQO [15] ou aux CWQG [16] lorsqu'ils étaient disponibles. Les résultats de laboratoire de 2021 sont fournis à l'annexe B, tableau 64 et tableau 65, et les emplacements de surveillance sont présentés à l'annexe A, figure 18.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 90 de 120

Les résultats sont tous inférieurs aux PWQO [15] ou aux CWQG [16], à l'exception du chlorure et du phosphore. Dans tous les cas, en 2021, le chlorure était supérieur aux CWQG [16] ce qui, comme l'indique le rapport d'examen préalable [24], est tout à fait normal pour un endroit situé en aval d'une décharge. En mai et octobre 2021, les concentrations de phosphore dépassaient les PWQO [15]. Comme indiqué dans le rapport d'examen préalable du PPH [24], de chlorure et de fer sont typiques des bassins versants agricoles et urbains de la région. Aucun autre dépassement des PWQO [15] ou des CWQG [16] n'a été constaté dans le bassin versant du ruisseau Creek.

10.3.4.3 Bassin versant du ruisseau de la promenade Highland Sud

Surveillance des eaux de surface

Le ruisseau de la promenade Highland Sud est soumis à l'influence du site d'enfouissement de la promenade Highland, situé en aval. Comme l'indique le rapport d'étude de l'évaluation environnementale du PPH (rapport d'étude de l'EE-PPH) [31], l'évaluation des changements de la qualité de l'eau du ruisseau de la promenade Highland Sud - fondée sur les changements qui devraient se produire dans les charges provenant des eaux souterraines - a indiqué que les concentrations des principaux contaminants du ruisseau, l'uranium, et l'arsenic, n'augmenteraient pas pendant l'assainissement du site et diminueraient de 78 % à 88 % à plus long terme.

Tous les trimestres, un échantillon des eaux s'écoulant dans le ruisseau de la promenade Highland Sud est prélevé à deux endroits (HC-U et HC-D). Les résultats ont été comparés aux PWQO [15] ou aux CWQG [16] lorsqu'ils étaient disponibles. Les résultats de laboratoire de 2021 sont fournis à l'annexe B,

tableau 66 et tableau 67 et les emplacements de surveillance sont présentés à l'annexe A, figure 19.

Les résultats sont inférieurs aux PWQO [15] ou CWQG [16] à l'exception de l'arsenic, du bore, du chlorure, du phosphore et de l'uranium aux emplacements en amont et en aval, et du fer, en amont.

L'échantillonnage effectué en 2021 fait partie du travail de surveillance préalable à la construction, comme l'indique le plan de surveillance environnementale et biophysique du PPH [23]. Par conséquent, les activités d'assainissement n'ont pas modifié les résultats élevés de l'échantillonnage de 2021 et ces derniers sont conformes aux résultats de l'échantillonnage de référence de 2013.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 91 de 120

Surveillance des sédiments

Les sédiments du ruisseau de la promenade Highland Sud devaient être échantillonnés deux fois en 2021, comme le prévoit la phase de préconstruction du plan de surveillance environnementale et biophysique du PPH [23]. À l'exception de l'arsenic magnésium, les autres contaminants se retrouvaient à des taux inférieurs aux recommandations provinciales relatives à la qualité des sédiments (Provincial Sediment Quality Guidelines [PSQG]) [32], et aux recommandations du Conseil canadien des ministres de l'environnement (CCME) relatives à la qualité des sédiments en vue de protéger la vie aquatique (Recommandations canadiennes pour la qualité des sédiments : protection de la vie aquatique) [33. Lors des deux campagnes d'échantillonnage menées en 2021, la concentration d'arsenic dépassait le seuil d'effet mineur recommandé dans les lignes directrices provinciales sur la qualité des sédiments (PSQG) [32] et les recommandations provisoires sur la qualité des sédiments (RPQS)[33]. En 2021, lors des deux campagnes, les concentrations de magnésium étaient supérieures au seuil d'effet mineur et au seuil d'effet probable des PSQG [32].

Le rapport d'étude de l'EE du PPH [31] prévoyait ces dépassements, attribuables à l'influence du site d'enfouissement de la promenade Highland. Le rapport d'examen préalable du PPH[24] indique que les effets sur la qualité des sédiments sont directement liés aux effets sur les eaux de surface; par conséquent, les concentrations de contaminants devraient diminuer à plus long terme, après l'assainissement du site d'enfouissement de la promenade Highland. Les résultats de laboratoire de 2021 sont fournis à l'annexe B, tableau 68 et tableau 69, et les emplacements de surveillance sont présentés à l'annexe A, figure 19. Des échantillons de sédiments ont été prélevés à l'emplacement en amont seulement (HC-U). Lors des deux campagnes d'échantillonnage de 2021, il n'a pas été possible de prélever d'échantillons à l'emplacement en aval, car la quantité de sédiments était insuffisante.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 92 de 120

Surveillance des tempêtes

En 2021, pendant une tempête, le ruisseau de la promenade Highland Sud a fait l'objet d'une surveillance à chaque heure. L'échantillonnage a été effectué à HC-D, un endroit situé en aval du ruisseau de la promenade Highland Sud, conformément à ce qui est prescrit dans le plan de surveillance environnementale et biophysique du PPH [23], section consacrée à la phase de préconstruction. Les concentrations de contaminants ont atteint des sommets au moment de l'augmentation du total des matières solides en suspension. Les concentrations de chlorure, d'arsenic, de bore, de cuivre, de fer, de phosphore et d'uranium dépassaient les PWQO [15] et les CWQG [16] lorsque le total des matières solides augmentait. Les concentrations ont diminué lorsque les niveaux du total des matières solides en suspension ont chuté. Une fois le projet de l'IRPH terminé, il devrait y avoir moins de concentrations de contaminants potentiellement préoccupants dans les eaux de surface. Les résultats de laboratoire de 2021 sont fournis à l'annexe B, tableau 70, et les emplacements de surveillance sont présentés à l'annexe A, figure 19.

10.3.4.4 Bassin versant du ruisseau Alexander

Surveillance des eaux de surface

Les eaux de surface du bassin versant du ruisseau Alexander doivent faire l'objet d'un échantillonnage trimestriel, comme indiqué dans le plan de surveillance environnemental et biophysique du PPH [23]. Le rapport d'étude de l'EE-PPH [31]indique que l'élimination des matériaux contaminés sur les sites d'assainissement, ravin de la rue Alexander, devrait permettre d'améliorer à long terme la qualité des eaux de surface en aval. Les résultats disponibles ont été comparés aux PWQO [15] ou aux CWQG [16]. Les résultats de laboratoire de 2021 sont fournis à l'annexe B, tableau 71 et tableau 72, et les emplacements de surveillance sont présentés à l'annexe A, figure 20.

Les résultats sont inférieurs aux OPQE] ou aux RCQE], à l'exception du phosphore, du chlorure et du fer aux deux emplacements d'échantillonnage (AC-1, et AC-3). L'uranium n'est dépassé qu'à l'emplacement en aval (AC-3). Comme indiqué dans le rapport d'examen préalable du PPH], les cours d'eau de la zone d'étude locale dépassent les niveaux de phosphore et de fer, ce qui est typique des bassins versants agricoles et urbains de la région. De plus, la concentration d'uranium est historiquement élevée dans le ruisseau Alexander, probablement en raison de l'influence du ravin de la rue Alexander.

L'échantillonnage effectué en 2021 fait partie du travail de surveillance préalable à la construction, comme l'indique le plan de surveillance environnementale et biophysique du PPH [23]. Par conséquent, les travaux d'assainissement n'ont pas eu d'effet sur les résultats élevés de l'échantillonnage de 2021.

10.3.4.5 Le port de Port Hope

Surveillance des eaux de surface

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 93 de 120

Qualité des eaux de surface du lac Ontario

La qualité de l'eau a été surveillée à trois endroits dans le port de Port Hope, comme l'indique l'annexe A, figure 21. Un résumé des résultats de l'échantillonnage de 2021 est fourni à l'annexe B, tableau 73, tableau 74 et tableau 75. En 2021, pendant toutes les campagnes d'échantillonnage, à PHH-4, les concentrations de fluorure étaient conformes aux CWQG [16]. Comme l'indique le rapport d'examen préalable du PPH [24], les dépassements de fluorure sont typiques des bassins versants agricoles/urbains dans la région. En septembre 2021, à PHH-4, les concentrations de phosphore ne correspondaient pas au PWQO [15]. Comme indiqué dans le rapport d'examen préalable du PPH [24], les concentrations de phosphore ont parfois dépassé les niveaux recommandés dans le port de Port Hope. L'arsenic et l'uranium ont dépassé les PWQO [15] et les CWQG [16] à PHH-2 de juin à novembre 2021, lorsque le dragage a cessé. De septembre à novembre 2021, les concentrations de plomb, de fer, de cobalt et de cuivre ont également dépassé les PWQO [15] et les CWQG [16] à PHH-2. Le rapport d'examen préalable du PPH [24] prévoyait que les concentrations d'uranium augmenteraient dans la zone située entre le port et la rivière Ganaraska. Ces dépassements n'ont pas été notés plus loin, à PHH-4. Comme l'indique le rapport d'étude de l'évaluation environnementale du PPH, une fois que les sédiments contaminés seront retirés du port, la qualité de l'eau devrait s'améliorer [31].

Qualité des eaux de surface - Pendant les activités de dragage

En vertu du plan de surveillance environnemental et biophysique du PPH [23], pendant les travaux de dragage dans le port de Port Hope, il faut prélever chaque semaine des échantillons dans la zone de confluence située au-delà de l'atténuateur de vagues temporaire et du filtre à limon/poisson, ainsi que dans la rivière Ganaraska en amont de la confluence (PHH-1 et PHH-2), comme indiqué à l'annexe A, figure 21. L'échantillonnage a commencé le 30 juin 2021 et des échantillons ont été prélevés chaque semaine pendant les activités de dragage du port de Port Hope. Veuillez noter que le 16 septembre 2021, les lieux d'échantillonnage ont été légèrement déplacés comme indiqué à l'annexe A, figure 22 (PHH-1a et PHH-2a). Ce déplacement des lieux d'échantillonnage a été effectué pour des raisons de sécurité et pour assurer la cohérence des points de surveillance tout au long de l'année civile. Un système de barrière anti-algues a également été installé à proximité de PHH-2 en 2021. Le point PHH-2a a été jugé plus représentatif de ce qui pénètre dans l'avant-port et au confluent. Des échantillons hebdomadaires sont actuellement prélevés à PHH-1a et PHH-2a pendant les travaux de dragage, comme indiqué à l'annexe A, figure 22. Veuillez noter que les activités de dragage n'ont pas été continues en 2021. Les résultats sont présentés à l'annexe B, tableau 76 et tableau 77.

Depuis le début des activités de dragage, en juin 2021, les concentrations de phosphore et de fer ont dépassé les PWQO [15] ou les CWQG [16] aux points PHH-1a et PHH-2/PHH-2a. Il y a également eu des dépassements d'arsenic, d'uranium, de cobalt, de cuivre et de plomb aux points PHH-2/PHH-2a. Selon le rapport d'examen préalable du PPH [24], les concentrations de fer et de phosphore sont typiques de la zone riveraine du lac dans cette région et des niveaux

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 94 de 120

auxquels s'attendre pendant les opérations de dragage. De plus, les concentrations d'uranium devraient augmenter dans la zone située entre le port et la rivière Ganaraska.

Les prévisions du rapport d'étude de l'EE [31] reposent sur des données théoriques/anticipées pour alimenter un modèle. Les conditions réelles ont changé pendant les travaux de dragage, car il y a des apports quotidiens d'eau dans l'arrière-port. L'ensemble des conditions étant différentes, il a fallu modifier les mesures d'atténuation proposées dans le cadre de l'EE. Les LNC ont mobilisé les autorités responsables pour assurer la protection du lac Ontario et de la rivière Ganaraska. Cette démarche a débouché sur la création d'un solide programme de surveillance visant à assurer la protection de l'environnement aquatique pendant la poursuite des activités de dragage dans le port de Port Hope.

Surveillance de la turbidité

En 2021, le maître d'œuvre a procédé à une surveillance quotidienne de la turbidité pendant les travaux dans l'eau et près de l'eau. Les activités de dragage ont débuté le 30 juin 2021 et se sont poursuivies jusqu'à la fermeture pour cause de vacances, le 24 décembre 2021. Veuillez noter qu'en 2021, les travaux de dragage n'ont pas été effectués de manière continue dans le port de Port Hope en raison des jours fériés, de l'entretien de routine, des arrêts pour raisons de sécurité et d'une interruption du dragage en raison de dépassements de la concentration de contaminants. Des rapports mensuels sont fournis aux LNC avec un résumé de la surveillance de la turbidité effectuée par le maître d'œuvre.

La turbidité a été contrôlée à quatre endroits, comme indiqué dans le plan de surveillance de la turbidité du port de Port Hope [34] (un endroit en amont de la rivière Ganaraska, deux endroits au sud de l'atténuateur de vagues et un endroit près du chenal d'entrée du lac Ontario). Des moniteurs de turbidité à distance ont été installés par le maître d'œuvre les 8 et 9 avril 2021 aux emplacements 1, 2 et 3. L'emplacement 4 a été installé le 19 avril 2021. Le moniteur de turbidité à distance situé à l'emplacement 4 dans le plan de surveillance de la turbidité du port de Port Hope [34] a disparu en octobre 2021, c'est pourquoi on a mesuré manuellement la turbidité les jours où des travaux dans l'eau, ou des activités de dragage, avaient lieu. D'après le plan de surveillance de la turbidité du port de Port Hope [34], en 2021, on n'a détecté aucun dépassement du seuil de turbidité imputable aux activités des LNC.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 95 de 120

11 Gestion des urgences et protection-incendie

11.1 Programme de préparation aux situations d'urgence

Le programme de préparation aux situations d'urgence des LNC s'applique au PPH. Pour plus de renseignements, voir la section 10.1 du rapport annuel de surveillance de la conformité des LNC[4].

Le plan d'urgence de l'Initiative dans la région de Port Hope (plan d'urgence de l'IRPH) [35] a été mis au point pour décrire les exigences de planification et d'exploitation dans le contexte d'une intervention d'urgence touchant directement ou indirectement les projets de l'IRPH. Le plan d'urgence de l'IRPH est conforme au programme de préparation aux situations d'urgence des LNC, qui veille au maintien efficace de tous les éléments de la préparation et de l'intervention en cas d'urgence. Les entrepreneurs qui effectuent des travaux dans le cadre de l'IRPH soumettent des plans de préparation aux situations d'urgence aux LNC à des fins d'examen et d'approbation, et ce, pour s'assurer que les plans de l'entrepreneur répondent aux exigences du plan d'urgence de l'IRPH. La conformité des entrepreneurs avec les plans de préparation aux urgences spécifiques au projet est examinée dans le cadre du programme de surveillance des LNC.

Le plan d'urgence de l'Initiative dans la région de Port Hope a été révisé et republié le 15 juillet 2021. Les modifications comprennent de l'ajout d'information sur le nouveau plan d'exercice quinquennal, des changements importants dans la section concernant les chantiers indépendants, ainsi que des précisions sur les exigences relatives aux plans d'intervention d'urgence des sites des entrepreneurs.

La CCSN a déjà été informée [36] des révisions apportées au plan d'urgence de l'IRPH[35].

11.1.1 Manœuvres et exercices

En 2021, un plan quinquennal complet a été élaboré, décrivant tous les exercices qui doivent être effectués et un calendrier approximatif pour ces exercices. Outre le plan quinquennal, tous les exercices ont été réalisés conformément aux exigences réglementaires et programmatiques.

Deux exercices ont été réalisés en interne.

11.1.2 Formation

En 2021, une formation complète de délégué aux situations d'urgence et d'agent responsable a été offerte au personnel de toutes les installations de l'IRPH et des séances de coaching ont été organisées avec tous les membres du personnel qui occupent actuellement des postes d'agent responsable et de délégué aux situations d'urgence.

11.1.3 Collaborations externes

En 2021 mai, une séance de discussion ouverte à distance a été organisée avec tous les premiers intervenants desservant les installations de l'IRPH. Des visites de sites ont été

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 96 de 120

organisées avec les services d'incendie et d'urgence de Port Hope et les services médicaux d'urgence de Northumberland.

11.1.4 Situations d'urgence imprévues

Il y a eu trois événements d'urgence non planifiés à PHP :

- Le 7 et le 15 juin 2021, deux camions à trois essieux transportant des déchets radioactifs de faible activité ont connu des pannes mécaniques. Pour chacun de ces événements, le superviseur du site et l'équipe de soutien ont répondu à l'événement et les notifications externes applicables ont été effectuées. Dans les deux cas, le chargement n'a pas été endommagé et il n'y a pas eu de perte de matériaux.
- Le 11 août 2021, un camion-benne livrant du remblai propre à un chantier de la rue Shuter s'est avancé sans abaisser la caisse et a frappé un câble électrique aérien. Le câble a été arraché du poteau et est tombé sur le camion. Le conducteur du camion est resté dans le véhicule. Le chantier a été évacué et la zone a été isolée. La compagnie d'électricité a été appelée à intervenir pour couper le courant. Le conducteur est resté dans le camion jusqu'à l'arrivée des intervenants de la compagnie d'électricité, qui ont mis la ligne hors tension. L'incident n'a fait aucun blessé.

En 2021, aucun incident n'a nécessité le recours au centre des opérations d'urgence ou au plan d'urgence du site.

11.2 Programme de protection-incendie

Le programme de protection de l'environnement des LNC s'applique au PPH. Pour plus de renseignements, voir la section 10.2 du rapport annuel de surveillance de la conformité des LNC [4].

En 2021, les documents de protection incendie n'ont pas fait l'objet de révisions.

11.2.1 Exercices d'intervention en cas d'incendie

En 2021, tous les exercices annuels d'intervention en cas d'incendie ont été réalisés sur le site du PPH. Ces exercices ont permis de mettre à jour la nécessité d'actualiser les processus de notification, d'améliorer la formation , et d'informer les nouveaux responsables des secours des procédures d'intervention. Pour remédier à ces lacunes, les délégués aux urgences et le responsable du personnel des LNC en matière d'urgence ont suivi une formation actualisée concernant tous les sites dont les LNC sont responsables.

11.2.2 Collaborations externes

En mai 2021, une séance de discussion ouverte à distance a été organisée avec tous les premiers intervenants desservant les installations de l'IRPH. Des visites guidées ont été organisées avec les services d'incendie et d'urgence de Port Hope.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 97 de 120

11.2.3 Vérifications et inspections par des tiers

En 2021, toutes les inspections de routine requises dans le cadre du programme de protectionincendie des LNC ont été effectuées sur le site du PPH. Les inspections ont été effectuées à l'aide de formulaires et de processus d'inspection standard et aucune déficience importante n'a été constatée en ce qui concerne les risques d'incendie et les mesures de protection nécessaires. Des experts en systèmes d'incendie tiers ont procédé à des inspections et à un suivi de la maintenance des capteurs du système d'incendie mis à jour de l'usine de traitement des eaux usées de Port Hope.

11.2.4 Analyse des risques d'incendie

En 2021, plusieurs évaluations des risques d'incendie ont été réalisées dans le cadre de divers projets de maintenance et d'amélioration des immobilisations, conformément au programme de contrôle des modifications techniques des LNC.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 98 de 120

12 Gestion des déchets

12.1 Programme de gestion des déchets

Le système de gestion des LNC s'applique au PPH. Pour plus de renseignements, voir la section 11.1 du rapport annuel de surveillance de la conformité des LNC [4].

En outre, le PPH suit les plans de gestion des déchets pour assurer un soutien continu à tous les générateurs de déchets afin de répondre aux priorités stratégiques et aux besoins opérationnels des LNC :

- Programme de récupération d'artéfacts historiques
- PPH Gestion des DRFA historiques
- Plan de gestion des déchets issus du déclassement de Cameco
- Plan de reconfiguration du bâtiment administratif situé au 196, chemin Toronto

12.1.1 Opérations de gestion des déchets

Les déchets situés sur les sites d'assainissement de Port Hope seront transportés vers l'IGLTD-PH. Cette installation comprend une nouvelle usine de traitement des eaux usées, un monticule artificiel en surface (en construction) et une infrastructure de soutien également en construction. L'IGLTD aura une capacité d'environ 2 millions de mètres cubes de DRFA et de déchets industriels non radioactifs (y compris les imprévus et les matériaux de couverture quotidienne sous forme de sol propre).

Le monticule artificiel de l'IGLTD-PH a été conçu pour isoler les DRFA historiques qui proviendront des sites d'assainissement. Les déchets seront en effet confinés en toute sécurité, et recouverts sur le dessus, le dessous et sur les côtés de plusieurs couches épaisses de matériaux naturels et artificiels étanches. Ces couches forment la couverture et le revêtement de base et chacune de ces couches est suffisamment étanche pour empêcher les matières contaminantes de pénétrer dans l'environnement.

Des systèmes de surveillance seront installés à l'intérieur et autour du monticule afin qu'on puisse le surveiller pendant des centaines d'années. Les inspections et la surveillance du système de collecte des eaux contaminées (lixiviat) confirmeront l'efficacité du système de couverture. Des capteurs installés dans le système de couverture et le revêtement de base permettront de surveiller le comportement du monticule. De plus, la qualité des eaux souterraines sera contrôlée par des analyses périodiques réalisées à partir d'échantillons prélevés dans des puits percés à cet effet autour de la base du monticule.

Les déchets sont générés conformément aux plans du projet d'assainissement et sont transportés des sites d'assainissement à l'IGLTD-PH au moyen de camions à benne tandem ou à trois essieux. Les autres déchets non radiologiques, tels que les débris de construction propres, les déchets dangereux (par exemple, les produits de déversement de carburant, les produits chimiques résiduels) et les ordures ménagères sont détournés du site de l'installation de gestion à long terme des déchets de PH et sont acheminés vers des installations hors site pour y

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 99 de 120

être gérés, recyclés ou éliminés. Les déchets radioactifs ou d'autres déchets jugés acceptables pour être stockés à l'IGLTD-PH sont reçus et placés conformément aux procédures normales d'exploitation.

12.1.2 Inventaire des déchets

Les mouvements de déchets sur le site ont eu lieu du 1^{er} janvier 2021 au 31 décembre 2021. On trouvera dans le tableau 14 ci-dessous la liste des cargaisons de déchets qui ont été livrés à l'IGLTD-PH et qui provenaient de divers endroits, entre autres, des chantiers de Cameco, des sites de la zone riveraine, de sites de petite échelle et de chantiers ayant fait l'objet de vérification dans le cadre du programme de surveillance des travaux.

Tableau 14: Déchets transférés à l'IGLTD-PH

Type de déchets	Source	Estimation de la quantité totale (volume/poids)	Estimation de la radioactivité totale (Bq) [Calculée/Mesurée]	Radionucléides primaires
Radioactifs	UTEU-PH	1 360 tonnes	2.70E+11	Uranium et produits de filiation de l'uranium
Radioactifs	IGLTD-PH – Déchets sur place Placement	0 tonnes	0.00E+00	Uranium et produits de filiation de l'uranium
Radioactifs	IGLTD-PH – Zone forestière et broussailles	19 910 tonnes	3.95E+12	Uranium et produits de filiation de l'uranium
Radioactifs	Cameco – Super sacs et fûts	503 tonnes	4.06E+11	Uranium et produits de filiation de l'uranium
Radioactifs	Cameco – Camion à benne	4 305 tonnes	S.O.	Uranium et produits de filiation de l'uranium
Radioactifs	MST (CSUTEU)	0 tonne	0.00E+00	Uranium et produits de filiation de l'uranium
Radioactifs	Sites de petite - échelle – Colis de déchets 2, 3 et 4	38 482 tonnes	3.85E+10	Uranium et produits de filiation de l'uranium
Radioactifs	Rue Pine	74 418 tonnes	6.50E+11	Uranium et produits de

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 100 de 120

				filiation de l'uranium
Radioactifs	Sites en zone riveraine	49 976 tonnes	2.24E+11	Uranium et produits de filiation de l'uranium
Radioactifs	Quai central	20 749 tonnes	3.93E+12	Uranium et produits de filiation de l'uranium
Radioactifs	Surveillance des travaux de construction des travaux de construction	1 802 tonnes	1.80E+09	Uranium et produits de filiation de l'uranium
Radioactifs	PG	36 tonnes	7.14E+09	Uranium et produits de filiation de l'uranium
Radioactifs	Eaux usées hors site	2 601 tonnes	S.O.	Uranium et produits de filiation de l'uranium

La radioactivité totale des eaux usées hors site ne figure pas ici, car les eaux sont traitées à l'usine de traitement des eaux usées de PH. L'inventaire est inclus dans la contribution de l'UTEU-PH.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 101 de 120

13 Sécurité

13.1 Programme de sécurité

Le programme de sécurité des LNC s'applique au PPH. Pour plus de renseignements, voir la section 12 du rapport annuel de surveillance de la conformité des LNC [4].

Le plan de sécurité de l'Initiative dans la région de Port Hope [37] a été mis en œuvre dans le cadre du PPH. Le plan de sécurité de l'IRPH [37] établit les dispositions de sécurité qui sont requises sur les sites des projets de l'IRPH. Il traite des responsabilités, des liens avec les forces de l'ordre locales, des fonctions et des éléments du plan de sécurité tels que la formation, les manœuvres, les exercices et les divers éléments de sécurité physique. Le plan de sécurité de l'IRPH [37 vise à protéger le public et le personnel, ainsi que les biens matériels du PPH. Le plan de sécurité de l'IRPH [37] repose sur la législation, les règlements et les permis d'exploitation applicables, et il est conforme aux politiques et programmes de sécurité des LNC.

Les entrepreneurs qui effectuent des travaux dans le cadre de l'IRPH soumettent des plans de sécurité. Comme le confirme le processus obligatoire d'examen et d'acceptation des LNC, les plans des entrepreneurs sont conformes aux exigences du plan de sécurité de l'IRPH [37. Dans le cadre du programme de surveillance des LNC, on examine la conformité des entrepreneurs avec le plan de préparation aux urgences de chaque projet. En 2021, on a vérifié l'autorisation de sécurité des entrepreneurs et l'accès aux sites pour l'ensemble du projet. En conséquence, l'IRPH a mis en œuvre un programme d'évaluation graduelle de la sécurité du personnel.

La CCSN a déjà été informée [38] des révisions apportées au plan de sécurité de l'IRPH [37]. Les principales mises à jour comprennent le processus d'évaluation de sécurité graduelle qui vient d'être mis en œuvre et des modifications en cascade au protocole des visiteurs.

13.1.1 Incident relatif à la sécurité

En 2021, il n'y a pas eu d'incident relatif à la sécurité dans le cadre du PPH.

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 102 de 120

14 Garanties et non-prolifération

14.1 Programme de garanties

Le programme de gestion des matières nucléaires et des garanties des LNC s'applique au PPH. Pour plus de renseignements, voir le chapitre 13 du rapport annuel de surveillance de la conformité des LNC [4].

14.1.1 Inventaire des matières nucléaires

En 2021, l'installation de gestion à long terme des déchets de PH (zone de bilan matières CNWF) a reçu et placé environ 25 428 kgU de Cameco (zone de bilan matières CNWE) conformément aux exigences du programme de gestion des matières nucléaires et des garanties (NM&SM) des LNC. L'inventaire entreposé a été transféré dans les déchets conservés.

En outre, l'inventaire des matières nucléaires dans la zone de bilan matières CN-2 contenait trois articles en moins en 2021. Les articles, qui comprenaient deux sources et un flacon souvenir, ont été envoyés à Chalk River à des fins de gestion à long terme et de réaffectation.

Tableau 15 : Inventaire des matières nucléaires (2021)

Date	No d'expédition	Cameco	IGLTD-PH	Articles	Déchets visés par les garanties kg U
2021-03-16	67650	CNWE	CNWF	20	8401
2021-03-16	67651	CNWE	CNWF	20	8523,9
2021-03-17	67652	CNWE	CNWF	21	8402,5
2021-11-19	68782	CNWE	CNWF	47	3,701
2021-11-19	68781	CNWE	CNWF	48	3,48
2021-11-19	68807	CNWE	CNWF	44	2,62
2021-11-22	68780	CNWE	CNWF	48	3,453
2021-11-22	68806	CNWE	CNWF	44	5,996
2021-11-22	68812	CNWE	CNWF	48	4,39
2021-11-24	68799	CNWE	CNWF	48	3,826
2021-11-24	68798	CNWE	CNWF	48	2,705
2021-11-24	68800	CNWE	CNWF	48	3,257
2021-11-25	68811	CNWE	CNWF	48	2,377
2021-11-25	68853	CNWE	CNWF	48	4,953
2021-11-25	68857	CNWE	CNWF	48	3,38

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 103 de 120

Date	No d'expédition	Cameco	IGLTD-PH	Articles	Déchets visés par les garanties kg U
2021-11-26	68854	CNWE	CNWF	48	3,136
2021-11-29	68864	CNWE	CNWF	46	5,312
2021-11-29	68856	CNWE	CNWF	48	3,969
2021-11-29	68855	CNWE	CNWF	46	4,945
2021-11-29	68859	CNWE	CNWF	42	2,219
2021-12-01	68861	CNWE	CNWF	48	2,662
2021-12-01	68862	CNWE	CNWF	48	4,792
2021-12-01	68868	CNWE	CNWF	48	4,445
2021-12-03	68858	CNWE	CNWF	48	2,759
2021-12-03	68860	CNWE	CNWF	48	2,834
2021-12-03	68871	CNWE	CNWF	48	3,128
2021-12-06	68870	CNWE	CNWF	48	3,743
2021-12-06	68872	CNWE	CNWF	10	0,869
2021-12-06	68873	CNWE	CNWF	10	0,988
2021-12-13	68905	CNWE	CNWF	48	3,375
2021-12-20	68908	CNWE	CNWF	48	2,702
			Total	1310	25423416

14.1.2 Activités de l'Agence internationale de l'énergie atomique (AIEA)

Le 5 août 2021, l'Agence internationale de l'énergie atomique (AIEA) a procédé au remplacement de routine des scellés du moniteur du portail de l'AIEA. En 2021, l'installation de gestion à long terme des déchets de PH n'a pas fait l'objet d'une vérification de l'inventaire physique.

Une liste des inspections de l'AIEA effectuées sur tous les sites des LNC est présentée à la section 1.2, Système de gestion du rapport annuel de surveillance de la conformité des LNC [4].

Rapport annuel de surveillance de la conformité de 2021 4501-508760--004 Rev. 1 Page 104 de 120

15 Emballage et transport

15.1 Programme d'emballage et de transport

Le programme de transport de marchandises (TDG) dangereuses des LNC s'applique au PPH. Il comprend les exigences relatives aux domaines de sûreté et de réglementation (DSR). Pour plus de renseignements, voir la section 14 du rapport annuel de surveillance de la conformité des LNC [4].

Le plan de transport des marchandises dangereuses de l'Initiative dans la région de Port Hope [39] s'applique à toutes les activités comprenant le transport de marchandises dangereuses vers les sites des LNC ou en provenance de ces sites. Le programme de transport de marchandises dangereuses fournit un cadre opérationnel pour le transport sécurisé des marchandises dangereuses qui se conforme à toutes les lois et réglementations applicables, ainsi qu'aux politiques et procédures des LNC.

En outre, les entreprises ou les entrepreneurs qui effectuent des travaux pour le compte des LNC dans le cadre du projet de l'IRPH, en vertu du permis du PPH [1] adhèrent à des plans de travail spécifiques au projet, qui sont conformes au plan de transport des marchandises dangereuses de l'IRPH [39].

Le plan de transport des marchandises dangereuses de l'IRPH n'a pas fait l'objet d'une révision [39] en 2021.

15.1.1 Expédition

La mise en œuvre du programme de transport de marchandises dangereuses dans le cadre de l'IRPH est présentée en détail dans le plan de transport des marchandises dangereuses de l'IRPH [39]. Chaque entrepreneur doit appliquer ce plan [39] dans le contexte de son mandat, ce qui fait l'objet d'une vérification. Des expéditions de marchandises dangereuses ont eu lieu tout au long de l'année 2021. En outre, chaque contrat fait l'objet d'une surveillance soutenue afin de vérifier que l'entrepreneur se conforme constamment au plan ou pour lui présenter des recommandations en vue d'améliorer progressivement les moyens et les méthodes d'exécution de son mandat.

En 2021, il n'y a rien eu à signaler dans le cadre du programme de transport de marchandises dangereuses.

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 105 de 120

16	Acronymes
CQAA	Critères de qualité de l'air ambiant
ALARA	Niveau le plus faible qu'il soit raisonnablement possible d'atteindre
EACL	Énergie atomique du Canada limitée
CCME	Conseil canadien des ministres de l'Environnement
LNC	Laboratoires nucléaires canadiens
CCSN	Commission canadienne de sûreté nucléaire
LCR	Laboratoires de Chalk River
GLC	Groupe de liaison des citoyens
PRP	Processus de règlement des plaintes
CPP	Contaminants potentiellement préoccupants
dBA	Décibels
FSD	Fournisseur de services de dosimétrie
CESGE	Collecte des eaux souterraines de la gorge est
CMT	Contrôle des modifications techniques
ECCC	Environnement et changement climatique Canada
EE	Évaluation environnementale
ВС	Bassin compensateur
RESCR	Rapport d'enquête sur des situations comportant des risques
Hi-Vol	Haut volume
BG-PDH	Bureau de gestion du Programme des déchets historiques
RH	Rendement humain
ImpAct	Mesures d'amélioration
PCI	Programme de contrôle intégré
RPQS	Recommandations provisoires pour la qualité des sédiments
MCP	Manuel des conditions de permis
IGDW	Déchets radioactifs de faible activité
PPVC	Plus petites valeurs chroniques
SEM	Seuil d'effet mineur
(MEPNP)	Ministère de l'Environnement, de la Protection de la nature et des Parcs (Ontario)

Rapport annuel de surveillance de la conformité

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 106 de 120

Ministère du Développement du Nord, des Mines, des Richesses naturelles et des

MDNMRNF Forêts

MPH Municipalité de Port Hope

MRN Matière radioactive naturelle

ISS Installation de stockage en surface

TSN Travailleur du secteur nucléaire

LSRN Loi sur la sûreté et la réglementation nucléaires

SST Santé et sécurité au travail

PA Possibilité d'amélioration

DLSO Dosimètres à luminescence stimulée optiquement

MP Matières particulaires

IGLTD-PG Installation de gestion à long terme des déchets de Port Granby

PPG Projet de Port Granby

IGD-PG Installation de gestion des déchets de Port Granby

UTEU-PG Usine de traitement des eaux usées de Port Granby

IRPH Initiative dans la région de Port Hope

PPH Projet de Port Hope

IGLTD-PH Installation de gestion à long terme des déchets de Port Hope

PPVBI Protection de la valeur des biens immobiliers

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 107 de 120

17 Références

- [1] Commission canadienne de sûreté nucléaire, Permis de déchets de substances nucléaires Projet de gestion à long terme des déchets radioactifs de faible activité de Port Granby WNSL-W1-2310.02/2021, date d'expiration : 31 décembre 2021.
- [2] Commission canadienne de sûreté nucléaire, Manuel des conditions de permis Gestion à long terme des déchets radioactifs de faible activité à Port Hope, WNSL-W1-LCH-2310.2310.02/2022, Révision 1, 4 décembre 2014.
- [3] Entente pour le nettoyage et la gestion sécuritaire à long terme des déchets faiblement radioactifs situés dans la ville de Port Hope, le canton de Hope et la municipalité de Clarington, LLRWMO-513700-110-11000-008, 29 mars 2001.
- [4] Rapport annuel de surveillance de la conformité des Laboratoires nucléaires canadiens, 145-00583-ACMR-2021, Révision 0, avril 2022.
- [5] Lettre, M. Gull à R. Jammal, J. Cameron, P. Elder, *Notification de changement de titulaire de permis de site aux Laboratoires nucléaires canadiens,* 140-CNNO-21-0001-L, le 24 février 2021.
- [6] Loi sur la sûreté et la réglementation nucléaires (L.C. 1997, ch. 9, juillet 2013).
- [7] Commission canadienne de sûreté nucléaire, *Permis de déchets de substances nucléaires Site de stockage temporaire du prolongement de la rue Pine*, WNSL-W1-182.1/2022, date d'expiration : 31 décembre 2021.
- [8] Commission canadienne de la sûreté nucléaire, *Permis de déchets de substances nucléaires Installation de gestion des déchets radioactifs de Port Hope,* WNSL-W1344.1.8/ind., Date d'expiration : indéfini.
- [9] Commission canadienne de la sûreté nucléaire, *L'information et la divulgation publiques*, REGDOC-3.2.1, 27 avril 2018.
- [10] Port Hope Area Initiative (PHAI) Phase 2 Public Information Program Plan, [plan du programme d'information publique, phase 2, Initiative dans la région de Port Hope], 4500-513000-PLA-003, Révision 4, mars 2020.
- [11] Historic Waste Program Quality Plan, [plan d'assurance de la qualité du Programme des déchets historiques], 236-514200-QAP-001, Révision 1 December 2020.
- [12] HWP MO Field Oversight Activities, [activités de surveillance sur le terrain BG-PDH] 236-514200-PRO-001, Révision 2, décembre 2021.
- [13] Occupational Safety and Health Plan, [plan de santé et sécurité au travail], Initiative dans la région de Port Hope, 4500-510400-PLA-001, Révision 3, 15 juillet 2021.
- [14] Port Hope Area Initiative Training Plan, [Plan de formation de l'Initiative dans la région de Port Hope], 4500-510200-PLA-001, Révision 3, août 2016.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 108 de 120

- [15] Ministère de l'Environnement de l'Ontario, *Provincial Water Quality Objectives*, 1999 February.
- [16] Conseil canadien des ministres de l'Environnement, Canadian Water Quality Guidelines for Protection of Aquatic Life [recommandations canadiennes pour la qualité des eaux en vue de la protection de la vie aquatique], 1999.
- [17] Lettre, R. Buhr (CCSN) à S. Morris (LNC), *Port Hope Project Waste Water Treatment Plant Release Limits,* [limites de rejet de l'usine de traitement des eaux usées], 4501-NOCN-20-0006-L, 20 avril 2020.
- [18] Port Hope Area Initiative Radiation Protection Plan, [plan de radioprotection dans le cadre de l'Initiative dans la région de Port Hope], 4500-508740-PLA-001, Révision 6, 1^{er} septembre 2021.
- [19] LNC, Radiation Protection Program Requirements Management System Document [Document sur le système de gestion des exigences du programme de radioprotection], 900-508740-PRD-001. Révision 2, 2017, 17 juillet 2017.
- [20] Lettre, S. Morris (LNC) à R. Buhr (CCSN), *Revision to the Port Hope Area Initiative Radiation Protection Plan* [révision du plan de radioprotection de l'Initiative dans la région de Port Hope], 4500-CNNO-21-0008-L, 2 septembre 2021.
- [21] Lettre, S. Morris (LNC) à R. Buhr (CCSN), Revision to the Port Hope Area Initiative Occupational Safety and Health Plan, [Révision du plan de sécurité et de santé au travail de l'Initiative dans la région de Port Hope], 4500-CNNO-21-0017-L, 10 décembre 2021.
- [22] Commission canadienne de sûreté nucléaire, Exigences relatives à la production de rapports, tome 1: Installations de catégorie I non productrices de puissance et les mines et usines de concentration d'uranium; REGDOC-3.1.2
- [23] Port Hope Project Environmental and Biophysical Monitoring Plan [plan de surveillance environnementale et biophysique du PPH, 4501-509247-PLA-001, Révision 2, octobre 2018.
- [24] Gouvernement du Canada, Rapport d'examen préalable Gestion à long terme des déchets radioactifs de faible activité de Port Hope, 4501-03710-041-000-0002, Revision 0, décembre 2006.
- [25] Port Hope Project Environmental Assessment Follow-up Program, [programme de suivi de l'évaluation environnementale du Projet de Port Hope], 4501-509246-PLA-001, Révision 2, avril 2015.
- [26] Port Hope Area Initiative Dust Management Requirements and Plan [plan et exigences en matière de gestion de la poussière dans le cadre de l'Initiative dans la région de Port Hope], 4500-509200-PLA-001, Révision 3, mars 2018.
- [27] Ministère de l'Environnement et de l'Action en matière de changement climatique de l'Ontario, Ambient Air Quality Criteria (AAQC), avril 2020.

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 109 de 120

- [28] Conseil canadien des ministres de l'Environnement, Guide pour la vérification de la conformité aux normes canadiennes de qualité de l'air ambiant relatives aux particules et à l'ozone Disponible à :

 https://publications.gc.ca/collections/collection_2013/ccme/En108-4-55-2012-fra.pdf, consulté en avril 2021
- [29] Organisation mondiale de la santé, *Guidelines for Community Noise*, Edited by B. Berglund, T., 1999.
- [30] Ministère de l'environnement de l'Ontario, Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act., 2011. Disponible à [en anglais seulement]: https://www.ontario.ca/page/soil-ground water and-sediment-standards-use-under-part-xv1-environmental protection act, consulté en avril 2021
- [31] Port Hope Project Environmental Assessment Study Report, [rapport d'étude de l'évaluation environnementale du Projet de Port Hope], LLRWMO-03710-ENA-12003, Révision 1D1, janvier 2006.
- [32] Ministère de l'environnement de l'Ontario, Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach Provincial Sediment Quality Guidelines, Révision 0, mai 2008.
- [] Conseil canadien des ministres de l'Environnement (*CCME*), *Recommandations canadiennes pour la qualité des eaux : protection de la vie aquatique*, août 1993.
- [33] *Port Hope Harbour Turbidity Monitoring Work Plan* [plan de surveillance de la turbidité dans le port de Port Hope], 4501-121250-PLA-069, Revision 0, octobre 2020.
- [34] Port Hope Area Initiative Emergency Plan [plan d'urgence de l'Initiative dans la région de Port Hope], 4500-508730-PLA-001, Révision 3, 15 juillet 2021.
- [35] Lettre, S. Morris (CNL) to R. Buhr (CNSC), *Revision to the Port Hope Area Initiative Emergency Plan* [révision du plan de sécurité de l'Initiative dans la région de Port Hope], 4500-CNNO-21-0012-L, 12 novembre 2021.
- [36] Port Hope Area Initiative Security Plan [plan de sécurité de l'Initiative dans la région de Port Hope], 4500-508710-PLA-001, Révision 3, 20 septembre 2021.
- [37] Lettre, S. Morris (LNC) to R. Buhr (CCSN), *Revision to the Port Hope Area Initiative Security Plan* [révision du plan de sécurité de l'Initiative dans la région de Port Hope], 4500-CNNO-21-0013-L, 12 novembre 2021.
- [38] Port Hope Area Initiative (PHAI) Transportation of Dangerous Goods Plan [plan de transport des marchandises dangereuses dans le cadre de l'Initiative dans la région de Port Hope], 4500-508520-PLA-001, Revision 4, 21 juin 2018.
- [39] Port Hope Project Dust Management and Requirements Plan Small-Scale Sites
 Remediation [plan et exigences en matière de gestion de la poussière dans le cadre du
 Projet de Port Hope Assainissement des sites de petite échelle], 4501-209200-PLA-01,

Rapport annuel de surveillance de la conformité

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 110 de 120

Revision 0, 26 mars 2018.

Page 111 de 120

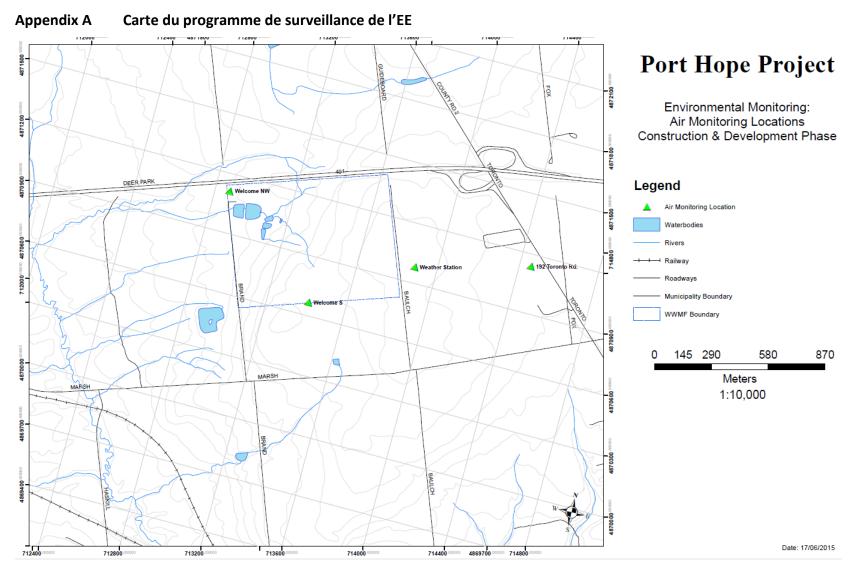


Figure 5 : Emplacement des échantillonneurs d'air à grand débit de l'IGLTD-PPH

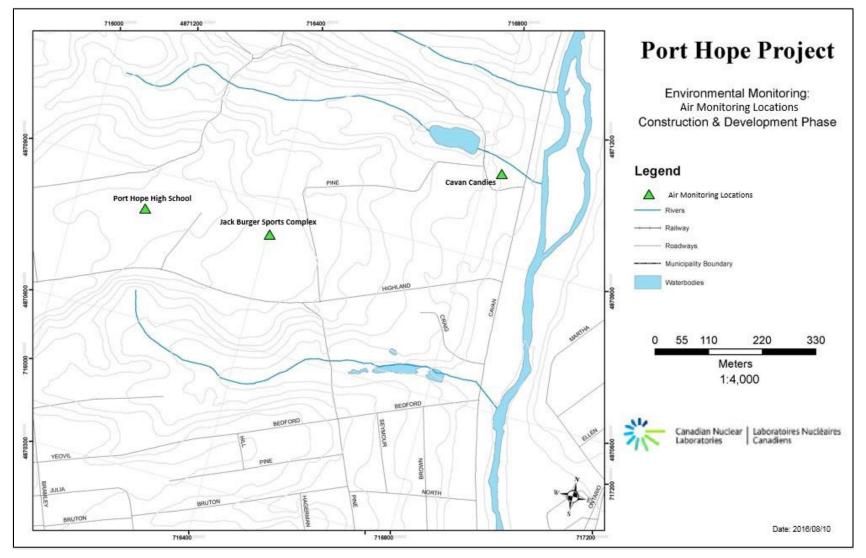


Figure 6 : Surveillance de la qualité de l'air – Site de regroupement du prolongement de la rue Pine

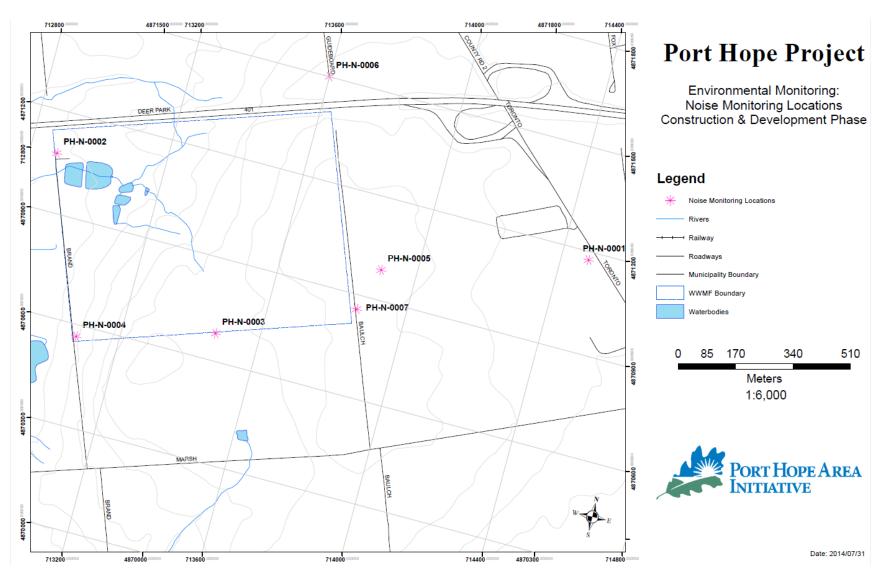


Figure 7 : Lieux de surveillance du bruit à l'IGLTD-PH

Page 114 de 120

Figure 8 : Lieux de surveillance du bruit sur l'itinéraire de transport du centre

Figure 9 : Lieux de surveillance du bruit sur l'itinéraire de transport du nord

Page 116 de 120

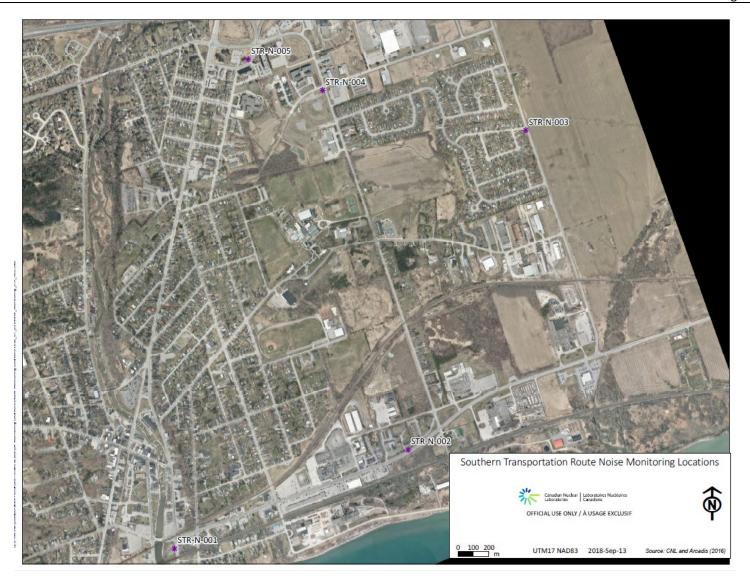


Figure 10 : Lieux de surveillance du bruit sur l'itinéraire de transport du sud

Page 117 de 120

Figure 11 : Lieux de surveillance des eaux souterraines sur la promenade Highland

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1

Page 118 de 120

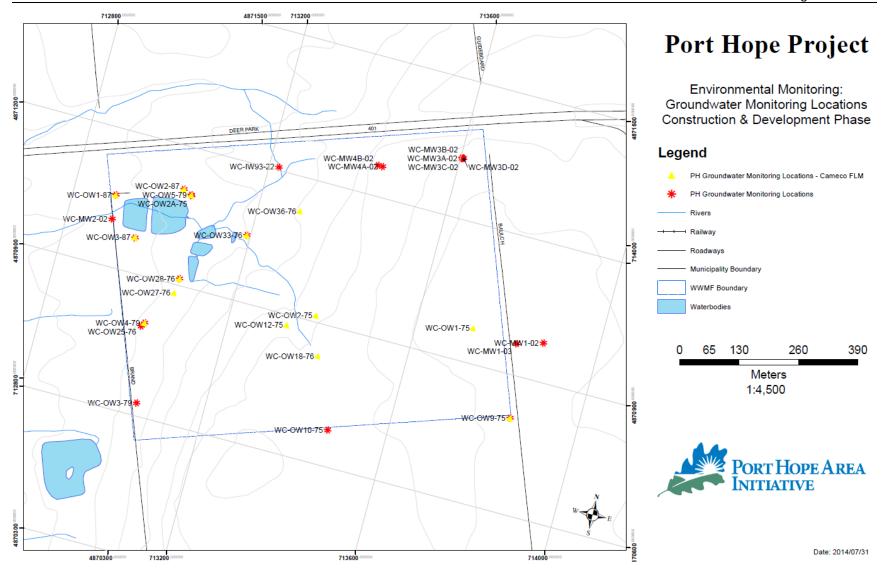


Figure 12 : Lieux de surveillance des eaux souterraines (EE-PPG).

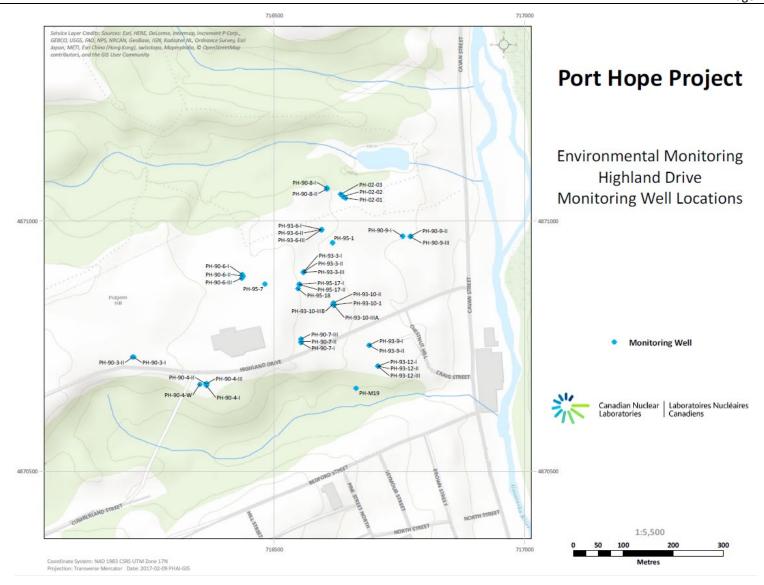


Figure 13 : Lieux de surveillance des eaux souterraines sur la promenade Highland.

Rapport annuel	de surveillance de l	a conformité
----------------	----------------------	--------------

UTILISATION NON RESTREINTE

Rapport annuel de surveillance de la conformité de 2021 4501-508760-ACMR-004 Rev. 1 Page 120 de 120

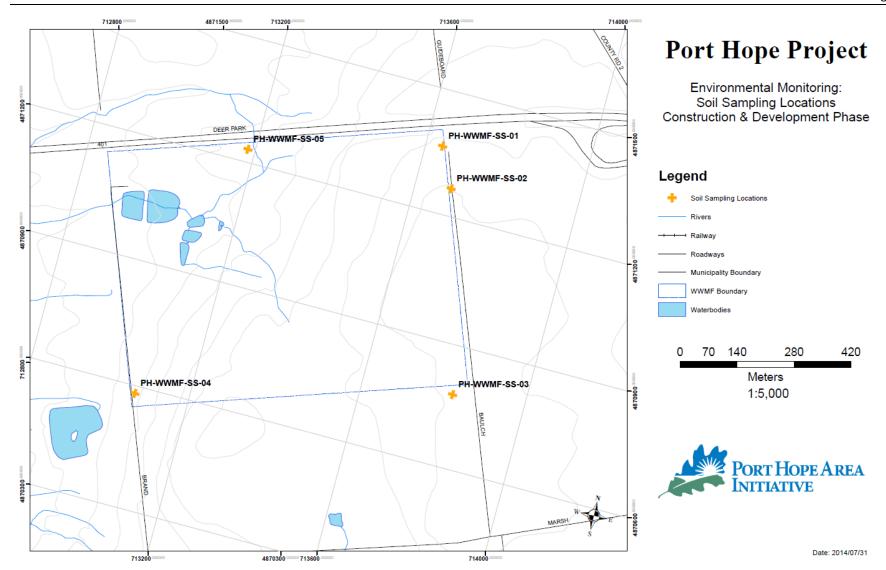


Figure 14 : Lieux d'échantillonnage du sol (IGLTD-PH)

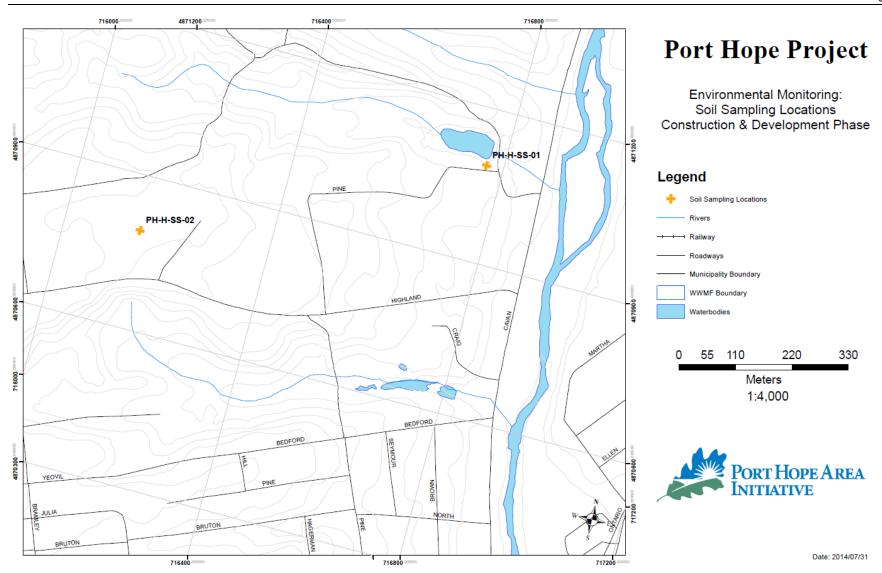


Figure 15 : Lieux d'échantillonnage du sol - Site d'enfouissement de la promenade Highland

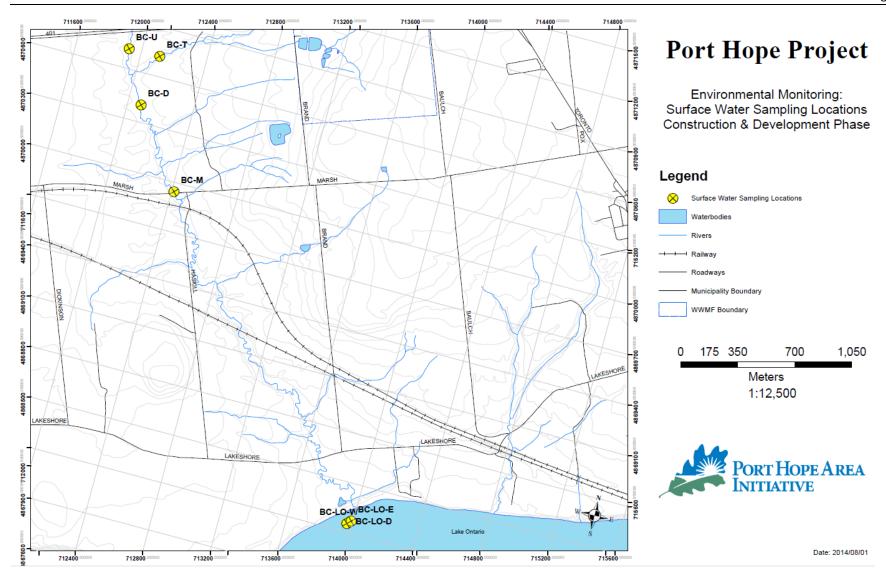


Figure 16 : Lieux d'échantillonnage des eaux de surface - Ruisseau Brand et lac Ontario

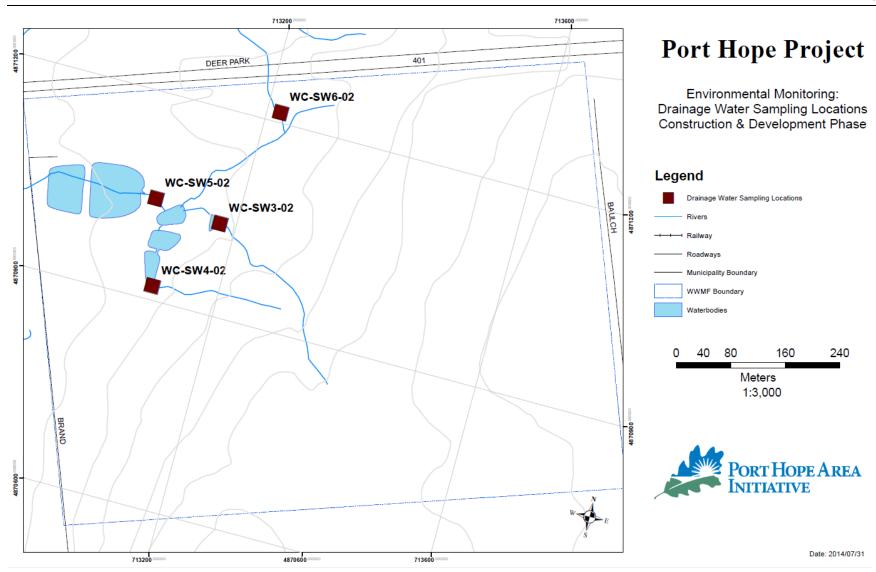


Figure 17 : Lieux d'échantillonnage des eaux de drainage - IGLTD-PH

Figure 18 : Lieux d'échantillonnage du milieu aquatique - Ruisseau Brewery

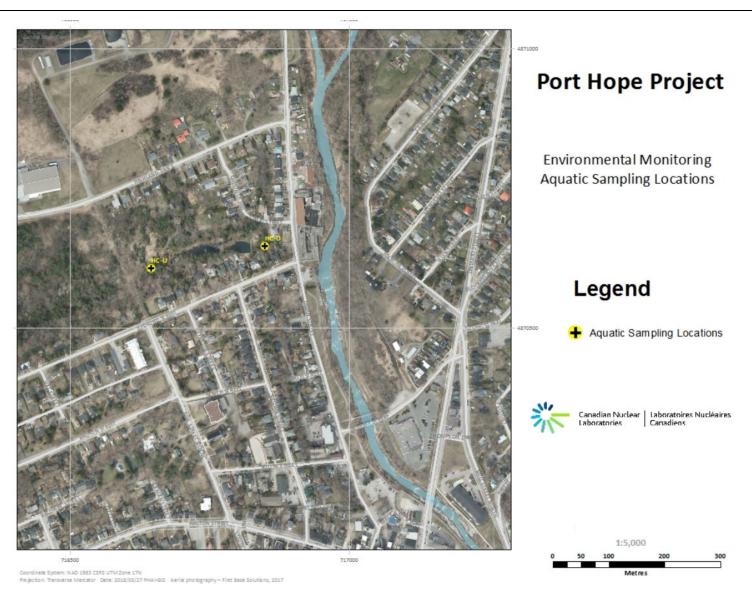


Figure 19 : Lieux d'échantillonnage du milieu aquatique - Ruisseau de la promenade Highland Sud

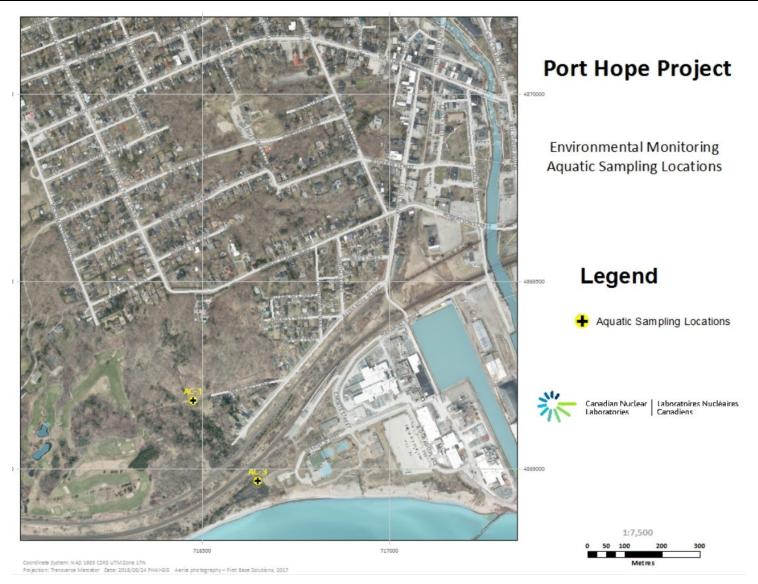


Figure 20 : Lieux d'échantillonnage du milieu aquatique - Ruisseau Alexander.

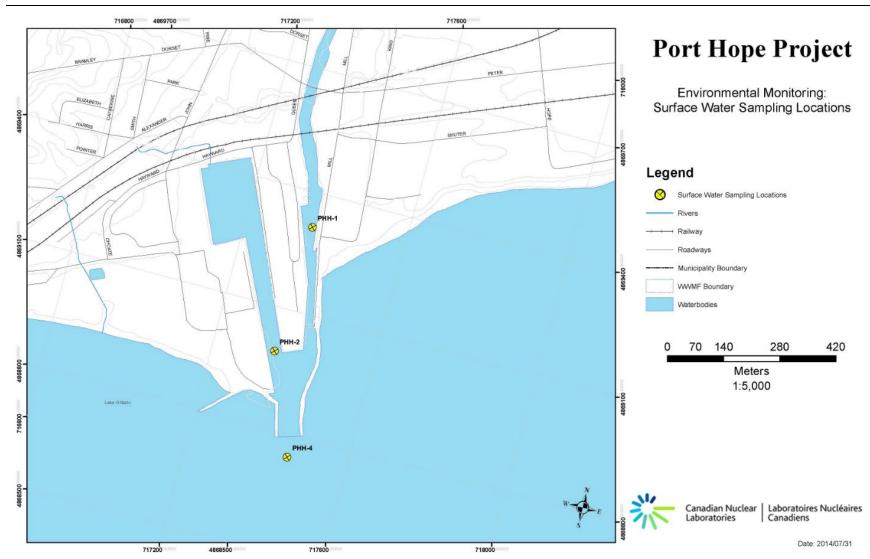


Figure 21 : Lieux d'échantillonnage des eaux de surface - Port de Port Hope

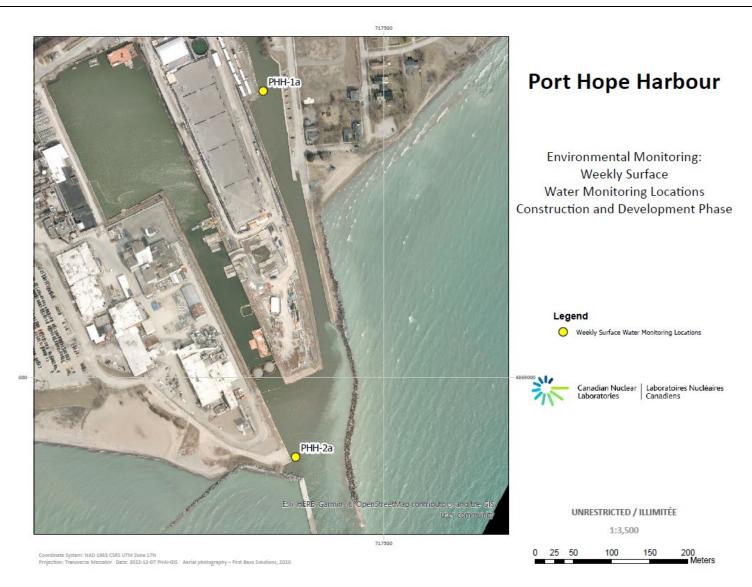


Figure 22 : Lieux d'échantillonnage des eaux de surface - Port de Port Hope.

Page 10 de 159

Annexe A RÉSULTATS DE LA SURVEILLANCE DE L'ENVIRONNEMENT À PORT HOPE

Tableau 1: Résultats de l'échantillonnage des puits d'observation opérationnels de l'IGLTD-PH (2021)

Observation Well Number	Arsenic (μg/L)	Uranium (μg/L)	Radium-226 (Bq/L)	рН	Notes
	(1-61-1		rage		
1-75					Well Decommissioned in 2016
1-87	0.9	3.90	0.01	7.43	
2-75	1	-			Well Decommissioned in 2018
WC-OW2-19 ¹	1.8	0.1	<0.01	7.42	
3-87	5	0.68	0.01	7.87	
4-79	0.8	0.08	<0.01	7.66	
WC-OW5-19 ²	2.6	0.1	<0.01	7.28	
WC-LTWMF-MW-06 ³	1.5	0.94	<0.01	8.21	
12-75	-	-			Well Decommissioned in 2018
18-76	1	-			Well Decommissioned in 2018
27-76	0.4	0.13	<0.01	7.62	
28-76	0.5	0.19	<0.01		
33-76	0.6	3.35	<0.01	7.60	
36-76					No sample – well not found

Notes:

Sampling is conducted semi-annually (spring and fall).

- -- No data.
- ¹ Replaced 2-87 in 2019
- ² Replaced 5-79 in 2019
- ³ Replaced 9-75 in 2017

Page 11 de 159

Tableau 17 : Usine de traitement des eaux usées de Port Hope -Résultats de l'analyse des échantillons d'eau (effluent) - 2019 à 2021

Final Effluent Sample Monthly Average	Total Suspended Solids (mg/L)	рН	Total Aluminum (µg/L)	Total Arsenic (μg/L)	Total Boron (µg/L) ⁽²⁾	Total Copper (μg/L)	Total Lead (μg/L)	Total Uranium (μg/L)	Total Zinc (µg/L)	Radium-226 (Bq/L)	Toxicity (Pass/Fail)	Totalized Effluent Volume (m³)
Design Objective	15	6-9	66	41	1820	15	22.8	150	110	0.37	PASS	
Action Level ⁽¹⁾	7.5	6.5 - 8.5	100	41	175	5	5	100	15	0.050	FAIL	
2019 January	1	7.84	5	1.9	24	1.0	0.5	2.10	5.0	0.005	PASS	15,426
2019 February	1	7.86	6	1.8	27	1.0	0.5	2.25	5.0	0.005	PASS	15,034
2019 March	1	7.72	5	1.0	27	1.0	0.5	1.60	5.0	0.005	PASS	17,063
2019 April	1	7.93	5	1.0	23	1.0	0.5	1.20	5.0	0.005	PASS	16,039
2019 May	1	7.84	5	1.0	29	1.0	0.5	1.25	5.0	0.005	PASS	14,804
2019 June	1	7.86	6	1.1	40	1.0	0.5	1.50	5.0	0.005	PASS	14,845
2019 July	1	7.57	6	1.0	43	1.0	0.5	0.81	5.0	0.005	PASS	8,792
2019 August	1	7.56	5	1.1	47	2.5	0.5	0.78	5.0	0.005	PASS	10,799
2019 September	1	7.91	5	1.0	47	1.0	0.5	0.79	5.0	0.005	PASS	7,012
2019 October	1	7.89	5	1.0	44	1.0	0.5	0.89	5.0	0.005	PASS	9,507
2019 November	1	7.82	5	1.0	28	1.0	0.5	0.33	5.0	0.005	PASS	15,108
2019 December	1	7.90	5	1.0	32	1.0	0.5	0.41	5.0	0.005	PASS	11,872
2020 January	1	7.79	2.5	0.2	27	1.0	0.1	1.11	1.0	0.0065	PASS	19,382
2020 February	1	7.80	1.0	0.3	28	1.3	0.1	0.53	3.0	0.005	PASS	22,856
2020 March	1	7.90	5.0	1.0	28	1.3	0.5	0.91	5.0	0.005	PASS	22,756
2020 April	1	7.61	5.0	1.0		1.9	0.6	2.80	5.0	0.005	PASS	18,656
2020 May	1	7.28	5.4	1.0		1.4	0.5	1.15	5.0	0.005	PASS	8,221
2020 June	1	7.34	5.0	2.4		0.9	0.5	0.70	5.0	0.007	PASS	3,735
2020 July	1	7.73	1.0	6.8		1.1	0.2	2.15	2.0	0.008	PASS	7,600
2020 August	1	7.57	1.0	1.7		1.9	0.4	2.50	2.5	0.0055	PASS	10,621
2020 September	1	7.32	1.0	1.1		1.4	0.4	1.22	2.0	0.008	PASS	3,927
2020 October	1	7.59	1.0	0.5		1.3	0.6	1.75	2.0	0.005	PASS	9,591
2020 November	1	7.46	2.5	0.4		1.3	0.3	0.79	1.5	0.005	PASS	4,183
2020 December	1	7.60	1.6	0.3		1.9	0.5	1.45	1.0	0.005	PASS	8,689
2021 January	1	7.52	1.0	0.3		2.1	0.4	1.05	1.0	0.005	PASS	15,554
2021 February	1	7.38	1.0	0.6		2.0	0.6	0.83	1.0	0.005	PASS	3,870
2021 March	1	7.49	1.0	0.3		1.0	0.3	0.87	1.0	0.005	PASS	15,329
2021 April	1	7.52	1.0	0.7		1.0	0.5	1.00	1.0	0.005	PASS	14,488
2021 May	1	7.36	1.0	3.5		1.5	0.7	1.30	1.0	0.005	PASS	4,254
2021 June	NO EFF*	NO EFF	NO EFF	NO EFF		NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	NO EFF	0
2021 July	1.5	7.53	1	20.4		1.2	0.29	2.34	2.5	0.005	PASS	7,130
2021 August	1	7.77	1	29.9		1.3	0.409	2.49	2.0	0.005	PASS	6,381
2021 September	2	7.88	2	20.2		1.6	0.278	0.98	2.0	0.005	PASS	9,089
2021 October	1.5	7.70	2	19.2		0.6	0.41	1.70	1.5	0.005	PASS	20,642
2021 November	2	7.74	1	20.1		0.8	0.46	2.34	1.0	0.005	PASS	15,581
2021 December	1	7.59	1	13.2		1.6	0.62	1.54	1.0	0.005	PASS	12,656

Notes: (1) - The values shown are based on License Condition Handbook WNSL-W1-LCH-2310 R1. Revised values proposed by CNL were reviewed by the CNSC with formal acceptance provided on 2020 April 20.

Notes: (2) - Regulated monitoring of Boron was removed from the requirment of the Waste Nuclear Substance Licence WSNL-W1-2310.01/2022 as of 2020 April 20.

Notes: *NO EFF refers to No Effluent sampling. No effluent discharges from the PH WWTP occurred in 2021-June due to low collection pond level.

Page 12 de 159

Tableau 18 : Usine de traitement des eaux usées de Port Hope -Résultats de l'analyse des échantillons d'eau (influent) - 2019 à 2021

Influent Sample Monthly Average Suspended Monthly Average Monthly Averag		Total		Total	T-1-1	Total	Total	Total	T-4-I	Total		Totalized
Monthly Average	Influent Sample	Suspended		Total	Total	Total	Total	Total	Total	Total	Radium-226	Influent
Company 3 8.09 31 510 82 24 2.3 630 37 0.180 30,945	Monthly Average	Solids	рн								(Bq/L)	Volume
2019 February 4 8.08 44 530 90 35 5.0 730 51 0.535 30,436 2019 March 3 7.99 32 320 79 35 5.5 620 45 0.590 36,253 2019 April 3 8.48 25 240 67 22 3.0 480 29 0.400 36,474 2019 May 3 8.90 23 245 62 111 0.8 390 13 0.335 37,738 2019 June 3 8.93 22 230 64 8 0.5 325 5 0.330 37,738 2019 June 5 9.04 45 250 73 8 0.6 150 5 0.570 30,558 2019 April 5 9.04 45 250 73 8 0.6 150 5 0.570 30,558 2019 April 18 9.03 250 315 82 17 2.3 115 10 1.750 31,518 2019 April 18 9.21 195 145 91 20 9.1 130 15 1.300 27,258 2019 October 8 8.80 110 120 83 21 3.8 110 16 0.530 23,755 2019 November 8 8.47 73 57 79 41 4.9 110 32 0.605 33,075 2019 Incomber 9 8.75 61 80 105 63 11.5 190 33 0.505 25,483 2020 January 3 8.51 25 119 105 117 103 21.5 309 50 0.555 88,30 2020 February 4 8.58 32 109 117 103 21.5 305 50 0.555 88,30 2020 February 4 8.84 9110 90 - 330 75,0 705 140 0.700 35,230 2020 Junu 11 8.84 9110 90 - 330 75,0 705 140 0.700 35,230 2020 Junu 11 8.84 9110 90 - 330 75,0 705 140 0.700 35,230 2020 Junu 11 8.84 9110 90 - 330 75,0 705 140 0.700 35,230 2020 Junu 11 8.81 120 140 - 41 120 350 38 57 1 0.475 17,661 180 120 140 - 41 120 350 38 57 1 0.475 17,661 180 190 33 190 140 150 150 150 150 150 150 150 150 150 15		(mg/L)		(μg/L)	(μg/L)	(μg/L) ^(*)	(μg/L)	(μg/L)	(μg/L)	(μg/L)		(m³)
2019 March 3 7.99 32 320 79 35 5.5 6.00 45 0.590 36.253	2019 January	3	8.09	31	510	82	24	2.3	630	37	0.180	30,945
2019 April	2019 February	4	8.08	44	530	90			730	51	0.535	30,436
2019 May 3 8.90 23 245 62 11 0.8 390 13 0.335 37,738 2019 June 3 8.93 22 230 64 8 0.5 325 5 0.330 37,309 2019 June 5 9,04 45 250 73 8 0.6 150 5 0.570 30,558 2019 August 18 9,03 250 315 82 17 2.3 115 10 1.750 31,176 2019 September 14 9,21 195 145 91 20 9.1 130 15 1.300 27,258 2019 October 8 8.8.80 110 120 83 21 3.8 110 16 0.530 23,275 2019 November 8 8.4.7 73 57 79 41 4.9 110 32 0.605 33,021 2019 December 9 8.75 61 80 105 63 11.5 190 33 0.505 25,483 2020 June 4 8.58 32 109 117 103 21.5 305 50 0.555 38,083 2020 June 11 8.8.49 110 90 330 75.0 705 140 0.700 35,230 2020 March 7 8.41 37 110 120 230 46.0 340 68 0.420 40,817 2020 April 18 8.49 110 90 330 75.0 705 140 0.700 35,230 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 27,045 27,	2019 March	3	7.99		320	79	35	5.5	620	45	0.590	36,253
2019 June 3 8.93 22 230 64 8 0.5 335 5 0.330 37,309	2019 April	3	8.48	25	240	67	22	3.0	480	29	0.400	36,474
2019 July S	2019 May	3	8.90	23	245	62	11	0.8	390	13	0.335	37,738
2019 August 18 9.03 250 315 82 17 2.3 115 10 1.750 31,176	2019 June	3	8.93	22	230	64	8	0.5	325	5	0.330	37,309
2019 September	2019 July	5	9.04	45	250	73	8	0.6	150	5	0.570	30,558
2019 October 8 8.80 110 120 83 21 3.8 110 16 0.530 23,275	2019 August	18	9.03	250	315	82	17	2.3	115	10	1.750	31,176
2019 November 8	2019 September	14	9.21	195	145	91	20	9.1	130	15	1.300	27,258
2019 December 9 8.75 61 80 105 63 11.5 190 33 0.505 25,483 2020 January 3 8.51 25 119 105 112 25.1 309 50 0.555 38,083 2020 February 4 8.58 32 109 117 103 21.5 305 50 0.555 39,912 2020 March 7 8.41 37 110 120 230 46.0 340 68 0.420 40,817 2020 April 18 8.49 110 90 - 330 75.0 705 140 0.700 35,230 2020 May 13 8.39 85 68 - 180 37.5 485 71 0.475 17,601 2020 July 7 9.26 38 377 - 22 17.6 340 27 0.455 20,938 2020 July 7 9.26	2019 October	8	8.80	110	120	83	21	3.8	110	16	0.530	23,275
2020 January 3 8.51 25 119 105 112 25.1 309 50 0.555 38,083 2020 February 4 8.58 32 109 117 103 21.5 305 50 0.505 39,912 2020 March 7 8.41 37 110 120 230 46.0 340 68 0.420 40,817 2020 April 18 8.49 110 90 330 75.0 705 140 0.700 35,230 2020 May 13 8.39 85 68 180 37.5 485 71 0.475 17,601 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 20,485 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 Junery 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 May 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 June	2019 November	8	8.47	73	57	79	41	4.9	110	32	0.605	33,021
2020 February 4 8.58 32 109 117 103 21.5 305 50 0.505 39,912 2020 March 7 8.41 37 110 120 230 46.0 340 68 0.420 40,817 2020 April 18 8.49 110 90 - 330 75.0 705 140 0.700 35,230 2020 May 13 8.39 85 68 - 180 37.5 485 71 0.475 17,601 2020 June 11 8.61 120 140 - 41 12.0 350 38 0.540 20,485 2020 July 7 9.26 38 377 - 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 - 39 33.3 319 41 0.455 22,938 2020 September 7 8.75	2019 December	9	8.75	61	80	105	63	11.5	190	33	0.505	25,483
2020 March 7 8.41 37 110 120 230 46.0 340 68 0.420 40,817 2020 April 18 8.49 110 90 330 75.0 705 140 0.700 35,230 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 20,485 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 Sugust 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 Cotober 8 8.47	2020 January	3	8.51	25	119	105	112	25.1	309	50	0.555	38,083
2020 April 18 8.49 110 90 330 75.0 705 140 0.700 35,230 2020 May 13 8.39 85 68 180 37.5 485 71 0.475 17,601 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 20,485 2020 July 7 9,26 38 377 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 October 8 8.47 178 123 54 45.2 298 45 0.240 10,499 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99	2020 February	4	8.58	32	109	117	103	21.5	305	50	0.505	39,912
2020 May 13 8.39 85 68 180 37.5 485 71 0.475 17,601 2020 June 11 8.61 120 140 41 12.0 350 38 0.540 20,485 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 39 33.3 319 41 0.455 20,938 2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 December 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2021 Junary 1 8.45	2020 March	7	8.41	37	110	120	230	46.0	340	68	0.420	40,817
2020 June 11 8.61 120 140 41 12.0 350 38 0.540 20,485 2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 November 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45	2020 April	18	8.49	110	90		330	75.0	705	140	0.700	35,230
2020 July 7 9.26 38 377 22 17.6 340 27 0.455 20,938 2020 August 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 1112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.	2020 May	13	8.39	85	68		180	37.5	485	71	0.475	17,601
2020 August 9 8.83 259 252 39 33.3 319 41 0.455 23,933 2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.2	2020 June	11	8.61	120	140		41	12.0	350	38	0.540	20,485
2020 September 7 8.75 190 202 54 45.2 298 45 0.240 10,499 2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 April 4 8.05 <td>2020 July</td> <td>7</td> <td>9.26</td> <td>38</td> <td>377</td> <td></td> <td>22</td> <td>17.6</td> <td>340</td> <td>27</td> <td>0.455</td> <td>20,938</td>	2020 July	7	9.26	38	377		22	17.6	340	27	0.455	20,938
2020 October 8 8.47 178 123 32 44.3 326 60 0.155 19,494 2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,915 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 Mayril 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48	2020 August	9	8.83	259	252		39	33.3	319	41	0.455	23,933
2020 November 5 8.46 87 112 19 30.7 291 47 0.150 11,154 2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 Mayril 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 Jule 7 8.28 <td< td=""><td>2020 September</td><td>7</td><td>8.75</td><td>190</td><td>202</td><td></td><td>54</td><td>45.2</td><td>298</td><td>45</td><td>0.240</td><td>10,499</td></td<>	2020 September	7	8.75	190	202		54	45.2	298	45	0.240	10,499
2020 December 2 7.99 29 114 134 47.8 379 54 0.140 18,636 2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 April 4 8.05 57 206 95 48 394 58 0.203 28,329 2021 May 6 8.48 106 524 95 48 394 58 0.203 28,320 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49<	2020 October	8	8.47	178	123		32	44.3	326	60	0.155	19,494
2021 January 1 8.45 15 126 162 51 366 48 0.175 31,150 2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 April 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 <td>2020 November</td> <td>5</td> <td>8.46</td> <td>87</td> <td>112</td> <td></td> <td>19</td> <td>30.7</td> <td>291</td> <td>47</td> <td>0.150</td> <td>11,154</td>	2020 November	5	8.46	87	112		19	30.7	291	47	0.150	11,154
2021 February 2 8.61 14 171 144 52 303 51 0.190 11,912 2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 April 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 1	2020 December	2	7.99	29	114		134	47.8	379	54	0.140	18,636
2021 March 4 8.27 61 86 52 28 239 44 0.139 29,028 2021 April 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21	2021 January	1	8.45	15	126		162	51	366	48	0.175	31,150
2021 April 4 8.05 57 206 95 48 394 58 0.203 28,320 2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33	2021 February	2	8.61	14	171		144	52	303	51	0.190	11,912
2021 May 6 8.48 106 524 81 72 470 69 0.337 14,419 2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 March	4	8.27	61	86		52	28	239	44	0.139	29,028
2021 June 7 8.28 100 752 23.4 41 416 78 0.244 20,485 2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 April	4	8.05	57	206		95	48	394	58	0.203	28,320
2021 July 4 9.55 49 680 36.0 32 281 42 0.200 22,304 2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 May	6	8.48	106	524		81	72	470	69	0.337	14,419
2021 August 6 9.17 31 999 33.4 40 397 70 0.371 15,659 2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 June	7	8.28	100	752		23.4	41	416	78	0.244	20,485
2021 September 6.5 8.91 157 610 13.7 30 318 69 0.335 12,488 2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 July	4	9.55	49	680		36.0	32	281	42	0.200	22,304
2021 October 6 8.21 127 574 26.9 46 317 49 0.428 40,754 2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 August	6	9.17	31	999		33.4	40	397	70	0.371	15,659
2021 November 5 8.33 60 747.0 43.0 55.10 531.00 51.0 0.36 31,825	2021 September	6.5	8.91	157	610		13.7	30	318	69	0.335	12,488
	2021 October	6	8.21	127	574		26.9	46	317	49	0.428	40,754
2021 December 8 8.12 78.5 478.5 151.0 76.00 439.50 49.0 0.414 29.019	2021 November	5	8.33	60	747.0		43.0	55.10	531.00	51.0	0.36	31,825
	2021 December	8	8.12	78.5	478.5		151.0	76.00	439.50	49.0	0.414	29,019

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 13 de 159

Page 14 de 159

Tableau 19 : Exploitation de l'usine de traitement des eaux usées et de l'ancien bâtiment des eaux usées de Port Hope - Résultats de l'analyse des échantillons d'eau (toxicité des effluents) - 2019 à 2021

Page 15 de 159

Sample Date	48 Hour Result	96 Hour Result	Old WTP 48 Hour Result	Old WTP 96 Hour Result
2019 January 01	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 February 05	Pass (0.0% mortality)	Pass (0.0% mortality)		
2019 March 12	Pass (3.3% mortality)	Pass (0.0% mortality)	-	
2019 April 02	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 April 09	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2019 April 24	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 01	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 07	Pass (0.0% mortality)	Pass (0.0% mortality)	-	
2019 May 08	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 14	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2019 May 15	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 22	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 May 29	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 04	Pass (0.0% mortality)	Pass (0.0% mortality)		
2019 June 05	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 12	NA NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 June 19	NA	NA	Pass (0.0% mortality)	Pass (0.0% mortality)
2019 July 02	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2019 July 09	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2019 August 13	Pass (10% mortality)	Pass (0.0% mortality)		-
2019 September 10	Pass (6.7% mortality)	Pass (0.0% mortality)		-
2019 October 08	Pass (0.0% mortality)	Pass (10% mortality)		_
2019 November 12	Pass (10% mortality)	Pass (0.0% mortality)	-	-
2019 December 10	Pass (3.3% mortality)	Pass (0.0% mortality)		-
2020 January 14	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2020 February 11	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2020 March 10	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2020 April 07	Pass (3.3% mortality)	Pass (0.0% mortality)		-
2020 May 12	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2020 June 09	Pass (3.3% mortality)	Pass (0.0% mortality)		-
2020 July 07	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2020 August 11	Pass (0.0% mortality)	Pass (0.0% mortality)		
2020 September 08	Pass (3.3% mortality)	Pass (0.0% mortality)	-	-
2020 October 06	Pass (3.3% mortality)	Pass (0.0% mortality)		-
2020 November 10	Pass (0.0% mortality)	Pass (30% mortality)	-	-
2020 November 24	Pass (3.3% mortality)	Pass (20% mortality)	-	_
2020 December 08	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2021 January 12	Pass (0.0% mortality)	Pass (0.0% mortality)		
2021 February 09	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2021 March 09	Pass (0.0% mortality)	Pass (0.0% mortality)		
2021 April 20	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2021 May 11	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2021 June 01	NO EFF	NO EFF	-	-
2021 July 13	Pass (0.0% mortality)	Pass (0.0% mortality)	-	-
2021 August 24	Pass (0.0% mortality)	Pass (30% mortality)	-	_
2021 September 14	Pass (3.3% mortality)	Pass (0.0% mortality)	-	_
2021 October 12	Pass (0.0% mortality)	Pass (0.0% mortality)	-	_
	Pass (0.0% mortality)	Pass (0.0% mortality)		-
2021 November 09				

Tableau 20 : Exploitation de l'UTEU-PH - Résultats de l'analyse des échantillons des eaux de

Page 16 de 159

surface du ruisseau Brand

Parameter/Criteria	Total Suspended Solids (mg/L)	рН	Total Aluminum (μg/L)	Total Arsenic (µg/L)	Total Boron (μg/L)	Total Copper (µg/L)	Total Lead (µg/L)	Total Uranium (µg/L)	Total Zinc (μg/L)	Radium-226 (Bq/L)
PWQO ⁽¹⁾	NV	6.5:8.5	75	100	200	5	5	5	30	1
CCME FWA-LT ⁽²⁾	NV	6.5:9.0	100	5	1,500	2	1	15	30	NV ⁽³⁾
Sample Date										
2019 January 01	45	8.08	820	<1.0	10	1.7	0.7	2.3	<5.0	<0.0050
2019 February 12	22	8.27	440	<1.0	11	<1.0	<0.50	3.3	14	<0.0050
2019 March 05	13	8.03	250	<1.0	10	<1.0	<0.50	3.7	<5.0	<0.0050
2019 April 02	45	8.11	960	<1.0	<10	1.5	0.7	3	5	<0.0050
2019 May 07	24	8.28	480	1.1	11	1.4	<0.50	2.8	<5.0	<0.0050
2019 June 04	3	8.22	70	<1.0	12	<1.0	<0.50	2.2	<5.0	<0.0050
2019 July 09	93	8.18	1,700	2.7	15	2.7	1.3	1.3	9.5	<0.0050
2019 August 06	89	8.27	1,600	2.5	18	3.0	1.2	1.4	11	<0.0050
2019 September 10	33	8.17	470 500	1.6	11	1.0	<0.50	1.1	<5.0	<0.0050
2019 September 17 2019 September 24	16 25	8.28 8.28	710	1.7 1.9	12 13	1.2	<0.50 0.53	1.4	<5.0 <5.0	<0.0050 <0.0050
2019 October 01	130	8.26	1.900	2.6	12	2.2	1.4	1.2	9.3	<0.0050
2019 October 01 2019 October 08	28	8.22	790	1.8	13	1.2	0.58	1.2	<5.0	<0.0050
2019 November 05	11	8.29	210	<1.0	12	1.4	<0.50	3.3	<5.0	<0.0050
2019 December 03	22	8.17	460	<1.0	<10	<1.0	<0.50	3.3	<5.0	<0.0050
2020 January 07	20	8.30	260	0.8	<20	1.4	0.32	3.4	<10	0.007
2020 February 04	33	8.22	798	0.8	8	1.2	0.57	3.0	4.0	0.008
2020 March 17	14	8.16	350	<1.0	<10	<1.0	<0.50	2.5	<5.0	<0.0050
2020 April 21	13	8.17	410	<1.0	13	<1.0	<0.50	2.1	<5.0	<0.0050
2020 May 19	56	8.19	230	<1.0	13	<1.0	<0.50	2.8	<5.0	<0.0050
2020 June 02	14	8.14	220	1.1	<10	1.2	<0.50	2.0	<5.0	<0.0050
2020 July 14	44	8.13	1,720	3.3	16	<u>2.6</u>	1.04	2.8	9.0	0.006
2020 August 11	15	8.19	570	3.2	21	1.6	0.45	2.7	7.0	0.01
2020 September 01	24	8.17	621	3.8	17	1.5	0.46	2.4	7.0	0.008
2020 October 13	7	8.31	304	2.4	18	1.1	0.133	2.3	4.0	0.008
2020 November 03	5	8.09	284	1.5	60	0.9	0.23	3.1	4.0	0.01
2020 December 15	4	8.2	95	1.5	13	1.0	0.29	5.7	2.0	<0.0050
2021 January 24	13	8.17	143	0.5	11	0.7	<0.01	2.2	2.0	<0.005
2021 February 21 2021 March 16	6	8.21 8.17	298 161	0.7	12 10	2.1 0.7	0.30	3.9	3.0 4.0	<0.005 0.018
2021 March 16 2021 April 24	8	8.17	243	0.7	0.9	0.7	0.10	3.9	2.0	<0.005
2021 April 24 2021 May 18	11	8.24	342	1.2	13	1.0	0.32	2.8	3.0	<0.005
2021 May 18 2021 June 13	35	8.25	1,470	3.1	18	2.2	1.0	1.8	9.0	0.01
2021 July 23	11	8.16	213	3.5	37	1.6	0.7	3.4	6.0	<0.005
2021 August 10	18	7.98	477	4.6	19	1.1	0.4	2.4	3.0	<0.005
2021 September 21	20	7.99	445	3.7	19	1.1	0.6	2.0	5.0	<0.005
2021 October 23	7	8.15	187	6.0	22	0.8	0.2	3.4	4.0	0.006
2021 November 20	13	8.15	155	1.2	16	1.0	0.2	2.5	3.0	<0.005
2021 December 14	14	8.15	237	0.8	29	0.9	0.3	2.5	8.0	<0.005

Notes:

- 1 Ontario Ministry of the Environment and Energy Provincial Water Quality Objectives (1994)
- 2 Canadian Council of Ministers of the Environment Protection of Fresh Water Aquatic Life (Long Term)
- 3 NA refers to "No Value" for selected criteria

Legend:

Bold Exceedance of PWQO criteria

Bold and Underlined Exceedance of CCME criteria

Shaded White Text Exceedance of PWQO and CCME criteria

Page 17 de 159

Tableau 21 : Surveillance de la qualité de l'air - Station météorologique de l'IGLTD-PH

	20	16	20	17	20	18	20	19	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP
	(μg/m ³)	(μg/m ³)	(μg/m ³)	(μg/m ³)	$(\mu g/m^3)$	(μg/m ³)	$(\mu g/m^3)$	(μg/m ³)				
Observations	205	209	194	196	252	248	240	237	171	169	223	222
Geometric Mean	6	21	6	22	8	23	5	16	5	18	7	19
Arithmetic Mean	7	26	7	27	10	29	5	19	8	22	9	24
Median	6	23	7	22	9	25	4	17	6	19	8	19
98 th Percentile	27	-	25	-	20	-	18	ı	20	1	20 1	-
Maximum	28	95	20	116	50	104	17	158	21	85	49	116
Exceedances (%)	0%	0%	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0%

Note:

 $^198^{\,\text{th}}$ Percentile for PM $_{2.5}$ averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of $120\,\mu g/m^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate M attervalue of 30 µg/m3 and the proposed 2020 value of 27 µg/m3.

Tableau 22 : Surveillance de la qualité de l'air – IGLTD-PH nord-ouest

	20	16	20	17	20	18	20	19	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP
	(μg/m ³)	(μg/m ³)	(μg/m ³)	(μg/m ³)	$(\mu g/m^3)$	(μg/m ³)						
Observations	207	207	194	192	248	255	240	240	166	158	219	220
Geometric Mean	6	22	6	18	9	26	4	21	6	21	7	21
Arithmetic Mean	8	25	7	21	10	30	5	24	8	25	9	25
Median	7	23	7	18	9	26	4	19	6	22	8	21
98 th Percentile	28	-	24	-	19	-	18	-	19	1	20 1	-
Maximum	24	79	18	73	28	150	17	96	21	179	52	97
Exceedances (%)	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0.63%	0%	0%

Note:

 1 98 th Percentile for PM $_{2.5}$ averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of $120\,\mu\text{g/m}^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 25 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate M attervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Page 18 de 159

Tableau 23 : Surveillance de la qualité de l'air - IGLTD-PH

	20	16	20	17	20	18	20	19	20	20	2021	
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP						
	$(\mu g/m^3)$	(μg/m ³)										
Observations	205	205	196	194	259	253	240	240	136	169	217	220
Geometric Mean	6	16	6	14	9	20	5	14	6	15	7	17
Arithmetic Mean	8	19	7	16	10	23	5	17	8	18	9	21
Median	7	16	6	16	10	20	4	14	8	17	9	18
98 th Percentile	25	-	22	-	19	-	19	1	19	-	20 1	-
Maximum	25	85	31	53	37	162	22	85	22	73	53	84
Exceedances (%)	0%	0%	0%	0%	0%	0.4%	0%	0%	0%	0%	0%	0%

Note:

 1 98 $^{\text{th}}$ Percentile for PM $_{2.5}$ averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of $120\,\mu\text{g/m}^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2598h percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Mattervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Tableau 24 : Surveillance de la qualité de l'air – Itinéraire de transport, 192, chemin Toronto

	20	16	20	17	20	18	20	19	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP	PM _{2.5}	TSP
	(μg/m ³)	$(\mu g/m^3)$	(μg/m ³)									
Observations	208	107	196	130	256	256	237	242	170	166	221	17
Geometric Mean	6	27	6	20	8	26	4	18	5	19	7	24
Arithmetic Mean	8	33	7	22	9	30	4	21	8	21	9	29
Median	7	27	6	20	9	28	3	18	6	21	8	30
98 th Percentile	-	-	27	-	18	-	17	1	19	1	20 1	1
Maximum	24	151	18	57	23	119	12	75	21	58	51	72
Exceedances (%)	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Note:

 $^{1}98^{\text{th}}$ Percentile for PM_{2.5} averaged over 3 years (2019, 2020 & 2021).

TSP values are compared to Overrriding Limit of 120 µg/m³ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 25 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate M attervalue of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Page 19 de 159

Tableau 25 : Concentrations de métaux et de radionucléides dans les particules totales en suspension - Station météorologique de l'IGLTD-PH

					Weather Station									
					2016	2017	2018	2019	2020	20	21			
		Nu	mber of San	nples Analyzed	45	38	50	51	38	4	19			
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum			
Total Mercury (Hg)	ng/m³	-			0.01	0.01	0.01	0.08	0.89	1.06	1.23			
Silver	ng/m³	1000			4	3	3	4	23	23	25			
Arsenic	ng/m³	300			2.0	3.5	3.7	3.8	3.1	3.2	7.8			
Barium	ng/m³	10000			10	9	9	8	5	6	14			
Beryllium	ng/m³	10			0.13	0.58	0.58	0.55	0.03	0.03	0.03			
Boron	ng/m³	120000			9	4	4	4	12	21	95			
Cadmium	ng/m³	25			0.4	1.2	1.2	1.1	0.3	0.3	0.3			
Cobalt	ng/m³	100			0.5	1.2	1.6	1.5	0.3	0.3	0.8			
Copper	ng/m³	50000			17	10	13	13	13	11	33			
Molybdenum	ng/m³	120000			0.9	1.8	1.8	1.9	2.8	3.5	14.8			
Nickel	ng/m³	200			2	2	2	2	1	3	26			
Lead	ng/m³	500			3	3	3	3	3	3	5			
Antimony	ng/m³	25000			3	6	6	6	7	7	24			
Selenium	ng/m³	10000			2	6	6	6	4	4	14			
Uranium	ng/m³	300	1.8	4070	0.8	0.3	0.3	0.5	3.0	3.0	4.9			
Vanadium	ng/m³	2000			1.2	2.9	2.9	2.8	0.4	0.4	1.0			
Zinc	ng/m ³	12000			25	20	24	22	24	19	47			
Lead-210	Bq/m³	-			0.1275	0.0005	0.0009	0.0009	0.0007	0.0007	0.0032			
Radium-226	Bq/m³	-	0.000049	0.05	0.000033	0.000058	0.000060	0.000072	0.000030	0.000033	0.000058			
Thorium-230	Bq/m³	-	0.00042	0.01	0.00011	0.00029	0.00030	0.00029	0.00006	0.00006	0.00012			
Thorium-232	Bq/m³	-	0.000057	0.006	0.000106	0.000289	0.000289	0.000278	0.000059	0.000063	0.000115			
Note:		_	•			•	•	•	•	•				

Note:

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

Tableau 26 : Concentrations de métaux et de radionucléides dans les particules totales en suspension – IGLTD-PH nord-ouest

							We	come Northw	est		
					2016	2017	2018	2019	2020	20	21
		Nu	mber of San	ples Analyzed	45	38	51	51	34	4	9
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m³	-		2010.0	0.01	0.01	0.01	0.08	0.94	1.03	1.20
Silver	ng/m³	1000			2	3	3	4	22	22	24
Arsenic	ng/m ³	300			1.6	3.4	4.2	3.4	3.1	3.3	8.2
Barium	ng/m³	10000			19	17	20	26	11	7	16
Beryllium	ng/m³	10			0.14	0.56	0.56	0.54	0.03	0.03	0.05
Boron	ng/m³	120000			10	4	3	4	11	20	104
Cadmium	ng/m³	25			0.4	1.1	1.1	1.2	0.3	0.3	0.5
Cobalt	ng/m³	100			0.3	1.1	2.5	1.1	0.4	0.3	0.8
Copper	ng/m³	50000			12	9	11	12	11	10	25
Molybdenum	ng/m³	120000			0.9	1.7	1.7	1.8	2.8	7.9	210.8
Nickel	ng/m³	200			1	2	3	2	1	3	30
Lead	ng/m³	500			3	3	3	2	3	2	5
Antimony	ng/m³	25000			3	6	6	6	8	9	29
Selenium	ng/m³	10000			2	6	6	6	4	4	15
Uranium	ng/m³	300	1.8	4070	0.3	0.3	0.3	0.4	3.0	2.9	6.3
Vanadium	ng/m³	2000			1.0	2.8	2.8	2.7	0.4	0.4	0.8
Zinc	ng/m³	12000			29	22	26	26	23	21	47
Lead-210	Bq/m³	-			0.0004	0.0006	0.0009	0.0007	0.0006	0.0007	0.0032
Radium-226	Bq/m³	-	0.000049	0.05	0.000040	0.000056	0.000059	0.000060	0.000030	0.000031	0.000057
Thorium-230	Bq/m³	-	0.00042	0.01	0.00011	0.00028	0.00030	0.00027	0.00006	0.00006	0.00011
Thorium-232	Bq/m³	-	0.000057	0.006	0.000108	0.000281	0.000281	0.000274	0.000056	0.000062	0.000113

Note:

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

Page 20 de 159

Tableau 27 : Concentrations de métaux et de radionucléides dans les particules totales en suspension - IGLTD-PH sud

					Welcome South						
					2016	2017	2018	2019	2020	20)21
Number of Samples Analyzed					45	38	50	51	38	4	19
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m³	-			0.01	0.01	0.01	0.08	0.87	1.04	1.20
Silver	ng/m³	1000			2	3	3	4	21	23	24
Arsenic	ng/m³	300			1.6	3.4	3.8	3.4	3.0	3.2	8.2
Barium	ng/m³	10000			8	6	7	7	5	5	13
Beryllium	ng/m³	10			0.13	0.57	0.57	0.54	0.03	0.03	0.03
Boron	ng/m³	120000			9	4	4	4	11	22	133
Cadmium	ng/m³	25			0.4	1.1	1.1	1.1	0.3	0.3	0.5
Cobalt	ng/m³	100			0.4	1.1	1.9	1.1	0.3	0.3	0.8
Copper	ng/m³	50000			21	8	11	12	12	10	30
Molybdenum	ng/m³	120000			1.0	1.7	1.7	1.9	3.4	6.7	98.7
Nickel	ng/m³	200			2	2	2	2	1	3	34
Lead	ng/m³	500			3	3	3	2	3	2	5
Antimony	ng/m³	25000			3	6	6	6	7	8	38
Selenium	ng/m³	10000			2	6	6	6	4	4	13
Uranium	ng/m³	300	1.8	4070	0.4	0.3	0.3	0.4	2.7	3.0	6.0
Vanadium	ng/m³	2000			1.1	2.8	2.8	2.7	0.3	0.4	0.9
Zinc	ng/m³	12000			29	17	20	19	19	18	45
Lead-210	Bq/m³	•	•		0.0004	0.0005	0.0009	0.0008	0.0007	0.0007	0.0034
Radium-226	Bq/m³	•	0.000049	0.05	0.000032	0.000057	0.000059	0.000060	0.000028	0.000032	0.000056
Thorium-230	Bq/m ³	•	0.00042	0.01	0.00011	0.00028	0.00029	0.00027	0.00006	0.00006	0.00011
Thorium-232	Bq/m°	-	0.000057	0.006	0.000107	0.000283	0.000284	0.000271	0.000056	0.000062	0.000113

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) **Bold values** indicate an exceedance of the predicted values.

Tableau 28 : Concentrations de métaux et de radionucléides dans les particules totales en suspension - 192, chemin Toronto

					192 Toronto Rd						
					2016	2017	2018	2019	2020	20	21
Number of Samples Analyzed				45	38	50	51	38		5	
Analysis	Unit	AAQC	Predicted*	Health Canada Reference Levels*			Average			Average	Maximum
Total Mercury (Hg)	ng/m³	AAQC	rieulcieu	Levels	0.01	0.01	0.01	0.08	0.87	1.17	1.19
Silver	ng/m³	1000			2	3	3	4	21	23	24
Arsenic	ng/m³	300			1.7	3.5	3.4	3.4	2.8	3.3	4.6
Barium	ng/m³	10000			7	7	9	9	6	6	7
Beryllium	ng/m ³	10			0.15	0.58	0.57	0.54	0.03	0.03	0.03
Boron	ng/m³	120000			10	4	4	4	11	12	12
Cadmium	ng/m³	25			0.4	1.2	1.1	1.1	0.3	0.3	0.3
Cobalt	ng/m³	100			0.4	1.2	1.1	1.1	0.3	0.5	0.8
Copper	ng/m³	50000			15	9	10	14	12	11	15
Molybdenum	ng/m³	120000			0.9	1.8	1.7	1.8	2.9	4.6	10.5
Nickel	ng/m³	200			1	2	2	2	1	20	46
Lead	ng/m³	500			2	2	2	2	3	2	2
Antimony	ng/m³	25000			3	6	6	6	10	22	41
Selenium	ng/m³	10000			2	6	6	6	4	3	5
Uranium	ng/m³	300	1.8	4070	0.7	0.3	0.3	0.4	2.8	3.3	4.1
Vanadium	ng/m³	2000			1.3	2.9	2.8	2.7	0.3	0.4	0.6
Zinc	ng/m³	12000			21	19	23	22	23	16	23
Lead-210	Bq/m ³	-			0.0004	0.0005	0.0008	0.0008	0.0007	0.0007	0.0022
Radium-226	Bq/m ³	-	0.000049	0.05	0.000034	0.000058	0.000057	0.000056	0.000030	0.000029	0.000030
Thorium-230	Bq/m ³	-	0.00042	0.01	0.00011	0.00029	0.00028	0.00027	0.00006	0.00006	0.00006
Thorium-232	Bq/m ³	-	0.000057	0.006	0.000111	0.000285	0.000283	0.000271	0.000056	0.000059	0.000059

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

Page 21 de 159

Tableau 29 : Surveillance de la qualité de l'air – Site de regroupement du prolongement de la rue Pine, Cavan Candies

	20	20	20	21
	PM _{2.5}	TSP	PM _{2.5}	TSP
	(μg/m³)	(μg/m ³)	(μg/m ³)	$(\mu g/m^3)$
Observations	36	36	177	179
Geometric Mean	3	9	6	17
Arithmetic Mean	4	11	8	21
Median	3	10	8	20
98 th Percentile	10	-	20 ¹	-
Maximum	11	22	53	83
Exceedances (%)	0%	0%	0%	0%

Note:

 $^{1}98^{th}$ Percentile for PM $_{2.5}$ averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of $120~\mu\text{g/m}^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 2.5 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Tableau 30 : Surveillance de la qualité de l'air – Site de regroupement du prolongement de la rue Pine, complexe sportif Jack Burger

	20	20	2021		
	PM _{2.5}	TSP	PM _{2.5}	TSP	
	$(\mu g/m^3)$	(μg/m³)	(μg/m³)	$(\mu g/m^3)$	
Observations	36	35	179	177	
Geometric Mean	2	10	6	16	
Arithmetic Mean	3	12	9	20	
Median	2	11	8	17	
98 th Percentile	10	-	24 ¹	-	
Maximum	13	45	52	89	
Exceedances (%)	0%	0%	0%	0%	

Note:

¹98th Percentile for PM_{2.5} averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of 120 $\mu g/m^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 25 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Tableau 31 : Surveillance de la qualité de l'air – Site de regroupement du prolongement de la rue Pine, École secondaire de Port Hope

Page 22 de 159

	20	21		
	PM _{2.5}	TSP	PM _{2.5}	TSP
	$(\mu g/m^3)$	(μg/m ³)	(μg/m ³)	(μg/m ³)
Observations	36	34	177	172
Geometric Mean	3	9	7	15
Arithmetic Mean	4	11	9	19
Median	2	9	8	16
98 th Percentile	12	1	23 ¹	-
Maximum	13	26	51	86
Exceedances (%)	0%	0%	0%	0%

Note:

 $^198^{th}$ Percentile for $PM_{2.5}$ averaged over 2 years (2020 & 2021).

TSP values are compared to Overrriding Limit of 120 $\mu g/m^3$ as defined in the PHAI Dust Management and Requirements Plan and AAQC.

PM 25 98th percentile is compared to the 2000 Canadian Air Quality Standards for Fine Particulate Matter value of 30 µg/m³ and the proposed 2020 value of 27 µg/m³.

Tableau 32 : Concentrations de métaux et de radionucléides dans les particules totales en suspension – Site de regroupement du prolongement de la rue Pine, Cavan Candies

					Cavan Candies				
				2020	20	21			
		Nu	mber of San	nples Analyzed	ed 9 43				
				Health Canada					
				Reference	Average	Average	Maximum		
Analysis	Unit	AAQC	Predicted*	Levels*					
Total Mercury (Hg)	ng/m³	-			1.14	0.96	1.20		
Silver	ng/m³	1000			23	22	24		
Arsenic	ng/m³	300			2.8	2.9	5.4		
Barium	ng/m³	10000			4	6	21		
Beryllium	ng/m³	10			0.03	0.03	0.03		
Boron	ng/m³	120000			11	25	107		
Cadmium	ng/m³	25			0.3	0.3	0.4		
Cobalt	ng/m³	100			0.3	0.3	0.9		
Copper	ng/m³	50000			4	9	24		
Molybdenum	ng/m³	120000			4.1	3.7	14.5		
Nickel	ng/m³	200			1	2	21		
Lead	ng/m³	500			3	3	10		
Antimony	ng/m³	25000			11	7	17		
Selenium	ng/m³	10000			3	3	12		
Uranium	ng/m³	300	1.8	4070	3.0	2.9	6.1		
Vanadium	ng/m³	2000			0.3	0.3	0.7		
Zinc	ng/m³	12000			12	19	49		
Lead-210	Bq/m³	-			0.0008	0.0007	0.0032		
Radium-226	Bq/m³	-	0.000049	0.05	0.000028	0.000032	0.000057		
Thorium-230	Bq/m³	-	0.00042	0.01	0.00006	0.00007	0.00017		
Thorium-232	Bq/m³	-	0.000057	0.006	0.000057	0.000062	0.000114		

Note:

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1) **Bold values** indicate an exceedance of the predicted values.

Page 23 de 159

Tableau 33 : Concentrations de métaux et de radionucléides dans les particules totales en suspension – Site de regroupement du prolongement de la rue Pine, complexe sportif Jack Burger

					Jack Burger Sports Complex				
					2018 2020 202°				
	Number of Samples Analyzed					9	4	-3	
				Health Canada					
				Reference	Ave	rage	Average	Maxim um	
Analysis	Unit	AAQC	Predicted*	Levels*					
Total Mercury (Hg)	ng/m³	-			0.01	1.14	0.97	1.19	
Silver	ng/m³	1000			3	23	22	24	
Arsenic	ng/m³	300			3.3	2.8	3.0	8.7	
Barium	ng/m³	10000			5	3	5	15	
Beryllium	ng/m³	10			0.55	0.03	0.03	0.03	
Boron	ng/m³	120000			3	11	26	130	
Cadmium	ng/m³	25			1.1	0.3	0.3	0.3	
Cobalt	ng/m³	100			1.1	0.3	0.3	0.8	
Copper	ng/m³	50000			5	3	9	19	
Molybdenum	ng/m³	120000			1.7	2.9	3.1	7.9	
Nickel	ng/m³	200			2	1	2	17	
Lead	ng/m³	500			2	3	2	6	
Antimony	ng/m³	25000			6	11	7	35	
Selenium	ng/m³	10000			6	3	3	12	
Uranium	ng/m³	300	1.8	4070	0.3	2.8	3.0	4.9	
Vanadium	ng/m³	2000			2.8	0.3	0.3	1.0	
Zinc	ng/m³	12000			15	12	18	43	
Lead-210	Bq/m³	-			0.0008	0.0009	0.0007	0.0034	
Radium-226	Bq/m³	-	0.000049	0.05	0.000055	0.000028	0.000032	0.000057	
Thorium-230	Bq/m³	-	0.00042	0.01	0.00028	0.00006	0.00006	0.00011	
Thorium-232	Bq/m³	-	0.000057	0.006	0.000277	0.000057	0.000063	0.000114	

Note:

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

Page 24 de 159

Tableau 34 : Concentrations de métaux et de radionucléides dans les particules totales en suspension – Site de regroupement du prolongement de la rue Pine, École secondaire de Port Hope

					Port Hope High School				
					2018 2020 2021				
		Nu	mber of San	nples Analyzed	20	9	43		
				Health Canada					
				Reference	Ave	rage	Average	Maximum	
Analysis	Unit	AAQC	Predicted*	Levels*					
Total Mercury (Hg)	ng/m³	-			0.01	1.14	0.97	1.20	
Silver	ng/m³	1000			3	23	22	24	
Arsenic	ng/m³	300			3.4	2.9	2.9	6.5	
Barium	ng/m³	10000			6	3	4	13	
Beryllium	ng/m³	10			0.56	0.03	0.03	0.03	
Boron	ng/m³	120000			3	11	22	90	
Cadmium	ng/m³	25			1.1	0.3	0.3	0.5	
Cobalt	ng/m³	100			1.1	0.3	0.4	0.6	
Copper	ng/m³	50000			6	9	9	23	
Molybdenum	ng/m³	120000			1.7	2.9	11.3	226.1	
Nickel	ng/m³	200			2	1	2	13	
Lead	ng/m³	500			2	3	3	7	
Antimony	ng/m³	25000			6	10	7	28	
Selenium	ng/m³	10000			6	3	3	12	
Uranium	ng/m³	300	1.8	4070	0.3	3.0	2.9	4.4	
Vanadium	ng/m³	2000			2.8	0.3	0.3	0.6	
Zinc	ng/m³	12000			16	14	17	38	
Lead-210	Bq/m³	-			0.0009	0.0007	0.0007	0.0030	
Radium-226	Bq/m³	-	0.000049	0.05	0.000056	0.000029	0.000033	0.000109	
Thorium-230	Bq/m³	-	0.00042	0.01	0.00028	0.00006	0.00006	0.00011	
Thorium-232	Bq/m³	-	0.000057	0.006	0.000282	0.000057	0.000063	0.000114	

AAQC = Ambient Air Quality Criteria

*Predicted values and Health Canada reference levels obtained from Port Hope Screening Report (Table 12.1)

Bold values indicate an exceedance of the predicted values.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 25 de 159

Page 26 de 159

Tableau 35 : Surveillance de la qualité de l'air – Port/quai central – Surveillance des composés organiques volatils (juin et juillet 2021)

Page 27 de 159

	.,	itaring I		-06-24	2021-06-28 ¹		-07-14 ¹		07-20		-07-26
	Mon	itoring Location	HCP NW Corner	HCP SE Corner	No Sample	HCP NW Corner	No Sample	HCP NW Corner	West Harbour	HCP NW Corner	NW of Sediment
Wind I	Direction at time	of Deployment	SE	SE		SW	sw	NW	NW	W	W
Analysis	Direction at time	Criteria	3E	SE		SVV	SW	NVV	INVV	, w	v
MS Volatiles (ONMOEAPH)	Units	(AAQC)									
Benzene	μg/m³	2.3	0.256	0.164		0.433		1.35	1.37	0.787	0.673
Ethylbenzene	µg/m³	1000	0.246	< 0.217		< 0.217		< 0.217	0.228	0.218	< 0.217
Toluene	µg/m³	2000	0.631 0.814	0.423		1.68 0.606		1.43 0.545	1.66 0.597	1.43 0.668	1.23 0.578
m,p-Xylene o-Xylene	μg/m³ μg/m³	730 730	0.814	< 0.434		0.006		< 0.217	0.597	0.008	0.222
Naphthalene	µg/m³	22.5	< 0.524	< 0.524		0.675		< 0.524	< 0.524	< 0.524	< 0.524
PHC F1 (C6-C10)	μg/m³	22.0		- 0.024				- 0.024			
PHC F1 (C6-C10) - BTEX	μg/m³		24.1	28.7		45.9		36.8	45.2	48.2	80.7
PHC F2 (>C10-C16)	μg/m³		13.2	39.9		17.4		16.1	24.4	15.2	29.8
PHC F2 (>C10-C16) - Nap	μg/m³										
Aliphatic >C5-C6	μg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aliphatics C6-C8 (Unadj.)	μg/m³		< 5.0 < 5.0	< 5.0 < 5.0		< 5.0 < 5.0		< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	7.5 7.1
Aliphatics >C8-C10 (Unadj.) Aliphatics >C10-C12 (Unadj.)	μg/m³ μg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	9.2
Aliphatic >C12-C16	µg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatic >C7-C8 (TEX Excluded)	μg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatics >C8-C10 (Unadj.)	µg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatics >C10-C12 (Unadj.)	μg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
Aromatic >C12-C16	μg/m³		< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0	< 5.0
MS Volatiles (TO-15)	μg/m3										
Acetone (2-Propanone)	μg/m³	11880	6.01	3.77		5.50		11.8	13.7	6.35	7.64
1,3-Butadiene	µg/m³	2	< 1.11	< 1.11		< 0.11		< 1.11	< 1.11	< 1.11	< 1.11
Benzene Bromodichloromethane	μg/m³	2.3	0.256 < 1.34	0.164 < 1.34		0.433 < 1.34		1.35	1.370	0.787	0.673 < 1.34
Bromoform	μg/m³ μg/m³	55	< 1.03	< 1.34		< 1.03		< 1.03	< 1.03	< 1.03	< 1.03
Bromomethane	µg/m³		< 0.194	< 0.194		< 0.194		< 0.194	< 0.194	< 0.194	< 0.194
Bromoethene	μg/m³					-					
Benzyl Chloride	μg/m³		< 2.59	< 2.59		< 2.59		< 2.59	< 2.59	< 2.59	< 2.59
Carbon disulfide	µg/m³		< 1.56	< 1.56		< 1.56		< 1.56	< 1.56	< 1.56	< 1.56
Chlorobenzene	μg/m³		< 0.230	< 0.230		< 0.230		< 0.230	< 0.230	< 0.230	< 0.230
Chloroethane	μg/m³		< 7.92	< 7.92		< 0.792		< 0.792	< 0.792	< 0.792	< 0.792
Chloroform	μg/m³	1	< 0.195	< 0.195		0.209		0.221	0.250	0.929	0.200
Chloromethane	µg/m³	5600	1.66	1.69		0.919		1.03	1.08	0.983	0.939
3-Chloropropene	μg/m³					-					
2-Chlorotoluene	μg/m³										
Carbon tetrachloride	μg/m ³	2.4	0.805	0.826		0.749		0.911	0.885	0.685	0.664
Cyclohexane 1,1-Dichloroethane	μg/m³	6100 165	0.69 < 0.202	0.69 < 0.202		< 1		< 0.688 < 0.202	< 0.688 < 0.202	< 0.688 < 0.202	< 0.688 < 0.202
1,1-Dichloroethylene	μg/m³ μg/m³	105	< 0.202	< 0.202		< 0.202		< 0.202	< 0.202	< 0.202	< 0.202
1,2-Dibromoethane (EDB)	μg/m³	3	< 0.0768	< 0.0768		< 0.0768		< 0.0768	< 0.0768	< 0.0768	< 0.0768
1,2-Dichloroethane	µg/m³		0.0785	0.073		0.0675		0.0842	0.088	0.0523	0.0518
1,2-Dichloropropane	µg/m³		< 0.231	< 0.231		< 0.231		< 0.231	< 0.231	< 0.231	< 0.231
1,4-Dioxane	μg/m³		< 3.60	< 3.60		< 3.60		< 3.60	< 3.60	< 3.60	< 3.60
Dichlorodifluoromethane	μg/m³		2.40	2.25		2.51		3.08	3.16	2.62	2.37
Dibromochloromethane	μg/m³		< 1.70	< 1.70		< 1.70		< 1.70	< 1.70	< 1.70	< 1.70
trans-1,2-Dichloroethylene	μg/m³	105	< 0.396	< 0.396		< 0.396		< 0.396	< 0.396	< 0.396	< 0.396
cis-1,2-Dichloroethylene	µg/m³	105	< 0.198	< 0.198 < 0.227		< 0.198 < 0.227		< 0.198 < 0.227	< 0.198 < 0.227	1.11 < 0.227	< 0.198 < 0.227
cis-1,3-Dichloropropene m-Dichlorobenzene	μg/m³ μg/m³		< 0.227	· 0.221		· 0.221		· 0.221	· 0.221	· 0.221	- 0.221
o-Dichlorobenzene	μg/m³	30500	< 0.301	< 0.301		< 0.301		< 0.301	< 0.301	< 0.301	< 0.301
p-Dichlorobenzene	µg/m³	95	< 0.301	< 0.301		< 0.301		< 0.301	< 0.301	< 0.301	< 0.301
trans-1,3-Dichloropropene	μg/m³		< 0.227	< 0.227		< 0.227		< 0.227	< 0.227	< 0.227	< 0.227
Ethanol	μg/m³		3.96	5.10		8.44		7.00	35.2	4.68	37.4
Ethylbenzene	μg/m³	1000	0.246	< 0.217		< 0.217		< 0.217	0.228	0.218	< 0.217
Ethyl Acetate	μg/m³		< 3.60	< 3.60		< 3.60		< 3.60	8.35	< 3.60	< 3.60
4-Ethyltoluene	µg/m³		< 2.46	< 2.46		< 2.46		< 2.46	< 2.46	< 2.46	< 2.46
Freon 113	µg/m³		-			-					
Freon 114	μg/m³	700000	1 23	123		- 123		1 23	1 23	1.23	1.23
Heptane Hexachlorobutadiene	μg/m³	11000	< 1.23 < 0.0501	< 1.23 < 0.0501		< 1.23 < 0.0501		< 1.23 < 0.0501	< 1.23 < 0.0501	< 1.23 < 0.0501	< 1.23 < 0.0501
Hexacnorobutadiene	μg/m³ μg/m³	7500	0.430	< 0.0501		0.0501		< 1.06	< 1.76	0.646	0.0501
2-Hexanone	μg/m³	.000	< 4.10	< 4.10		< 4.10		< 4.10	< 4.10	< 4.10	< 4.10
Isopropyl Alcohol	µg/m³	7300				-		-			
Methylene chloride	μg/m³	220	0.657	0.354		0.704		0.670	1.44	0.682	0.563
Methyl ethyl ketone	µg/m³	1000	1.30	1.42		1.26		2.21	3.33	1.12	2.09
Methyl Isobutyl Ketone	μg/m³	1200	< 0.410	< 0.41		< 0.410		< 0.410	< 0.410	< 0.410	< 0.410
Methyl Tert Butyl Ether	μg/m³	7000	< 0.361	< 0.361		< 0.361		< 0.361	< 0.361	< 0.361	< 0.361
Methylmethacrylate	µg/m³		0.504	0.504				0.504	0.504	0.504	0.504
Naphthalene	µg/m³	22.5 4000	< 0.524	< 0.524		0.675		< 0.524	< 0.524	< 0.524	< 0.524
Propylene Styrene	μg/m³	4000	0.242	0.242		- 0.242		- 0.242	- 0.242	< 0.213	< 0.213
Styrene 1,1,1-Trichloroethane	µg/m³	115000	< 0.213 < 0.273	< 0.213 < 0.273		< 0.213 < 0.273		< 0.213 < 0.273	< 0.213 < 0.273	< 0.213	< 0.213 < 0.273
1,1,1,2-Tetrachloroethane	μg/m ³	. 75000	< 0.273	< 0.273		< 0.273		< 0.273	< 0.273	< 0.273	< 0.273
1,1,2,2-Tetrachloroethane	μg/m³		< 0.0185	< 0.0185		< 0.0185		< 0.0185	< 0.0185	< 0.0185	< 0.0185
1,1,2-Trichloroethane	μg/m³		< 0.0655	< 0.0655		< 0.0655		< 0.0655	< 0.0655	< 0.0655	< 0.0655
1,2,4-Trichlorobenzene	μg/m³	400	< 0.742	< 0.742		< 0.742		< 0.742	< 0.742	< 0.742	< 0.742
1,2,4-Trimethylbenzene	μg/m³	220	< 2.45	< 2.45		< 2.45		< 2.45	< 2.45	< 2.45	< 2.45
1,3,5-Trimethylbenzene	μg/m³	220	< 2.45	< 2.45		< 2.45		< 2.45	< 2.45	< 2.45	< 2.45
2,2,4-Trimethylpentane	μg/m³		< 0.934	< 0.934		< 0.934		< 0.934	< 0.934	< 0.934	< 0.934
Tertiary Butyl Alcohol	μg/m³										
Tetrachloroethylene	µg/m³	00000	< 0.339	< 0.339		< 0.339		< 0.339	< 0.339	3.07	< 0.339
Tetrahydrofuran Toluene	μg/m ³	93000	< 1.18	< 1.18		< 1.18		< 1.18	< 1.18	< 1.18	< 1.18
	μg/m³	2000 12	0.631	0.423		1.68		1.43	1.66	1.43	1.23 < 0.269
Trichloroethylene	μg/m³ μg/m³	6000	< 0.269 1.23	< 0.269 < 1.12		< 0.269 1.62		< 0.269 2.12	< 0.269 2.25	2.13 1.69	1.67
Trichloroethylene Trichlorofluoromethane			1.20	1.12							
Trichlorofluoromethane			< 0.0514	< 0.0511		< 0.0511		< 0.0511	< 0.0511	< 0.0511	< 0.0511
Trichlorofluoromethane Vinyl chloride	µg/m³	1	< 0.0511 < 0.704	< 0.0511 < 0.704		< 0.0511 < 0.704		< 0.0511 < 0.704	< 0.0511 < 0.704	< 0.0511 < 0.704	< 0.0511 < 0.704
Trichlorofluoromethane Vinyl chloride Vinyl Acetate	μg/m³ μg/m³	1	< 0.704	< 0.704		< 0.704		< 0.704	< 0.704	< 0.704	< 0.704
Trichlorofluoromethane Vinyl chloride	µg/m³										

AAQC = Ambient Air Quality Criteria, Ontario Ministry:
Bold values indicate an exceedance of a AAQC value
-- indicates parameter not analyzed by the contract lab
ND = Not Detected

1 No Sample due to equipment issues

Tableau 36 : Surveillance de la qualité de l'air – Port/quai central –

Page 28 de 159

Surveillance des composés organiques volatils (août et septembre 2021)

	Mon	itoring Location	HCP NW Corner	-08-03 NW of Sediment	HCP NW Corner	-08-11 ² NW of Sediment	HCP NW Corner	-09-15 West Side of Harbour	No Sample	West Side of Site -	HCP NW Corner	-09-27 West Side of Harbour
	rection at time	of Deployment	SW	SW	SW	SW	NW	NW	E	E	SW	SW
Analysis	Units	Criteria (AAQC)										
MS Volatiles (ONMOE APH) Benzene	μg/m³	2.3	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	l	< 0.64	< 0.64	< 0.64
Ethylbenzene	μg/m³	1000	1	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Toluene	μg/m³	2000	1.6	0.75	< 0.75	0.87	1.2	1.1		< 0.75	< 0.75	< 0.75
m,p-Xylene o-Xylene	μg/m³ μg/m³	730 730	7.8 0.91	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87	1.0 < 0.87	1.3 < 0.87		< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87
Naphthalene	µg/m³	22.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
PHC F1 (C6-C10)	μg/m³		52.4	20	21	29	21	407		28	24	12
PHC F1 (C6-C10) - BTEX	µg/m³		41.8	19	20	26	19	403		27	23	11
PHC F2 (>C10-C16) PHC F2 (>C10-C16) - Nap	μg/m³ μg/m³		13 13	< 3.5 < 3.5	9.3 9.3	13 13	15 15	322 321		11 11	7.6 7.6	< 3.5 < 3.5
Aliphatic >C5-C6	μg/m³											
Aliphatics C6-C8 (Unadj.)	μg/m³		11	15	9.2	9.2	< 3.5	< 3.5		8.8	6.3	6.0
Aliphatics >C8-C10 (Unadj.) Aliphatics >C10-C12 (Unadj.)	μg/m³ μg/m³		42 13	4.4 < 3.5	15.0 9.3	24 13	26 15	561 314		24 9.9	7.6	6.3 < 3.5
Aliphatic >C12-C16	μg/m³											
Aromatic >C7-C8 (TEX Excluded)	μg/m³		-									-
Aromatics >C8-C10 (Unadj.)	μg/m³		< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3		< 2.3	< 2.3	< 2.3
Aromatics >C10-C12 (Unadj.) Aromatic >C12-C16	μg/m ³ μg/m ³	+	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	6.9		< 2.0	< 2.0	< 2.0
MS Volatiles (TO-15)	μg/m3	+	-							-		
Acetone (2-Propanone)	μg/m ³	11880	57.2	32.8	13	9	5.7	7.6		11	4.8	5.2
1,3-Butadiene	μg/m³	2	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44		< 0.44	< 0.44	< 0.44
Benzene Bromodiableromethane	μg/m³	2.3	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64		< 0.64	< 0.64	< 0.64
Bromodichloromethane Bromoform	μg/m³ μg/m³	55	< 1.3 < 2.1	< 1.3 < 2.1	< 1.3 < 2.1	< 1.3 < 2.1	< 1.3 < 2.1	< 1.3 < 2.1		< 1.3 < 2.1	< 1.3 < 2.1	< 1.3 < 2.1
Bromomethane	μg/m³	55	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78		< 0.78	< 0.78	< 0.78
Bromoethene	μg/m³		< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87
Benzyl Chloride	μg/m³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Carbon disulfide	μg/m³		< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62		< 0.62	< 0.62	< 0.62
Chlorobenzene Chloroethane	μg/m ³		< 0.92 < 0.53	< 0.92 < 0.53	< 0.92 < 0.53	< 0.92 < 0.53	< 0.92 < 0.53	< 0.92 < 0.53		< 0.92 < 0.53	< 0.92 < 0.53	< 0.92 < 0.53
Chloroform	μg/m³ μg/m³	1	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
Chloromethane	μg/m³	5600	0.93	0.87	1.2	1.1	0.91	1.0		1.1	1.0	0.87
3-Chloropropene	μg/m³		< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63		< 0.63	< 0.63	< 0.63
2-Chlorotoluene	μg/m³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Carbon tetrachloride Cyclohexane	μg/m ³	2.4 6100	< 1.3 < 0.69	< 1.3 < 0.69	< 1.3	< 1.3 < 0.69	< 1.3	< 1.3 < 0.69		< 1.3 < 0.69	< 1.3	< 1.3
1,1-Dichloroethane	μg/m³ μg/m³	165	< 0.09	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81		< 0.81	< 0.81	< 0.81
1,1-Dichloroethylene	µg/m³		< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79		< 0.79	< 0.79	< 0.79
1,2-Dibromoethane (EDB)	μg/m³	3	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
1,2-Dichloroethane	μg/m ³		< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81		< 0.81	< 0.81	< 0.81
1,2-Dichloropropane 1,4-Dioxane	μg/m³ μg/m³		< 0.92 < 0.72	< 0.92 < 0.72	< 0.92 < 0.72	< 0.92 < 0.72	< 0.92 < 0.72	< 0.92 < 0.72		< 0.92 < 0.72	< 0.92 < 0.72	< 0.92 < 0.72
Dichlorodifluoromethane	μg/m³		2.0	1.9	2.8	2.7	2.6	2.4		2.5	2.5	2.6
Dibromochloromethane	μg/m³		< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7		< 1.7	< 1.7	< 1.7
trans-1,2-Dichloroethylene	μg/m³	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79		< 0.79	< 0.79	< 0.79
cis-1,2-Dichloroethylene	μg/m ³	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79 < 0.91	< 0.79 < 0.91		< 0.79 < 0.91	< 0.79	< 0.79
cis-1,3-Dichloropropene m-Dichlorobenzene	μg/m³ μg/m³		< 0.91 < 1.2	< 0.91 < 1.2	< 0.91 < 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 0.91 < 1.2	< 0.91 < 1.2
o-Dichlorobenzene	μg/m³	30500	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2
p-Dichlorobenzene	μg/m³	95	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2
trans-1,3-Dichloropropene	μg/m³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91		< 0.91	< 0.91	< 0.91
Ethylbenzene	μg/m ³	1000	9.4	6.6 < 0.87	6.0 < 0.87	4.0 < 0.87	5.8	4.7 < 0.87		5.1	6.0 < 0.87	6.2 < 0.87
Ethyl Acetate	μg/m³ μg/m³	1000	2.6	2.4	2.5	3.0	10	3.0		2.5	< 0.72	< 0.72
4-Ethyltoluene	μg/m³		< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
Freon 113	μg/m³		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
Freon 114	μg/m³	700000	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4
Heptane Hexachlorobutadiene	μg/m³	11000	< 0.82 < 2.1	< 0.82 < 2.1	< 0.82 < 2.1	< 0.82 < 2.1	< 0.82 < 2.1	< 0.82		< 0.82 < 2.1	< 0.82 < 2.1	< 0.82
Hexane	μg/m³ μg/m³	7500	< 0.70	8.1	0.70	< 0.70	< 0.70	< 0.70		< 0.70	< 0.70	0.78
2-Hexanone	μg/m³		< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Isopropyl Alcohol	μg/m³	7300	0.93	0.84	2.1	0.84	1.6	1.4		< 0.49	0.64	0.57
Methylene chloride	μg/m³	220	4.5	0.73	12	1.1	4.5	0.8		< 0.69	3.8	15
Methyl ethyl ketone Methyl Isobutyl Ketone	μg/m³ μg/m³	1000 1200	1.6 < 0.82	0.77 < 0.82	< 0.82	1.5 < 0.82	< 0.59 < 0.82	0.65 < 0.82		1.4 < 0.82	< 0.59 < 0.82	< 0.59 < 0.82
Methyl Tert Butyl Ether	μg/m³	7000	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72		< 0.72	< 0.72	< 0.72
Methylmethacrylate	μg/m³		< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82
Naphthalene	μg/m³	22.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.0		< 1.0	< 1.0	< 1.0
Propylene	μg/m³	4000	< 0.86 < 0.85	< 0.86 < 0.85	< 0.86 < 0.85	< 0.86 < 0.85	< 0.86 < 0.85	< 0.86 < 0.85		< 0.86 < 0.85	< 0.86 < 0.85	< 0.86 < 0.85
Styrene 1,1,1-Trichloroethane	μg/m³ μg/m³	400 115000	< 0.85 < 1.1	< 0.85 < 1.1	< 0.85 < 1.1	< 0.85 < 1.1	< 0.85 < 1.1	< 0.85 < 1.1		< 0.85 < 1.1	< 0.85 < 1.1	< 0.85 < 1.1
1,1,1,2-Tetrachloroethane	μg/m³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4
1,1,2,2-Tetrachloroethane	μg/m³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4
1,1,2-Trichloroethane	μg/m ³	400	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1 < 1.5		< 1.1	< 1.1 < 1.5	< 1.1
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	μg/m³ μg/m³	220	< 1.5 < 0.98	< 1.5 < 0.98	< 1.5 < 0.98	< 1.5 < 0.98	< 1.5 < 0.98	< 0.98		< 1.5 < 0.98	< 0.98	< 1.5
1,3,5-Trimethylbenzene	μg/m³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98		< 0.98	< 0.98	< 0.98
2,2,4-Trimethylpentane	μg/m³		< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93		< 0.93	< 0.93	< 0.93
Tertiary Butyl Alcohol	μg/m³		0.82	< 0.61	< 0.61	0.70	< 0.61	< 0.61		< 0.61	< 0.61	< 0.61
Tetrachloroethylene Tetrahydrofuran	µg/m³	93000	3.5	2.5	< 0.27	0.37	< 0.27	< 0.27		< 0.27	< 0.27	< 0.27
Tetrahydrofuran Toluene	μg/m³ μg/m³	93000 2000	< 0.59 1.5	< 0.59 0.87	0.65 < 0.75	< 0.59 0.79	< 0.59 1.1	< 0.59 1.0		< 0.59 < 0.75	< 0.59 < 0.75	< 0.59 < 0.75
Trichloroethylene	μg/m³	12	0.23	< 0.21	< 0.73	< 0.79	< 0.21	< 0.21		< 0.75	2.0	< 0.73
Trichlorofluoromethane	μg/m³	6000	1.4	1.2	2.4	1.6	2.2	1.2		1.2	1.3	1.8
Vinyl chloride	μg/m³	1	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51		< 0.51	< 0.51	< 0.51
Vinyl Acetate	μg/m³		< 0.70	< 0.70	2.0	1.1	< 0.70	0.77		< 0.70	< 0.70	< 0.70
m,p-Xylene	μg/m ³	730	4.0 0.96	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87		< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87
o-Xylene Xylenes (total)	μg/m³ μg/m³	730 730	4.8	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87		< 0.87	< 0.87	< 0.87

AAQC = Ambient Air Quality Criteria, Ontario Ministry or Bold values indicate an exceedance of a AAQC value - indicates parameter not analyzed by the contract lab 1 No Sample due to equipment issues 2 Dredging activities hautted mid-morning due to w eather

Page 29 de 159

Tableau 37 : Surveillance de la qualité de l'air – Port/quai central – Surveillance des composés organiques volatils (octobre 2021)

					-10-06		-10-12		-10-18		10-28
	Moni	toring Location	HCF		West Side	HCP NW	NW of	HCP NW	West Side	HCP NW	East of
145	Direction at time	-4 D1		ner Æ	of Site - HCP	Corner	Sediment	Corner	of Harbour NW	Corner	Dredgin
nalysis	Direction at time	Criteria	_ ^	4E	E	SE	SE	NW	NVV	E	E
IS Volatiles (ONMOE APH)	Units	(AAQC)									
enzene	μg/m³	2.3		0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64
thylbenzene	μg/m³ μg/m³	1000 2000		0.87 1.1	0.87 1.3	< 0.87 1.7	< 0.87 < 0.75	< 0.87 2.6	< 0.87 < 0.75	< 0.87 < 0.75	< 0.87 1.4
ı,p-Xylene	μg/m³	730		1.2	5.6	1.0	1.0	< 0.87	< 0.87	< 0.87	< 0.87
-Xylene	µg/m³	730		0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
laphthalene	μg/m³	22.5	<	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
HC F1 (C6-C10)	μg/m³			15	53.1	26	78	14	9.4	12	23
PHC F1 (C6-C10) - BTEX	µg/m³	1		12	45.2	23	75.4	11	8.3	10	20
PHC F2 (>C10-C16)	µg/m³			3.5	< 3.5 < 3.5	16 16	35 35	< 3.5 < 3.5	< 3.5 < 3.5	13 13	10 10
HC F2 (>C10-C16) - Nap Aliphatic >C5-C6	μg/m³ μg/m³	1	`	3.0	× 5.5			× 3.5	3.5	13	10
liphatics C6-C8 (Unadj.)	µg/m³	1		6.0	6.7	6.0	9.9	6.0	4.2	< 3.5	7.0
Aliphatics >C8-C10 (Unadj.)	μg/m³			8.4	53	23	90.2	5.8	5.2	10	18
Aliphatics >C10-C12 (Unadj.)	μg/m³		<	3.5	< 3.5	16	34	< 3.5	< 3.5	10	9.3
liphatic >C12-C16	μg/m³										-
romatic >C7-C8 (TEX Excluded)	µg/m³		_	2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Aromatics >C8-C10 (Unadj.) Aromatics >C10-C12 (Unadj.)	μg/m³	+		2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic >C12-C16	μg/m³ μg/m³		È		- 2.0	- 2.0	. 2.0	< 2.0	. 2.0	- 2.0	- 2.0
MS Volatiles (TO-15)	μg/m3										
cetone (2-Propanone)	μg/m ³	11880		6.2	19	14	33.7	2.6	7.1	7.8	898
,3-Butadiene	μg/m³	2		0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44
Benzene	μg/m³	2.3		0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64
Bromodichloromethane	μg/m³			1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Bromoform	μg/m ³	55		2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1
romomethane	μg/m³	1		0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
Bromoethene Benzyl Chloride	μg/m³ uα/m³			1.0	< 0.87 < 1.0	< 0.87 < 1.0	< 0.87 < 1.0	< 0.87 < 1.0	< 0.87 < 1.0	< 0.87 1.0	< 0.87
Senzyi Chloride Carbon disulfide	μg/m³ μg/m³			0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62
Chlorobenzene	μg/m³	1		0.92	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloroethane	μg/m³			0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53	< 0.53
Chloroform	μg/m³	1		0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
Chloromethane	μg/m³	5600	(0.99	1.1	1.1	1.1	0.85	1.1	1.0	1.3
-Chloropropene	μg/m³			0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63
-Chlorotoluene	μg/m³			1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbon tetrachloride	µg/m³	2.4		1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
A District of the second of th	μg/m ³	6100		0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69
,1-Dichloroethylene	μg/m³	165		0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
,1-Dichloroethylene 1,2-Dibromoethane (EDB)	µg/m³ µg/m³	3		0.79 1.5	< 0.79 < 1.5	< 0.79					
,2-Dichloroethane	μg/m³	• •		0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
,2-Dichloropropane	µg/m³			0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92
,4-Dioxane	μg/m³			0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72
Dichlorodifluoromethane	μg/m³			2.5	2.7	1.9	2.0	2.0	2.1	2.0	2.0
Dibromochloromethane	μg/m³		<	1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7
rans-1,2-Dichloroethylene	µg/m³	105		0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
is-1,2-Dichloroethylene	µg/m³	105		0.79	< 0.79	< 0.79	< 0.79	0.91	< 0.79	< 0.79	< 0.79
is-1,3-Dichloropropene n-Dichlorobenzene	µg/m³	-		0.91 1.2	< 0.91 < 1.2	< 0.91					
o-Dichlorobenzene	μg/m³ μg/m³	30500		1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
-Dichlorobenzene	μg/m³	95		1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
rans-1,3-Dichloropropene	μg/m³			0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91
thanol	μg/m³			11	11	5.1	4.9	3.6	3.2	8.5	12
thylbenzene	μg/m³	1000		0.87	0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
thyl Acetate	μg/m³			1.2	1.2	6.1	5.0	0.76	1.1	7.6	4.0
I-Ethyltoluene	μg/m³			0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
reon 113	µg/m³			1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
reon 114	μg/m³	700000 11000		1.4	< 1.4	< 1.4 < 0.82	< 1.4				
leptane lexachlorobutadiene	μg/m³	11000		2.1	< 0.82	< 0.82 < 2.1	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
lexacniorobutadiene lexane	µg/m³ µg/m³	7500		0.70	< 0.70	< 0.70	< 2.1	< 0.70	< 0.70	< 0.70	0.78
2-Hexanone	μg/m³	. 300		0.82	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.82
sopropyl Alcohol	μg/m³	7300		2.1	2.5	0.88	1.1	< 0.49	< 0.49	0.71	1.5
Methylene chloride	µg/m³	220		0.69	1.6	< 0.69	< 0.69	1.1	< 0.69	0.94	< 0.69
Nethyl ethyl ketone	μg/m³	1000	(0.62	0.86	0.97	3.5	< 0.59	< 0.59	< 0.59	1.2
Methyl Isobutyl Ketone	μg/m³	1200		0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Aethyl Tert Butyl Ether	μg/m ³	7000		0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72
Methylmethacrylate	μg/m³	20.5	< (0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
laphthalene	μg/m³	22.5 4000		1.0 0.86	< 1.0 < 0.86	< 1.0 < 0.86	< 0.86	< 1.0	< 1.0 < 0.86	< 1.0 < 0.86	< 1.0
Propylene Styrene	μg/m³ μg/m³	4000		0.85	< 0.85	< 0.86	< 0.85	< 0.85	< 0.86	< 0.85	< 0.85
,1,1-Trichloroethane	μg/m ³	115000		1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
,1,1,2-Tetrachloroethane	μg/m³			1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
,1,2,2-Tetrachloroethane	μg/m³		<	1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
,1,2-Trichloroethane	μg/m³			1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
,2,4-Trichlorobenzene	μg/m³	400		1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
2,4-Trimethylbenzene	μg/m ³	220		0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
3,5-Trimethylbenzene	μg/m³	220		0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
2,4-Trimethylpentane ertiary Butyl Alcohol	μg/m³	1		0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93
	μg/m³ ug/m³			0.61	< 0.61 < 0.27	0.91 < 0.27	< 0.61 1.9	< 0.61 < 0.27	< 0.61 < 0.27	< 0.61 < 0.27	< 0.6°
etrachloroethylene etrahydrofuran	μg/m³ μg/m³	93000		0.59	< 0.27	< 0.27	< 0.59	< 0.27	< 0.27	< 0.27	1.0
oluene	μg/m³	2000		1.1	1.3	1.8	0.75	2.9	< 0.75	< 0.75	1.4
richloroethylene	μg/m³	12		0.21	0.86	< 0.21	0.64	< 0.21	< 0.73	< 0.73	< 0.2
richlorofluoromethane	μg/m³	6000		1.2	1.9	1.2	1.2	1.4	< 1.1	< 1.1	< 1.1
inyl chloride	μg/m³	1		0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.5
'inyl Acetate	μg/m³			0.70	0.95	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	0.77
ı,p-Xylene	μg/m³	730		0.87	2.6	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
-Xylene ylenes (total)	µg/m³ µg/m³	730 730		0.87 0.87	< 0.87 2.6	< 0.87 < 0.87	< 0.87	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87 < 0.87	< 0.87
							< 0.87				< 0.87

Page 30 de 159

Tableau 38 : Surveillance de la qualité de l'air – Port/quai central – Surveillance des composés organiques volatils (novembre 2021)

	Mon	itorina Location	HCP NW	1-11-01 East of	2021- HCP NW	11-08 SE of	2021 HCP NW	-11-15 West Side	2021- HCP NW	-11-23 SE of	2021 HCP NW	-11-29 Wast Sida
	Mon	itoring Location	Corner	East of Dredging	Corner	SE of Dredging	Corner	of Site - HCP	Corner	SE of Dredging	Corner	West Side
Wi	nd Direction at time	e of Deployment	W	W	S	S	NW	NW	NW	NW	W	W
Analysis		Criteria		-								
MS Volatiles (ONM OE APH)	Units	(AAQC)										
Benzene Ethylbenzene	μg/m³ μg/m³	2.3 1000	< 0.64 < 0.87	< 0.64 < 0.87	< 0.64 < 0.87	0.64 < 0.87	< 0.64 < 0.87	< 0.64 < 0.87	0.64 < 0.87	< 0.64 < 0.87	0.73	0.73
Toluene	μg/m³	2000	< 0.75	1.5	1.2	1.6	< 0.75	< 0.75	1.2	0.79	2.2	1.9
n,p-Xylene	μg/m³	730	< 0.87	< 0.87	1.1	1.8	< 0.87	< 0.87	1.1	0.91	2.1	2.1
o-Xylene	μg/m³	730	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Naphthalene	µg/m³	22.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PHC F1 (C6-C10) PHC F1 (C6-C10) - BTEX	μg/m³ μg/m³		7.5 6.4	9.4	12 9.4	18 14	7.5 6.0	20 18	11 7.2	12 9.4	13 7.9	11 6.4
PHC F2 (>C10-C16)	μg/m³		4.7	< 3.5	< 3.5	13	< 3.5	9.3	< 3.5	4.8	< 3.5	< 3.5
PHC F2 (>C10-C16) - Nap	μg/m³		4.7	< 3.5	< 3.5	13	< 3.5	9.3	< 3.5	4.8	< 3.5	< 3.5
Aliphatic >C5-C6	μg/m³			-			-					
Aliphatics C6-C8 (Unadj.) Aliphatics >C8-C10 (Unadj.)	µg/m³		< 3.5 3.5	5.3 5.2	4.9 5.8	5.6 10	3.5	< 3.5 21.0	4.9 < 3.1	6.3 3.4	7.4	6.0
Aliphatics >C10-C12 (Unadj.)	μg/m³ μg/m³		4.7	< 3.5	< 3.5	13	< 3.5	9.3	< 3.5	4.8	< 3.5	< 3.5
Aliphatic >C12-C16	µg/m³											
Aromatic >C7-C8 (TEX Excluded)	μg/m³			-			-					
Aromatics >C8-C10 (Unadj.)	µg/m³		< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Aromatics >C10-C12 (Unadj.) Aromatic >C12-C16	μg/m³ μg/m³		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
MS Volatiles (TO-15)	μg/m3		-	_					-		-	
Acetone (2-Propanone)	μg/m³	11880	4.0	7.6	5.0	4.8	2.6	2.9	3.3	2.2	4.5	4.0
1,3-Butadiene	μg/m³	2	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44	< 0.44
Benzene	μg/m³	2.3	< 0.64	< 0.64	< 0.64	0.70	< 0.64	< 0.64	< 0.64	< 0.64	0.73	0.67
Bromodichloromethane Bromoform	μg/m³	EE	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Bromoform Bromomethane	μg/m³ μg/m³	55	< 2.1 < 0.78	< 2.1	< 2.1	< 2.1	< 2.1 < 0.78	< 2.1	< 2.1 < 0.78	< 2.1 < 0.78	< 2.1 < 0.78	< 2.1
Bromoethene	µg/m³		< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Benzyl Chloride	μg/m³		< 1.0	< 1.0	1.0	1.0	< 1.0	< 1.0	1.0	1.0	1.0	1.0
Carbon disulfide	µg/m³		< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62
Chlorobenzene Chloroethane	µg/m³		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92
Chloroethane Chloroform	μg/m³ μg/m³	1	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98	< 0.53 < 0.98
Chloromethane	µg/m³	5600	0.99	1.1	0.95	1.0	0.78	0.78	0.85	0.87	1.1	1.0
3-Chloropropene	µg/m³		< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63
2-Chlorotoluene	μg/m³		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbon tetrachloride	μg/m³	2.4	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Cyclohexane	μg/m³	6100	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69
1,1-Dichloroethane 1,1-Dichloroethylene	μg/m³ μg/m³	165	< 0.81 < 0.79	< 0.81 < 0.79	< 0.81	< 0.81 < 0.79	< 0.81 < 0.79	< 0.81	< 0.81 < 0.79	< 0.81 < 0.79	< 0.81 < 0.79	< 0.81
1,2-Dibromoethane (EDB)	µg/m³	3	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
1,2-Dichloroethane	μg/m³		< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
1,2-Dichloropropane 1.4-Dioxane	µg/m³		< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92
Dichlorodifluoromethane	μg/m³ μg/m³		< 0.72 1.9	< 0.72 2.1	< 0.72 2.0	< 0.72 2.0	< 0.72 1.8	< 0.72 1.8	< 0.72 1.9	< 0.72 1.9	< 0.72 2.1	< 0.72 2.1
Dibromochloromethane	μg/m³		< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7
trans-1,2-Dichloroethylene	μg/m³	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
cis-1,2-Dichloroethylene	μg/m³	105	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	1.0	< 0.79	< 0.79
cis-1,3-Dichloropropene	μg/m³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91
m-Dichlorobenzene o-Dichlorobenzene	µg/m³ µg/m³	30500	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2	< 1.2 < 1.2
p-Dichlorobenzene	μg/m³	95	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
trans-1,3-Dichloropropene	μg/m³		< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91
Ethanol	μg/m³		5.1	20.3	4.9	5.7	3.8	3.8	5.3	4.5	9.6	10
Ethylbenzene	μg/m³	1000	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
Ethyl Acetate 4-Ethyltoluene	µg/m³		0.72 < 0.98	49.3 < 0.98	< 0.98	2.7 < 0.98	< 0.72 < 0.98	1.6 < 0.98	< 0.72 < 0.98	< 0.72 < 0.98	< 0.72 < 0.98	1.1 < 0.98
Freon 113	μg/m³ μg/m³		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Freon 114	μg/m³	700000	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Heptane	μg/m³	11000	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Hexachlorobutadiene	μg/m³		< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1	< 2.1
Hexane	μg/m³	7500	< 0.70	1.2	< 0.70	0.81	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70
2-Hexanone	μg/m³	7300	< 0.82 1.6	< 0.82 3.2	< 0.82 0.59	< 0.82 0.54	< 0.82 < 0.49	< 0.82	< 0.82 2.0	< 0.82 0.71	< 0.82 1.7	< 0.82 1.7
Isopropyl Alcohol Methylene chloride	μg/m³ μg/m³	220	< 0.69	3.2	0.59	1.0	< 0.49	< 0.49	0.73	0.80	0.90	0.87
Methyl ethyl ketone	μg/m³	1000	< 0.59	0.65	0.68	0.71	< 0.59	1.4	< 0.59	< 0.59	< 0.59	0.71
Methyl Isobutyl Ketone	μg/m³	1200	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
Methyl Tert Butyl Ether	μg/m³	7000	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72
Methylmethacrylate Naphthalene	μg/m³	22.5	< 0.82 < 1.0	< 0.82	< 0.82	< 0.82 < 1.0	< 0.82 < 1.0	< 0.82 < 1.0	< 0.82 < 1.0	< 0.82 < 1.0	< 0.82 < 1.0	< 0.82
Naphthalene Propylene	μg/m³ μg/m³	4000	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86	< 0.86
Styrene	μg/m³	400	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85
1,1,1-Trichloroethane	μg/m³	115000	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
1,1,1,2-Tetrachloroethane	μg/m³		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	μg/m³ μg/m³		< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1	< 1.4 < 1.1
1,1,2-Trichloroetnane 1,2,4-Trichlorobenzene	µg/m³	400	< 1.1 < 1.5	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1 < 1.5	< 1.1 < 1.5	< 1.1 < 1.5	< 1.1
1,2,4-Trimethylbenzene	µg/m³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
1,3,5-Trimethylbenzene	μg/m³	220	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98	< 0.98
2,2,4-Trimethylpentane	μg/m³		< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93	< 0.93
Tertiary Butyl Alcohol	μg/m³		< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Tetrachloroethylene Tetrahydrofuran	μg/m³ μg/m³	93000	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59	< 0.27 < 0.59
Toluene	µg/m³	2000	< 0.59	1.4	1.4	1.8	< 0.59	< 0.59	1.1	< 0.59	2.1	1.7
Trichloroethylene	μg/m³	12	< 0.73	< 0.21	< 0.21	< 0.21	0.29	< 0.73	< 0.21	3.5	< 0.21	< 0.21
Trichlorofluoromethane	μg/m³	6000	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	1.2	1.2	1.3	1.3
/inyl chloride	μg/m³	1	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
/inyl Acetate	μg/m³		< 0.70	0.74	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70
n,p-Xylene	µg/m³	730	< 0.87	< 0.87	< 0.87	1.0	< 0.87	< 0.87	< 0.87	< 0.87	1.0	1.0
	μg/m³	730	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87
o-Xylene Kylenes (total)	μg/m³	730	< 0.87	< 0.87	< 0.87	1.0	< 0.87	< 0.87	< 0.87	< 0.87	1.0	1.0

Page 31 de 159

Tableau 39 : Niveau de la surveillance du bruit – IGLTD-PH.

			5 Average L _{eq} (c e-Early Works :			7 Average L _{eq} (c ring Early Work		201	18 Average L _{eq} (dBA)	201	19 Average L _{eq} (dBA)	202	0 Average L _{eq} (dBA)	202	1 Average L _{eq} (d	IBA)
Monitoring Location	Monitoring Location	Day (07:00 40:00)	Evening	Night	Day (07:00 10:00)	Evening	Night	Day (07:00 10:00)	Evening	Night	Day (07:00 10:00)	Evening	Night	Day (07:00 40:00)	Evening	Night (23:00-07:00)	Day (07:00 40:00)	Evening	Night
			(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)		(19:00-23:00)		(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)		(19:00-23:00)	
PH-N-0001	192 Toronto Rd	63	61	59	67	63	61	66	63	60	67	62	61	65	62	59	66	61	60
PH-N-0002	NW WWMF, Brand Rd	66	67	64	66	67	64	66	66	64	66	66	64	65	66	63	64	64	63
PH-N-0003	South WWMF	52	53	52	54	54	53	58	55	53	58	54	51	53	52	49	54	52	51
PH-N-0004	SW WWMF, Brand Rd	56	55	53	58	55	55	58	56	55	56	57	55	56	58	55	56	54	54
PH-N-0005	Weather Station	54	54	52	63	54	54	65	56	55	62	55	56	57	52	50	58	53	55
PH-N-0006	Welcome North	62	61	58	67	67	65	67	67	65	66	65	63	64	65	63	67	67	65
PH-N-0007	SE Corner WWMF				59	56	52	56	55	53	58	56	55	56	52	52	55	55	54

Note: --= Data not available

Noise monitoring results are compared to:

1. 12 dBA difference from Baseline (2015) monitoring results

2. 70 dB over a 24 hour period as per the World Health Organization's Guideline for Community Noise , 1999

Page 32 de 159

Tableau 40 : Surveillance des niveaux de bruit – Itinéraires de transport central, du nord et du sud

Central Transporation Route		Yearly Average		February	April	September	December	
	Ho	ourly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leq (dBA)		Measurements	Measurements		Measurements	
				Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018	2019	2020		20	21		Yearly Average
	Day	Day	Day	Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)
C-TR-N-001	61	64	62	61	65	65	65	64
C-TR-N-002	69	71	69	68	68	69	70	69
North Transporation Route		Yearly Average		February	April	September	December	
	Ho	urly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leq (dBA)		Measurements	Measurements	Measurements	Measurements	
				Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018	2019	2020		20	21		Yearly Average
	Day	Day	Day	Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00) (07:00-19:00) (07:00-19:00)			(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)
N-TR-N-001	63	61	62	62	62	62	63	62
N-TR-N-002	62	61	65	67	67	66	72	68

South Transporation Route		Yearly Average		February	April	September	November	
	Ho	urly Measureme	nts	Hourly	Hourly	Hourly	Hourly	
		Leq (dBA)		Measurements	Measurements	Measurements	Measurements	
				Leq (dBA)	Leq (dBA)	Leq (dBA)	Leq (dBA)	
	2018	2019	2020		20	21		Yearly Average
	Day	Day	Day	Day	Day	Day	Day	Day
Monitoring Location	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)	(07:00-19:00)
S-TR-N-001	70	70	70	70	69	68	69	69
S-TR-N-002	69	70	70	70	70	70	70	70
S-TR-N-003	68	68	68	67	67	69	69	68
S-TR-N-004	63	65	65	63	65	66	66	65
S-TR-N-005	61	60	61	61	62	60	61	61

Tableau 41 : Surveillance des niveaux de bruit – promenade Highland et environs – site de regroupement du prolongement de la rue Pine

	202	0 Average L _{eq} (c	IBA)	202	1 Average L _{eq} (d	IBA)
	Day	Evening	Night	Day	Evening	Night
Monitoring Location	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)	(07:00-19:00)	(19:00-23:00)	(23:00-07:00)
HD-N-0001	48	48	47	45	47	46
HD-N-0002	50	48	48	53	51	52
HD-N-0003	61	55	54	61	56	52

Page 33 de 159

Table 42: Niveaux des eaux souterraines - IGLTD-PH

	2016	2017	2018	2019	2020		2021	
Well ID		Av	erage (mAS	L)		Min	Max	Average
WC-IW93-22	123.44	123.94	123.81	123.74	123.47	123.03	123.88	123.48
WC-MW1-02	127.37	127.87	128.57		W	/ell Damage	d	
WC-MW1-03	148.14	148.26	148.30	148.48	148.16	148.14	148.45	148.25
WC-MW2-02				Well No	t Found			
WC-MW3A-02 ¹	-	-				1		
WC-MW3A-11R	-	1				1		
WC-MW3B-02	129.48	129.57	129.66	130.93 130.72		129.80	130.45	130.11
WC-MW3C-02	135.34	135.52	135.98	136.15	135.81	135.18	135.86	135.56
WC-MW3D-02	136.39	136.53	136.91	136.85	136.86	136.32	136.57	136.46
WC-MW4A-02	127.29	127.03	127.15	127.09	126.87	126.39	126.79	126.62
WC-MW4B-02	127.09	127.18	127.25	127.17	126.92	126.70	127.09	126.94
WC-OW2-75	133.60	134.86			Well Decor	nmissioned		
WC-OW2A-75	119.87	120.23			Well Decor	nmissioned		
WC-OW2A-19 ²				120.14	119.76	119.50	120.49	120.04
WC-OW2-87	119.46	119.63			Well Decor	nmissioned		
WC-OW2-19 ³				120.02	120.38	119.89	120.93	120.54
WC-OW3-79	119.18	119.47	119.50	119.31	116.73	118.84	119.28	119.11
WC-OW5-79	119.91	119.68			Well Decor	nmissioned		
WC-OW9-75				Well [Decommissi	oned		
WC-OW10-75	139.92	140.33	140.56	140.30	140.14	139.78	140.81	140.33
WC-OW25-76	118.42	118.75	118.74	118.76	118.66	118.52	118.81	118.71
WC-OW-27-76	120.28	120.80	120.58	120.83	120.71	120.69	121.10	120.93

Note:

mASL – meters above sea level

^{- =} Data not available

¹ WC-MW3A-11R was installed in 2011 to replace WC-MW3A-02

² WC-OW2A-19 was installed in 2019 to replace WC-OW2A-75

³ WC-OW2-19 was installed in 2019 to replace WC-OW2-87

⁴ WC-OW5-19 was installed in 2019 to replace WC-OW5-79

⁵ LTWMF-MW-06 was installed in 2017 to replace WC-OW9-75

Page 34 de 159

Tableau 43: Niveaux des eaux souterraines - promenade Highland

	2018	2019	2020		2021	
		Average		Min	Max	Average
Well ID			(m/	ASL)		
PH-02-01	104.08	104.20	104.13	103.82	103.99	103.89
PH-02-02	104.07	104.29	104.11	103.72	103.95	103.88
PH-02-03	104.08	105.58	104.11	103.77	103.96	103.90
PH-90-3-I	110.16	110.00	110.19	109.30	110.49	109.89
PH-90-3-II		119.54	120.19	119.07	119.74	119.45
PH-90-4-W	107.29	107.67	107.77	107.46	107.67	107.57
PH-90-4-I	106.38	106.38	106.43	106.08	106.24	106.16
PH-90-4-II	107.27					
PH-90-4-III	115.58	115.50	115.47	115.04	115.33	115.16
PH-90-6-I	107.36	111.34	107.30	106.93	107.28	107.06
PH-90-6-II	114.16	114.70	109.94	107.28	115.22	112.54
PH-90-6-III	115.92	116.25	115.88	115.36	118.12	116.44
PH-90-7-I		105.01	105.01	104.54	104.54	104.54
PH-90-7-II	105.42	105.48	105.36	105.05	105.20	105.12
PH-90-7-III	112.49	112.79	112.57	111.85	112.49	112.17
PH-90-8-I	104.03	104.07	103.99	103.79	103.92	103.88
PH-90-8-II	104.08	104.15	104.09	103.79	104.04	103.93
PH-90-9-I			Well No	ot Found		-
PH-90-9-II		94.77	90.40	90.25	90.25	90.25
PH-90-9-III	95.18	96.85	96.18	95.42	96.21	95.92
PH-93-3-I		106.09	106.21	105.67	105.84	105.74
PH-93-3-II	105.98	106.09	106.06	105.55	105.82	105.70
PH-93-3-III	112.46	112.58	112.50	111.99	112.19	112.10
PH-93-6-I						
PH-93-6-II						
PH-93-6-III						
PH-93-9-I						
PH-93-9-II						
PH-93-10-I	105.39	105.50	105.48	104.89	105.27	105.15
PH-93-10-II	105.44	105.50	105.49	104.94	105.32	105.14
PH-93-10-IIIA						
PH-93-10-IIIB		110.15	110.19	109.94	110.04	110.00
PH-93-12-I		•	Well No	t Found		
PH-93-12-II						
PH-93-12-III		•	Well No	t Found		
PH-95-I	105.37	105.53	105.49	105.29	108.37	106.33
PH-95-7						
PH-95-17-I	106.04	106.13	106.09	105.70	105.90	105.77
PH-95-17-II	112.91	113.00	113.00	112.51	112.70	112.61
PH-95-18	106.11	106.16	106.22	٧	Vell Damage	ed
PH-M-19	100.17	100.17	100.16	100.11	100.12	100.12
Note:						

mASL – meters above sea level

-- = Data not available

Page 35 de 159

Tableau 44: Programme de surveillance des puits sentinelles - IGLTD-PH

		Arsenic (dis: PWQO <i>Trigge</i> 50 (µg/l	er Level			
	2018	2019	2020		2021	
Well ID		Average		Sample	e Dates	Average
WC-IW93-22				2021-05-19	2021-12-14	
VV C-1VV 93-22	1.4	1.3	1.5	1.4	1.5	1.5
WC-OW1-87				2021-04-23	2021-11-22	
VVC-OVV 1-07	<1.0	<1.0	0.8	0.9	0.9	0.9
WC-OW2A-75		WELL	DECOMMISSIONED			
WC-OW2A-19 1				2021-04-22	2021-11-29	
VVC-OVVZA-19		1.4	0.6	0.7	0.7	0.7
WC-OW2-87		WELL	DECOMMISSIONED			
WC-OW2-19 ²				2021-04-22	2021-11-26	
VVC-OVV2-19		<1.0	1.5	1.8	1.7	1.8
WC-OW3-79				2021-04-21	2021-12-03	
VVC-OVV3-79	3.1	3.2	3.8	3.8	3.6	3.7
WC-OW3-87				2021-04-23	2021-12-13	
VVC-OVV3-07	4.5	4.2	5.1	4.1	5.9	5.0
WC-OW4-79				2021-04-15	2021-12-01	
VVC-0VV4-73	1.1	<1.0	0.7	1.1	0.5	0.8
WC-OW5-79		WELL	DECOMMISSIONED			
WC-OW5-19 ³				2021-05-13	2021-11-29	
VVC-OVV5-15		2.8	3.4	0.8	4.3	2.6
WC-OW25-76				2021-04-15	2021-12-01	
VVC-OVV25-76	<1.0	<1.0	0.8	0.7		0.7
WC-OW27-76				2021-04-15	2021-12-01	
VVC-OVV21-76	<1.0	<1.0	0.4	0.3	0.4	0.4
WC-OW28-76				2021-04-15	2021-12-01	
VV C-UVV 20-7 0	<1.0	<1.0	0.6	0.5		0.5
WC-OW33-76				2021-05-20	2021-12-09	
VV C-UVV 33-76	<1.0	<1.0	1.2	0.5	0.7	0.6

PWQO Trigger Level based on 50% of the Provincial Water Quality Objective of 100 μg/L for arsenic

Waste Nuclear Substance Licence, Port Hope Long-Term Low-Level Radioactive Waste Management Project

^{-- =} Data not available

¹ WC-OW2A-19 w as installed in 2019 to replace WC-OW2A-75

² WC-OW2-19 w as installed in 2019 to replace WC-OW2-87

³ WC-OW5-19 was installed in 2019 to replace WC-OW5-79

Page 36 de 159

Tableau 45: Surveillance des sols – IGLTD-PH – Emplacement 1 (PH-WWMF-SS-01)

	Units					Pł	-www	1F-\$	SS-01				
Parameter	Units	2	2016	2	2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	μg/g		<u>-</u> 1		0.50		0.51		0.54	<	0.50	٧	0.50
Mercury	μg/g	<	0.05		0.067	٧	0.05	<	0.05		0.06		0.05
Silver	μg/g		0.98	<	0.40		0.22		0.25		0.47		0.48
Arsenic	μg/g		3.5		5.7		4.0		4.1		4.8		5.3
Barium	μg/g		54		52		48		53		66		55
Beryllium	μg/g		0.39		0.43		0.37		0.45		0.40		0.37
Boron	μg/g		6.0	<	5.0		5.6		6.4		5.0		5.0
Cadmium	μg/g		0.84		0.34		0.35		0.31		0.49		0.42
Cobalt	μg/g		5.2		8.8		6.0		6.7		8.2		6.6
Copper	μg/g		9.4		13		11		11		18		12
Molybdenum	μg/g		0.40	<	0.50		0.53	<	0.50		0.60		0.40
Nickel	μg/g		8.2		11		8.3		9.1		12		9.0
Lead	μg/g		18		20		20		20		23		21
Selenium	μg/g	<	0.70	<	0.50	<	0.50	<	0.50	<	0.70	٧	0.70
Antimony	μg/g	<	0.80		0.24		0.22	<	0.20	<	0.80	٧	0.80
Uranium	μg/g		2.1		3.1		2.4		3.4		4.1		4.0
Vanadium	μg/g		17		22		22		27		23		19
Zinc	μg/g		380		75		510		310		80		120
Lead-210	Bq/g		0.04		0.10		0.14		0.10		0.40		0.12
Radium-226	Bq/g		0.10	<	0.10	<	0.05		0.06		0.10		0.19
Thorium-230	Bq/g	<	0.02	<	0.50	<	0.40	<	0.40	<	0.40	٧	0.40
Thorium-232	Bq/g		- 1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in labo	oratory contract												

Tableau 46: Surveillance des sols – IGLTD-PH – Emplacement 2 (PH-WWMF-SS-02)

Page 37 de 159

	Units					Pl	-l-WWI	1F-9	SS-02				
Parameter	Units	2	2016	2	2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	μg/g		<u>-</u> 1		0.75		0.69		0.70	٧	0.50	٧	0.50
Mercury	μg/g		0.06		0.052	<	0.05	<	0.05		0.05	٧	0.05
Silver	μg/g		0.29	٧	0.20	٧	0.20	<	0.20		0.15		0.15
Arsenic	μg/g		2.6		2.4		3.3		3.8		3.5		3.7
Barium	μg/g		41		30		36		39		40		38
Beryllium	μg/g		0.29		0.25		0.29		0.32		0.26		0.25
Boron	μg/g		3.0	٧	5.0	<	5.0	<	5.0		3.0		3.0
Cadmium	μg/g		0.35		0.20		0.27		0.22		0.26		0.23
Cobalt	μg/g		3.4		3.4		4.1		4.8		4.9		4.1
Copper	μg/g		6.1		5.3		6.7		7.5		7.9		7.0
Molybdenum	μg/g		0.30	٧	0.50	٧	0.50	<	0.50		0.30		0.30
Nickel	μg/g		5.4		5.2		6.0		6.8		7.0		5.7
Lead	μg/g		19		14		17		16		17		16
Selenium	μg/g	٧	0.70	<	0.50	<	0.50	<	0.50	<	0.70	٧	0.70
Antimony	μg/g	٧	0.80	<	0.20	<	0.20	<	0.20	<	0.80	٧	0.80
Uranium	μg/g		2.2		0.9		1.2		1.3		1.4		1.2
Vanadium	μg/g		15		18		20		24		19		14
Zinc	μg/g		47		37		38		44		44		35
Lead-210	Bq/g		0.08	٧	0.05		0.06		0.08		0.08		80.0
Radium-226	Bq/g		0.06	٧	0.10	٧	0.05	<	0.05		0.13		0.12
Thorium-230	Bq/g		0.03	<	0.50	<	0.40	<	0.40	<	0.08	٧	0.30
Thorium-232	Bq/g		<u>-</u> 1	<	0.30	<	0.04	<	0.30		0.01		0.01
¹ Analysis not included in laborator	y contract.				,		,		,				·

Tableau 47: Surveillance des sols – IGLTD-PH – Emplacement 3 (PH-WWMF-SS-03)

	Units				PH	-WWN	1F-\$	SS-03				
Parameter	Units	2016	201	7	2	018	2	2019	2	2020	2	2021
Water Soluble Boron	μg/g	_1	0	.42		0.57		0.59	<	0.50	<	0.50
Mercury	μg/g	< 0.05	0.	064		0.05	<	0.05	<	0.05	٧	0.05
Silver	μg/g	0.07	< 0	.20	٧	0.20	<	0.20		0.08		0.06
Arsenic	μg/g	2.9	3	3.2		3.5		3.8		3.4		3.7
Barium	μg/g	95	8	37		110		98		100		94
Beryllium	μg/g	0.50	0	.54		0.57		0.56		0.50		0.44
Boron	μg/g	5.0	< 5	5.0		6.6		7.3		5.0		4.0
Cadmium	μg/g	0.23	0	.20		0.22		0.23		0.28		0.21
Cobalt	μg/g	5.8	6	3.1		7.1		6.5		7.5		6.2
Copper	μg/g	11	1	11		13		13		14		12
Molybdenum	μg/g	0.40	< 0	.50	<	0.50	<	0.50		0.40		0.30
Nickel	μg/g	11	-	12		13		13		14		11
Lead	μg/g	11	1	11		13		13		12		11
Selenium	μg/g	< 0.70	< 0	.50	<	0.50	<	0.50	<	0.70	<	0.70
Antimony	μg/g	< 0.80	0	.22	<	0.20	<	0.20	<	0.80	<	0.80
Uranium	μg/g	1.2	1	.1		1.3		1.3		1.4		1.2
Vanadium	μg/g	27	3	31		35		35		35		28
Zinc	μg/g	53	5	54		62		58		63		49
Lead-210	Bq/g	0.13	0.	.06		0.07	<	0.05		0.10		0.09
Radium-226	Bq/g	0.04	< 0	.10	<	0.05	<	0.05		0.08	<	0.05
Thorium-230	Bq/g	0.04	< 0	.50	<	0.40	<	0.40	<	0.20	<	0.20
Thorium-232	Bq/g	_1	< 0	.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in lab	oratory contract											

Tableau 48: Surveillance des sols – IGLTD-PH – Emplacement 4 (PH-WWMF-SS-04)

Page 38 de 159

	Units					PI	-wwi	/IF-S	SS-04				
Parameter	Units	2	2016	•4	2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	μg/g		- 1		0.58		0.59		0.58	٧	0.50	٧	0.50
Mercury	μg/g	٧	0.05	٧	0.050	٧	0.05	<	0.05	٧	0.05	٧	0.05
Silver	μg/g		0.04	٧	0.20	٧	0.20	<	0.20	٧	0.05	٧	0.05
Arsenic	μg/g		2.1		1.8		2.1		1.4		2.5		2.9
Barium	μg/g		23		21		34		20		28		36
Beryllium	μg/g		0.26	٧	0.20	٧	0.20	<	0.20		0.22		0.23
Boron	μg/g		4.0	٧	5.0	٧	5.0	<	5.0		4.0		3.0
Cadmium	μg/g		0.21		0.22		0.19		0.12		0.21		0.26
Cobalt	μg/g		2.5		2.2		2.4		1.8		3.0		2.8
Copper	μg/g		5.3		4.0		4.6		4.1		6.7		5.8
Molybdenum	μg/g		0.30	٧	0.50	٧	0.50	<	0.50		0.30		0.20
Nickel	μg/g		4.2		3.7		4.1		3.2		5.1		4.5
Lead	μg/g		11		11		40		10		11		19
Selenium	μg/g		0.80	٧	0.50	٧	0.50	<	0.50	٧	0.70	٧	0.70
Antimony	μg/g	٧	0.80	٧	0.20	٧	0.20		0.23	٧	0.80	٧	0.80
Uranium	μg/g		0.66		0.56		0.50		0.43		0.67		0.6
Vanadium	μg/g		13		14		13		15		15		11
Zinc	μg/g		310		140		220		550		260		99
Lead-210	Bq/g	٧	0.04	٧	0.05		0.07	<	0.05		0.08		80.0
Radium-226	Bq/g		0.04	٧	0.10	٧	0.05	<	0.05	٧	0.04		0.09
Thorium-230	Bq/g		0.03	٧	0.50	٧	0.40	<	0.40	٧	0.30	٧	0.30
Thorium-232	Bq/g		<u>-</u> 1	٧	0.30	٧	0.04	<	0.30		0.01		0.01
¹ Analysis not included in laborator	y contract.		,										

Tableau 49: Surveillance des sols – IGLTD-PH – Emplacement 5 (PH-WWMF-SS-05)

	l laita					PI	H-WWN	/IF-S	SS-05				
Parameter	Units	2	2016	2	2017	2	2018	2	2019	2	2020	2	2021
Water Soluble Boron	μg/g		- 1		0.54		0.71		0.46	<	0.50	<	0.50
Mercury	μg/g	<	0.05	<	0.050	٧	0.05	<	0.05	<	0.05	٧	0.05
Silver	μg/g		0.04	<	0.20	٧	0.20	<	0.20	<	0.05	٧	0.05
Arsenic	μg/g		57		50		34		30		2.0		19.0
Barium	μg/g		100		50		62		69		81		78
Beryllium	μg/g		0.36		0.31		0.33		0.36		0.41		0.32
Boron	μg/g		7.0	<	5.0		6.4		7.0		6.0		6.0
Cadmium	μg/g		0.16		0.24		0.22		0.19		0.26		0.17
Cobalt	μg/g		5.3		3.4		4.1		4.4		6.3		4.4
Copper	μg/g		13		8.3		11		9.6		14		9.7
Molybdenum	μg/g		0.40	<	0.50	<	0.50	<	0.50		0.40		0.30
Nickel	μg/g		11		6.9		7.6		8.3		12		8.6
Lead	μg/g		12		19		24		22		34		21
Selenium	μg/g	<	0.70	<	0.50	<	0.50	<	0.50	<	0.70	٧	0.70
Antimony	μg/g	<	0.80	<	0.20		0.21	٧	0.20	<	0.80	٧	0.80
Uranium	μg/g		9.6		9.5		8.9		6.5		0.6		7.5
Vanadium	μg/g		24		20		22		25		29		21
Zinc	μg/g		62		45		180		59		84		55
Lead-210	Bq/g		0.04		0.07		0.06		0.06		0.08		0.08
Radium-226	Bq/g		0.03	<	0.10	٧	0.05	٧	0.05		0.09		0.13
Thorium-230	Bq/g		0.03	<	0.50	٧	0.40	<	0.40	<	0.20	٧	0.20
Thorium-232	Bq/g		_1	<	0.30	٧	0.04	<	0.30		0.02		0.02
¹ Analysis not included in laborato	ry contract.												

Tableau 50: Surveillance des sols – la promenade Highland – Emplacement 1 (PH-H-SS-01)

Page 39 de 159

	Units						PH-H-	SS	-01				
Parameter	Units	•	2016		2017		2018	:	2019		2020	• •	2021
Water Soluble Boron	μg/g		_1		0.42		0.34		0.30	٧	0.50	٧	0.50
Mercury	μg/g	٧	0.05	<	0.05	٧	0.05	<	0.05	٧	0.05	٧	0.05
Silver	μg/g		0.07	<	0.20	٧	0.20	<	0.20		0.07		0.06
Arsenic	μg/g		2.1		1.6		2.0		2.3		2.4		2.2
Barium	μg/g		100		66		120		110		140		95
Beryllium	μg/g		0.49		0.34		0.56		0.52		0.50		0.38
Boron	μg/g		5.0		5.8		7.1		6.6		6.0		5.0
Cadmium	μg/g		0.17		0.14		0.14		0.19		0.22		0.15
Cobalt	μg/g		5.9		4.7		7.2		7.0		8.9		6.0
Copper	μg/g		13		10		15		14		19		13
Molybdenum	μg/g		0.30	<	0.50	٧	0.50	<	0.50		0.40		0.30
Nickel	μg/g		12		8.7		15		13		18		12
Lead	μg/g		15		8.4		16		14		14		8.9
Selenium	μg/g	٧	0.70	<	0.50	٧	0.50	<	0.50	٧	0.70	٧	0.70
Antimony	μg/g	<	0.80	<	0.20		0.25	<	0.20	٧	0.80	<	0.80
Uranium	μg/g		0.71		0.51		0.78		0.70		0.89		0.60
Vanadium	μg/g		31		25		38		36		44		29
Zinc	μg/g		54		43		87		71		89		50
Lead-210	Bq/g	٧	0.04		0.06	٧	0.05		0.06	٧	0.20		0.11
Radium-226	Bq/g		0.03	<	0.10	<	0.05	<	0.05		0.08	٧	0.04
Thorium-230	Bq/g	٧	0.02	<	0.5	<	0.40	<	0.40		0.07	٧	0.30
Thorium-232	Bq/g		- 1	<	0.30	<	0.04	<	0.30		0.02		0.02
¹ Analysis not included in laborator	y contract.												

Tableau 51: Surveillance des sols – la promenade Highland – Emplacement 2 (PH-H-SS-02)

	Unite						PH-H-	SS	-02				
Parameter	Units		2016		2017		2018		2019		2020	2	2021
Water Soluble Boron	μg/g		- 1		0.57		0.47		0.40	<	0.50	<	0.50
Mercury	μg/g	<	0.05	<	0.05	٧	0.05	<	0.05	<	0.05	٧	0.05
Silver	μg/g		0.12	<	0.20	٧	0.20	<	0.20		0.10		0.12
Arsenic	μg/g		4.8		3.1		3.9		3.2		4.2		4.0
Barium	μg/g		110		82		99		96		95		108
Beryllium	μg/g		0.48		0.44		0.52		0.45		0.38		0.42
Boron	μg/g		5.0		6.2		6.3		6.5		5.0		5.0
Cadmium	μg/g		0.19		0.19		0.22		0.19		0.19		0.19
Cobalt	μg/g		6.1		5.8		6.9		6.2		6.5		6.4
Copper	μg/g		14		13		15		13		15		15
Molybdenum	μg/g		0.40	<	0.50		0.52	<	0.50		0.40		0.30
Nickel	μg/g		12		11		13		12		13		12
Lead	μg/g		18		12		15		13		19		16
Selenium	μg/g	<	0.70	<	0.50	<	0.50	<	0.50	<	0.70	<	0.70
Antimony	μg/g	<	0.80		0.21		0.24		0.21	<	0.80	٧	0.80
Uranium	μg/g		2.3		1.4		2.3		2.0		1.7		2.3
Vanadium	μg/g		31		30		34		33		31		30
Zinc	μg/g		55		54		53		49		54		49
Lead-210	Bq/g	<	0.04		0.05		0.06		0.07	<	0.20		0.06
Radium-226	Bq/g		0.05	<	0.10	٧	0.05	٧	0.05	٧	0.03	٧	0.04
Thorium-230	Bq/g		0.04	<	0.5	٧	0.40	'	0.40		0.10	٧	0.30
Thorium-232	Bq/g		- 1	<	0.30	<	0.04	<	0.30		0.01		0.02
¹ Analysis not included in laborato	ry contract		·								·		

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 40 de 159

Page 41 de 159

Tableau 52 : Qualité des eaux de surface – ruisseau Brand – en aval de l'IGLTD-PH (BC-D)

	_								BC-D				
		Crit	eria	2016	2017	2018	2019	2020			2021		
Parameter	Units	PWQO	CWQG			Average			2021-01-14	2021-04-08	2021-08-06	2021-11-01	Average
Total Suspended Solids	mg/L			52	13	72	24	21	5	6	10	10	8
pH	no unit	6.5-8.5	6.5-9.0	8.00	8.18	8.11	8.14	8.07	8.15	8.02	7.77	7.89	7.96
Alkalinity	mg/L as CaCO₃			258	275	285	273	262	269	269	287	302	282
Carbonate	mg/L as CaCO ₃			4	4	3	4	< 1	< 1	< 1	< 1	< 1	< 1
Bicarbonate	mg/L as CaCO ₃			256	273	278	265	262	269	269	287	302	282
Total Dissolved Solids	mg/L			667	505	620	609	630	610	540	811	537	625
Fluoride	mg/L		0.12	0.11	0.10	< 0.10	0.10	0.08	0.08	0.10	0.09	0.08	0.09
Total Organic Carbon	mg/L			3	3	4	3	3	2	2	7	3	4
Ammonia+Ammonium (N)	as N mg/L			0.06	< 0.05	0.06	0.07	0.06	0.04	< 0.04	0.09	0.16	0.08
Chloride (Dissolved)	mg/L		120	193	100	165	159	203	150	140	300	85	169
Sulphate (dissolved)	mg/L			33	21	22	22	25	28	24	18	22	23
Bromide (dissolved)	mg/L			0.5	< 1.0	< 1.0	< 1.0	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	0.02	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	3.37	4.19	3.65	3.36	4.08	5.38	5.06	1.23	7.47	4.79
Nitrate + Nitrite (as N)	as N mg/L			3.37	4.20	3.65	3.37	4.08	5.38	5.06	1.23	7.47	4.79
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			366	315	340	360	384	384	419	374	375	388
Silver (total)	μg/L	0.1	0.25	0.03	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aluminum (AI)	μg/L			265	288	813	480	434	83	111	431	152	194
Aluminum (0.2µm)	μg/L	75	100	_1	< 5	< 5	< 5	26	7	1	3	4	4
Arsenic (total)	μg/L	100	5	1.5	1.5	1.7	1.4	1.6	0.6	0.6	5.7	1.0	2.0
Barium (total)	μg/L			80.2	59.3	83.0	78.3	88.8	68.5	63.7	92.8	57.2	70.6
Beryllium (total)	μg/L	1100		0.1	< 0.5	< 0.5	< 0.5	0.018	< 0.007	< 0.007	0.020	0.007	0.010
Boron (total)	μg/L	200	1500	11	16	10	12	14	10	10	17	51	22
Bismuth (total)	μg/L			0.3	< 1.0	< 1.0	< 1.0	0.040	0.007	0.008	0.020	< 0.010	0.011
Calcium (total)	μg/L			120750	106750	117500	112500	125000	130000	143000	124000	129000	131500
Cadmium (total)	μg/L	0.2	0.09	0.03	< 0.10	< 0.10	< 0.10	0.02	0.02	0.01	0.02	0.01	0.02
Cobalt (total)	μg/L	0.9		0.305	< 0.500	0.630	< 0.500	0.301	0.513	0.330	0.503	0.308	0.414
Chromium (total)	μg/L			2.0	< 5.0	< 5.0	< 5.0	0.91	1.06	0.65	0.92	0.61	0.81
Copper (total)	μg/L	5		1.2	< 1.1	1.7	1.2	1.7	1.5	0.8	1.1	0.7	1.0
Iron (total)	μg/L	300	300	492	343	968	565	484	82	114	632	182	253
Potassium (total)	μg/L			1725	1575	1600	1700	1735	1370	1710	2420	1730	1808
Magnesium (total)	μg/L			15650	11650	15000	14750	17300	14300	15000	15300	12900	14375
Manganese (total)	μg/L			56	30	79	47	69	18	22	319	30	97
Molybdenum (total)	μg/L	40	73	0.44	< 0.50	0.51	< 0.50	0.43	0.31	0.56	0.74	0.25	0.47
Sodium (total)	μg/L			101650	57500	96250	93750	96525	71900	70000	120000	39500	75350
Nickel (total)	μg/L	25	25	0.7	1.1	1.4	1.0	0.7	0.8	0.6	1.1	0.8	0.8
Phosphorus (total)	μg/L	10-30		38	35	75	46	36	16	20	88	25	37
Lead (total)	μg/L	5	7	0.36	< 0.50	0.83	0.56	0.37	0.14	0.10	0.50	0.14	0.22
Antimony (total)	μg/L	20		0.3	< 0.5	< 0.5	< 0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.6	< 2.0	< 2.0	< 2.0	0.19	0.27	0.31	0.15	0.16	0.22
Tin (total)	μg/L			0.3	< 1.0	< 1.0	< 1.0	0.09	0.14	< 0.06	< 0.06	0.09	0.09
Strontium (total)	μg/L			323	258	295	285	335	338	307	361	290	324
Titanium (total)	μg/L			24.0	17.3	45.7	29.8	21.4	3.4	6.1	23.2	9.3	10.5
Thallium (total)	μg/L	0.3	0.8	0.02	< 0.05	< 0.05	< 0.05	0.008	< 0.005	< 0.005	0.010	< 0.005	0.006
Uranium (total)	μg/L	5	15	2.01	2.25	2.03	1.60	2.02	4.42	2.41	3.42	2.70	3.24
Vanadium (total)	μg/L	6		1.40	1.28	2.11	1.63	1.51	0.68	0.73	1.98	0.97	1.09
Zinc (total)	μg/L	30	30	4	< 5	8	5	5	3	2	4	3	3
Lead-210	Bq/L	_		< 0.02	0.03	< 0.10	< 0.10	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		0.02	0.03	< 0.04	< 0.04	0.01	0.01	< 0.01	0.01	< 0.01	0.01
Thorium-230	Bq/L			0.03	< 0.06	< 0.07	< 0.07	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L		ļ	< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters								<u> </u>	ļ		1		
ODO % Sat	%			_²	- ²	- ²	_2	_2	105.2	99.6	86.7	83.3	
ORP	mV			_2	_2	_²	_2	_2	209	139.5	127.7	137.4	
SPC	μs/cm			_2	_2	_2	_2	_2	1031	875	1307	883	
Temperature	°C			_2	_2	- ²	_2	_2	3.974	4.685	21.868	10.707	
Turbidity	FNU			_2	_2	_²	_2	_2	7.2	4.88	10.01	38.37	
pH	Units			_2	_2	-2	_2	_2 _2	8.14	8.18	8.01	7.84	
Staff Gauge	cm			2	2		2						

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

-- - No data.

Page 42 de 159

Tableau 53 : Qualité des eaux de surface – ruisseau Brand – en amont de l'IGLTD-PH (BC-U)

									BC-U				
		Crit	eria	2016	2017	2018	2019	2020			2021		
Parameter	Units	PWQO	CWQG			Average		,	2021-01-14	2021-04-08	2021-08-06	2021-11-01	Average
Total Suspended Solids	mg/L			48	9	34	165	16	< 2	4	No Sample ³	4	3
pH	no unit	6.5-8.5	6.5-9.0	7.86	8.11	8.06	8.06	8.03	8.14	8.04		7.97	8.05
Alkalinity	mg/L as CaCO ₃			244	275	255	250	245	266	261		309	279
Carbonate	mg/L as CaCO₃			2	3.3	3.1	3.0	< 1.0	< 1	< 1		< 1	< 1
Bicarbonate	mg/L as CaCO ₃			243	268	250	248	245	266	261		309	279
Total Dissolved Solids	mg/L			638	438	554	469	418	450	440		506	465
Fluoride	mg/L		0.12	0.09	0.11	0.11	< 0.10	0.10	0.11	0.09		0.08	0.09
Total Organic Carbon	mg/L		****	5	3	4	9	6	2	2		2	2
Ammonia+Ammonium (N)	as N mg/L			0.05	0.05	0.08	0.27	0.11	0.04	0.04		0.10	0.06
Chloride (Dissolved)	mg/L		120	169	59	138	103	75	69	64	†	48	60
Sulphate (dissolved)	mg/L		120	33	20	21	13	11	21	19		19	20
Bromide (dissolved)	mg/L			0.5	< 1.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3		< 0.3	< 0.3
Nitrite (as N)	as N mg/L			0.02	0.01	< 0.01	0.02	< 0.03	< 0.03	< 0.03		< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	2.87	4.37	3.27	2.72	3.74	6.71	5.96		8.74	7.14
Nitrate + Nitrite (as N)	as N mg/L		13	2.87	4.37	3.27	2.72	3.74	6.71	5.96		8.74	7.14
		0.2	0.026										
Mercury (dissolved) Hardness	µg/L	U.Z	0.026	0.01 334	0.01 305	< 0.01 300	< 0.01 305	0.01 301	< 0.01 363	< 0.01 383	-	< 0.01 369	< 0.01 372
	mg/L as CaCO ₃	0.4	0.05								-		
Silver (total)	μg/L	0.1	0.25	0.04	< 0.10	< 0.10	0.11	< 0.05	< 0.05	< 0.05	1	< 0.05	0.00
Total Aluminum (AI)	μg/L	75	100	252 _1	182	685	6200	423 16	33 7	85 1	1	77 5	65
Aluminum (0.2µm)	μg/L				5	54	< 5						4
Arsenic (total)	μg/L	100	5	0.6	< 1.0	1.1	1.7	2.0	< 0.2	< 0.2		< 0.2	< 0.2
Barium (total)	μg/L			61.6	48.8	58.5	113.5	46.9	50.2	48.0		51.5	49.9
Beryllium (total)	μg/L	1100		0.2	< 0.5	< 0.5	0.6	0.018	< 0.007	< 0.007		< 0.007	< 0.007
Boron (total)	μg/L	200	1500	11	16	12	17	16	10	17		45	24
Bismuth (total)	μg/L			0.3	< 1.0	< 1.0	< 1.0	0.017	< 0.007	0.007		< 0.010	0.008
Calcium (total)	μg/L			113333	108250	103000	112250	100467	125000	132000		127000	128000
Cadmium (total)	μg/L	0.2	0.09	0.04	< 0.10	< 0.10	0.22	0.02	0.01	0.01		0.01	0.01
Cobalt (total)	μg/L	0.9		0.324	< 0.500	0.608	3.625	0.444	0.061	0.089		0.073	0.074
Chromium (total)	μg/L			2.3	< 5.0	< 5.0	12.3	0.89	0.45	0.54		0.45	0.48
Copper (total)	μg/L	5		1.4	1.7	1.9	7.5	1.9	0.7	0.6		0.5	0.6
Iron (total)	μg/L	300	300	406	220	853	7478	569	35	81		82	66
Potassium (total)	μg/L			2680	1700	1775	3085	1827	1520	1630		1620	1590
Magnesium (total)	μg/L			12000	11600	11500	12500	11933	12700	13100		12600	12800
Manganese (total)	μg/L			151	29	96	776	603	10	17		21	16
Molybdenum (total)	μg/L	40	73	0.41	< 0.50	2.03	0.63	0.43	0.18	0.25		0.19	0.21
Sodium (total)	μg/L			104933	34250	79500	57500	40467	33600	32600		23100	29767
Nickel (total)	μg/L	25	25	0.7	1.2	1.4	6.8	1.0	0.2	0.3		0.3	0.3
Phosphorus (total)	μg/L	10-30		68	35	71	604	74	19	14		21	18
Lead (total)	μg/L	5	7	0.38	< 0.50	0.63	5.13	0.43	0.09	0.07		< 0.09	0.08
Antimony (total)	μg/L	20		0.3	< 0.5	< 0.5	< 0.5	< 0.9	< 0.9	< 0.9		< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.8	< 2.0	< 2.0	< 2.0	0.28	0.35	0.31		0.21	0.29
Tin (total)	μg/L			< 0.5	< 1.0	< 1.0	1.1	0.08	0.14	< 0.06		0.11	0.10
Strontium (total)	μg/L			284	248	263	250	245	291	251		291	278
Titanium (total)	μg/L			< 14	12.98	37.75	287	18.75	1.80	4.65		4.31	3.59
Thallium (total)	μg/L	0.3	0.8	0.02	< 0.05	< 0.05	0.10	0.007	< 0.005	< 0.005		< 0.005	< 0.005
Uranium (total)	μg/L	5	15	1.103	1.103	0.528	0.673	0.487	0.648	0.623		0.957	0.743
Vanadium (total)	μg/L	6		1.35	1.08	2.02	13.06	1.68	0.56	0.70		0.76	0.67
Zinc (total)	μg/L	30	30	4	< 5	6	36	5	< 2	2		2	2
Lead-210	Bg/L			< 0.02	< 0.02	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02
Radium-226	Bq/L	1		0.02	< 0.03	< 0.04	< 0.04	0.01	< 0.01	< 0.01		< 0.01	< 0.01
Thorium-230	Bq/L			0.04	< 0.06	< 0.07	< 0.07	< 0.02	< 0.02	< 0.02	 	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	 	< 0.02	< 0.02
Field Parameters	+			3.02	1 2.00	3.00	0.00	0.02	3.52	T 2.32	1	1 2.02	0.02
ODO % Sat	%			_2	_2	_2	_2	_2	108.1	106.8		94.7	-
ORP Sat	mV			_2	_2	_2	_2	_2	211.2	137.6	-	138.6	
SPC	_			2	_2	2	2	2	787	692			-
	µs/cm			2	_2	2	_2	2		5,22		794	
Temperature	°C			_2	_2	_2	_2	_2	4.118			11.094	
Turbidity	FNU			_2	_2	_2	_2	_2	1.98	4.78		2.06	
pH	Units			_2	_2	_2	_2	_2	8.06	8.21	-	7.9	-
Staff Gauge	cm		i		l - '					I			

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

³ Insufficient surface w ater at this location for sample collection

-- - No data.

Page 43 de 159

Tableau 54: Qualité des eaux de surface – ruisseau Brand – chemin Marsh (BC-M)

												BC-N	М								
		Crit	eria	2016	2017		2018		2019		2020						2021				
Parameter	Units	PWQO	CWQG				Average					202	21-01-14	20	21-04-08	20	21-08-06	202	21-11-01	Αv	erage
Total Suspended Solids	mg/L			27	20		26		32		45		6		7		16		7		9
pH	no unit	6.5-8.5	6.5-9.0	7.94	8.18	1	8.14		8.19		8.13		8.17		8.05		7.98		8.02		8.06
Alkalinity	mg/L as CaCO₃			258	275	T	280		268		254		263		258		282		290		273
Carbonate	mg/L as CaCO ₃			6	4	T	4		4	<	1	<	1	<	1	<	1	٧	1	<	1
Bicarbonate	mg/L as CaCO ₃			254	270	T	280		265		254		263		258		282		290		273
Total Dissolved Solids	mg/L			802	482	\Box	575		574		545		500		534		660		520		554
Fluoride	mg/L		0.12	0.10	< 0.10)	< 0.10	<	0.10		0.08		0.10		0.07		0.07		0.08		0.08
Total Organic Carbon	mg/L			3	3		3		3		3		2		2		6		3		3
Ammonia+Ammonium (N)	as N mg/L			0.06	< 0.05		0.06		0.08		0.06	<	0.04	<	0.04		0.12		0.10		0.08
Chloride (Dissolved)	mg/L		120	151	84		129		135		161		130		120		240		73		141
Sulphate (dissolved)	mg/L			29	21		22		22		23		27		24		21		21		23
Bromide (dissolved)	mg/L			1.5	< 1.0	<	< 1.0	<	1.0		0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.03	0.01	_	0.01		0.01		0.04	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	3.70	4.14		3.81		3.60		4.00		5.09		4.80		2.00		6.80		4.67
Nitrate + Nitrite (as N)	as N mg/L			3.70	4.15		3.82		3.60		4.01		5.09		4.80		2.00		6.80		4.67
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	١.	< 0.01	<	0.01	<u> </u>	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			351	310		335	$oxed{oxed}$	360	_	374		404	L	412	_	359		365		385
Silver (total)	μg/L	0.1	0.25	0.03	< 0.10	١ ١	< 0.10	<	0.10	<u> </u>	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Total Aluminum (AI)	μg/L			281	538	_	473	$oxed{L}$	635	<u> </u>	580		107		96		338		255		199
Aluminum (0.2μm)	μg/L	75	100	_1	5	٩	< 5	<	5		44		15	<	1		5		13		9
Arsenic (total)	μg/L	100	5	1.3	1.5	\perp	1.3	┖	1.4	1	1.5		0.7	<u> </u>	0.7	_	3.2		1.2	_	1.5
Barium (total)	μg/L			71.4	58.5	_	68.3		74.8		78.2		68.6		63.2		73.8		52.6		64.6
Beryllium (total)	μg/L	1100		0.1	< 0.5	_	< 0.5	<	0.5	<u> </u>	0.028	<	0.007	<	0.007	<u> </u>	0.014		0.019		0.012
Boron (total)	μg/L	200	1500	11	15	_	< 10		13	1	14		11		13	_	14		81	_	30
Bismuth (total)	μg/L			0.3	< 1.0	_	< 1.0	<	1.0	<u> </u>	0.032		0.009	<	0.007	<u> </u>	0.030	٧	0.010	_	0.014
Calcium (total)	μg/L			116750	10850	_	110000	_	115000	_	122500		137000		140000	<u> </u>	119000		125000	1	130250
Cadmium (total)	μg/L	0.2	0.09	0.04	< 0.10	_	< 0.10	<	0.10	<u> </u>	0.03		0.02		0.01	<u> </u>	0.02		0.02	<u> </u>	0.02
Cobalt (total)	μg/L	0.9		0.376	0.553	_	< 0.500	_	0.533	├	0.435		0.493		0.292	<u> </u>	0.267		0.359	_	0.353
Chromium (total)	μg/L			2.1	< 5.0	-	< 5.0	<	5.0	╀	1.24		0.76		0.72	₩	0.72		0.80	<u> </u>	0.75
Copper (total)	μg/L	5	200	1.0	2.2	+	1.2	┢	1.3	-	1.9		1.0		0.7	-	0.9		0.9	-	0.9
Iron (total)	μg/L	300	300	550	653	+	575	-	780	╀	673		135		103	₩	425		323	<u> </u>	247
Potassium (total)	µg/L			1790	1625		1550	┢	1875	-	2048		1550		1570	-	2650		1670	-	1860
Magnesium (total)	µg/L			15000	1215	U	14250	-	14250	1	16375		14900 34		15000	1	15200		12900	-	14500
Manganese (total)	μg/L	40	70	65	48	+	50	١.	59	╁	72 0.40				29	-	51		50	<u> </u>	41
Molybdenum (total)	µg/L	40	73	0.34 77125	< 0.50 4825		0.54	<	0.50 76000	1	69750		0.27 64900		0.32 63200	1	0.58 85900		0.27 33800	_	0.36 61950
Sodium (total) Nickel (total)	μg/L	25	25	0.8	1.1	<u> </u>	75750 1.1	\vdash	1.1	╁	0.8		0.9		0.6	+-	0.9		0.7	\vdash	0.8
	μg/L	10-30	25	45	48	+	46	┢	59	1	52		26		16	1	57		35	-	34
Phosphorus (total) Lead (total)	μg/L μg/L	5	7	0.46	0.62	, +	0.54		0.57	-	0.58		0.20		0.08	1	0.32		0.26	-	0.22
Antimony (total)	μg/L μg/L	20		0.40	< 0.5	+	< 0.5	-	0.5	-	0.9	_	0.20	_	0.00	-	0.32	_	0.20	_	0.22
Selenium (total)	μg/L μg/L	100	1	0.6	< 2.0	+	< 2.0	<	2.0	÷	0.9	`	0.28	ì	0.9	È	0.13	<u> </u>	0.20	<u> </u>	0.9
Tin (total)	μg/L	100		0.0	< 1.0	_	< 1.0	<	1.0	+	0.17		0.16	<	0.25	+	0.10		0.20	—	0.22
Strontium (total)	μg/L			304	253	_	280	È	280	╁	318		350	_	306	1	324		281		315
Titanium (total)	μg/L			13.0	32.4		27.9	H	37.0	+-	28.9		7.8		5.2	1	17.7		12.9	-	10.9
Thallium (total)	µg/L	0.3	0.8	0.02	0.05		< 0.05	_	0.05	╁	0.016	-	0.005	_	0.005	1	0.007	\	0.005		0.006
Uranium (total)	μg/L	5	15	1.85	2.70		2.38	È	1.98	t	2.22	È	4.91	È	2.92		2.42	È	2.64		3.22
Vanadium (total)	μg/L	6	- 13	1.59	1.90		1.62	H	2.10	╁	2.00		0.82	Н	0.80	\vdash	1.69		1.20		1.13
Zinc (total)	μg/L	30	30	4	7	_	< 5	H	6	t	6		2		2		3		3		3
Lead-210	Bg/L			< 0.02	0.02		< 0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	0.02		< 0.10	<	0.10	È	0.02	<	0.02	<	0.02	Ė	0.02	·	0.02	Ė	0.02
Thorium-230	Bq/L	<u> </u>		0.02	0.06		< 0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	'	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	< 0.06		< 0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	· ·	0.02	<	0.02
Field Parameters				0.02	5.00	+	0.00	H	0.00	t	0.02		3.02		0.02	H	0.02		0.02		3.02
ODO % Sat	%			_2	_2	+	_2	H	_2	1	-		103.7		100.2		93.7		93.8		-
ORP Sat	mV			_2	_2	+	2	H	_2	╁	_		216.8	Н	120.8	\vdash	129.1		131.7		
SPC	µs/cm			_2	_2	+	2	H	_2	1	-		959		825		1132		836		
Temperature	°C			_2	_2	+	_2	H	_2	t	_		4.125	Н	4.405		18.818		10.366		
Turbidity	FNU			_2	_2	+	_2	H	_2	╁			4.123		4.68		21.73		8.11	\vdash	
pH	Units			2	2	+	2	\vdash	_2	+	-		8.23	\vdash	8.15	\vdash	8.33		7.88		
Staff Gauge	cm			2	2	+	2	\vdash	_2	1	-		18	\vdash	27		³	—	29		
Otali Gauge	I VIII					L	-	<u> </u>	-	1			ıυ	_	۷.	1			23		

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 44 de 159

Tableau 55 : Qualité des eaux de surface – ruisseau Brand – affluent du ruisseau Brand (BC-T)

									BC-T				
		Crit	eria	2016	2017	2018	2019	2020			2021		
Parameter	Units	PWQO	CWQG			Average			2021-01-14	2021-04-08	2021-08-06	2021-11-01	Average
Total Suspended Solids	mg/L			23	9	20	27	31	8	19	61	4	23
pH	no unit	6.5-8.5	6.5-9.0	8.06	8.22	8.13	8.23	8.21	8.19	8.16	8.22	8.14	8.18
Alkalinity	mg/L as CaCO ₃			249	285	285	270	249	256	267	269	297	272
Carbonate	mg/L as CaCO ₃			5	4.3	3.8	4.3	< 1.0	< 1	< 1	< 1	< 1	< 1
Bicarbonate	mg/L as CaCO ₃			245	280	283	265	249	256	267	269	297	272
Total Dissolved Solids	mg/L			825	803	958	874	817	950	955	960	894	940
Fluoride	mg/L		0.12	0.10	0.11	< 0.10	< 0.10	0.10	0.08	0.10	0.08	0.10	0.09
Total Organic Carbon	mg/L			3	5	4	3	3	3	3	3	5	4
Ammonia+Ammonium (N)	as N mg/L			0.05	< 0.05	0.06	0.12	0.05	0.04	< 0.04	< 0.04	0.04	0.04
Chloride (Dissolved)	mg/L		120	300	280	368	323	345	390	380	420	270	365
Sulphate (dissolved)	mg/L			38	27	29	29	30	50	42	32	35	40
Bromide (dissolved)	mg/L			0.5	2.3	< 1.0	< 5.0	0.3	0.5	0.4	< 0.3	0.4	0.4
Nitrite (as N)	as N mg/L			0.03	< 0.01	< 0.01	0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	1.74	1.48	1.43	1.37	2.20	1.34	1.52	2.20	2.08	1.79
Nitrate + Nitrite (as N)	as N mg/L			1.74	1.48	1.43	1.37	2.20	1.34	1.52	2.20	2.08	1.79
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			357	330	358	368	401	470	483	375	372	425
Silver (total)	μg/L	0.1	0.25	0.03	< 0.10	< 0.10	< 0.10	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aluminum (AI)	μg/L			90	183	714	284	830	117	137	1300	51	401
Aluminum (0.2µm)	μg/L	75	100	_1	< 5	< 5	< 5	53	31	2	4	6	11
Arsenic (total)	μg/L	100	5	2.7	5.3	4.2	3.3	3.5	1.9	2.0	5.2	3.1	3.1
Barium (total)	μg/L			98.3	87.5	115.3	100.8	112.3	116.0	111.0	125.0	86.5	109.6
Beryllium (total)	μg/L	1100		0.1	< 0.5	< 0.5	< 0.5	0.027	< 0.007	< 0.007	0.055	< 0.007	0.019
Boron (total)	μg/L	200	1500	11	15	12	14	14	11	25	14	37	22
Bismuth (total)	μg/L			0.3	< 1.0	< 1.0	< 1.0	0.031	0.013	0.013	0.040	< 0.010	0.019
Calcium (total)	μg/L			118750	120000	132500	122500	131750	157000	164000	121000	125000	141750
Cadmium (total)	μg/L	0.2	0.09	0.03	< 0.10	< 0.10	< 0.10	0.02	0.05	0.03	0.03	0.02	0.03
Cobalt (total)	μg/L	0.9		0.296	< 0.500	0.750	< 0.500	0.557	2.080	1.320	0.772	1.400	1.393
Chromium (total)	μg/L	5		1.9 1.2	< 5.0 1.4	< 5.0	< 5.0	1.61 2.4	1.26	0.72 1.2	2.67	0.25 0.9	1.23
Copper (total) Iron (total)	µg/L	300	300	419	288	2.1 945	1.6 378	961	2.3 198	1.2	2.2 1550	136	1.7 521
Potassium (total)	μg/L μg/L	300	300	1598	1348	1700	1675	1840	1460	1740	1760	1440	1600
Magnesium (total)	µg/L µg/L			15580	13000	16500	16500	17750	19000	18100	17900	14600	17400
Manganese (total)	μg/L			36	39	73	34	63	36	36	77	24	43
Molybdenum (total)	μg/L	40	73	0.51	0.64	0.61	0.57	0.60	0.49	0.62	0.60	0.45	0.54
Sodium (total)	μg/L		- 10	156750	170000	232500	192500	161000	192000	197000	171000	133000	173250
Nickel (total)	μg/L	25	25	2.4	< 1.0	1.5	< 1.0	1.2	2.7	2.1	1.5	2.4	2.2
Phosphorus (total)	μg/L	10-30		27	20	24	73	51	20	19	108	8	39
Lead (total)	μg/L	5	7	0.32	< 0.50	0.90	< 0.50	0.68	0.30	0.18	1.36	< 0.09	0.48
Antimony (total)	µg/L	20		0.3	< 0.5	< 0.5	< 0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.6	< 2.0	< 2.0	< 2.0	0.13	0.13	0.13	0.10	0.14	0.13
Tin (total)	μg/L			0.3	< 1.0	< 1.0	< 1.0	0.10	0.21	< 0.06	0.09	0.08	0.11
Strontium (total)	μg/L			361	340	393	353	397	487	439	363	367	414
Titanium (total)	μg/L			15	12	40	18	40.62	7.1	8.5	71.9	4.1	22.9
Thallium (total)	μg/L	0.3	0.8	0.02	< 0.05	< 0.05	< 0.05	0.022	< 0.005	< 0.005	0.021	< 0.005	0.009
Uranium (total)	μg/L	5	15	4	9	7	6	5	18	10	2	12	10
Vanadium (total)	μg/L	6		1.20	0.97	1.91	1.12	2.26	0.91	0.79	3.13	0.50	1.33
Zinc (total)	μg/L	30	30	5	< 5	8	6	9	5	4	10	2	5
Lead-210	Bq/L			< 0.02	< 0.02	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		0.02	< 0.03	< 0.04	< 0.04	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L			< 0.03	< 0.06	< 0.07	< 0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters													
ODO % Sat	%			_2	_2	_2	_2	_2	99	95.9	92.4	97.3	
ORP	mV			_2	_2	_2	_2	_2	222.4	148.4	108.9	134.6	-
SPC	μs/cm			_2	_2	_2	_2	_2	1706	1505	1657	1465	
Temperature	°C			_2	_2	_2	_2	_2	3.178	6.415	18.479	9.204	
Turbidity	FNU			_2	_2	_2	_2	_2	9.58	9.31	30.56	4.89	
pН	Units			_2	_2	_2	_²	_2	8.1	8.28	8.38	8.19	
Staff Gauge	cm			_2	_2	_2	_2	_2			I		

Note

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 45 de 159

Page 46 de 159

Tableau 56: Échantillonnage durant une tempête – bassin versant du ruisseau Brand (BC-M)

		Crit	eria			BC	:-M		
		Ont	eria	2021/07/08	2021/07/08	2021/07/08	2021/07/08	2021/07/08	2021/07/08
Amakasia	Unita	DWOO	cwqg	10:30AM	11:30AM	12:30PM	1:30PM	2:30PM	3:30PM
Analysis	Units	PWQO	CWQG						
Total Suspended Solids	mg/L	CEOE	6500	49 8.02	71	56	56 7.07	46 7.05	83
pH Alkalinity	no unit mg/L as CaCO3	6.5-8.5	6.5-9.0	296	8.00 281	8.00 291	7.97 293	7.95 261	7.97 256
Carbonate	mg/L as CaCO3			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO3			296	281	291	293	261	256
Total Dissolved Solids	Ŭ								
Fluoride	mg/L mg/L		0.12	637 0.11	669 0.08	654 0.08	637 0.08	617 0.08	603 0.07
Total Organic Carbon	_		0.12	4	4	4	5	5	5
	mg/L								
Ammonia+Ammonium (N)	as N mg/L		400	0.10	0.08	0.10	0.10	0.12	0.11
Chloride (Dissolved)	mg/L		120	190	190	190	180 22	180	180
Sulphate (dissolved)	mg/L			23	23	23		21	21
Bromide (dissolved)	mg/L			< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	2.32	2.35	2.29	2.16	1.95	1.82
Nitrate + Nitrite (as N)	as N mg/L			2.34	2.37	2.31	2.19	1.97	1.84
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO3			407	388	387	383	370	379
Silver (total)	μg/L	0.1	0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	μg/L		<u> </u>	850	632	1270	626	693	1390
Aluminum (0.2µm)	μg/L	75	100	5	4	4	11	11	6
Arsenic (total)	μg/L	100	5	3.6	3.1	3.6	3.4	3.4	4.1
Barium (total)	μg/L			94.9	83.1	91.5	86.5	86.2	94.6
Beryllium (total)	μg/L	1100		0.047	0.027	0.048	0.044	0.037	0.073
Boron (total)	μg/L	200	1500	15	16	15	15	15	17
Bismuth (total)	μg/L			0.040	0.020	0.030	0.020	0.020	0.030
Calcium (total)	μg/L			136000	130000	129000	128000	123000	127000
Cadmium (total)	μg/L	0.20	0.09	0.042	0.026	0.040	0.033	0.028	0.052
Cobalt (total)	μg/L	0.9		0.751	0.469	0.747	0.664	0.606	1.07
Chromium (total)	μg/L			1.38	0.97	2.05	1.17	1.08	1.89
Copper (total)	μg/L	5		1.9	1.3	1.8	1.8	1.8	2.3
Iron (total)	μg/L	300	300	1120	758	1410	914	890	1720
Potassium (total)	μg/L			2030	1980	2110	2010	2290	2500
Magnesium (total)	μg/L			16100	15700	15900	15300	15300	15200
Manganese (total)	μg/L			155	99	121	158	122	180
Molybdenum (total)	μg/L	40	73	0.45	0.51	0.52	0.44	0.44	0.43
Sodium (total)	μg/L			89700	87300	86300	86200	85600	85900
Nickel (total)	μg/L	25	25	1.2	0.9	1.5	1.2	1.1	1.6
Phosphorus (total)	μg/L	10-30		98	75	118	92	95	135
Lead (total)	μg/L	5	7	1.20	0.63	1.06	1.06	0.96	1.70
Antimony (total)	μg/L	20		< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.14	0.16	0.16	0.14	0.18	0.18
Tin (total)	μg/L			0.08	0.19	0.08	0.15	0.13	0.11
Strontium (total)	μg/L			389	366	368	365	360	356
Titanium (total)	μg/L			40.6	35.5	63.5	29.3	34.6	69.0
Thallium (total)	μg/L	0.3	0.8	0.011	0.010	0.014	0.009	0.013	0.020
Uranium (total)	μg/L	5	15	2.32	2.07	2.18	2.11	2.18	2.37
Vanadium (total)	μg/L	6		3.21	2.40	3.52	2.82	2.80	4.41
Zinc (total)	μg/L	30	30	6	7	6	7	6	9
Lead-210	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1.0		< 0.01	< 0.01	< 0.01	0.03	< 0.01	0.01
Thorium-230	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters									
ODO % Sat	mg/L			86	86.8	83.4	83.4	81.7	88.8
ORP	mV			115.5	96.9	92.5	102.7	101.3	106.3
SPC	us/cm			1253	1128	1115	1114	1077	1058
Temperature	°C			14.877	15.088	15.177	15.318	15.516	16.148
Turbidity	FNU			27.87	22.94	40.58	22.15	32.26	60.57
pH	Units			8.10	7.83	7.84	7.79	7.73	7.79
Staff Gauge	cm								
PW/OO = Provincial Water (Ministry	f the Envir	nmont					

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

Page 47 de 159

Tableau 57 : Eaux de surface – Diffuseur du lac Ontario (BC-LO-D)

												BC-LO-I								
		Crit	eria	2016	2	2017		2018		2019	_	2020	Ī			20:	21			
Parameter	Units	PWQO	CWQG				Α	verage					202	21-06-16	202	21-09-13		21-11-03	A۱	verage
Total Suspended Solids	mg/L			2		3	<	1		2	П	3		13		2		9		8
pH	no unit	6.5-8.5	6.5-9.0	8.45		8.14		8.15		8.21	Т	8.02		8.17		8.11		7.81		8.03
Alkalinity	mg/L as CaCO ₃			94		97		99		95		92		91		93		99		94
Carbonate	mg/L as CaCO ₃			< 2.0		1.3		1.3		1.5	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			94		95		98		93		92		91		93		99		94
Total Dissolved Solids	mg/L			167		185		135		177		185		149		189		183		174
Fluoride	mg/L		0.12	0.12		0.12		0.12		0.10		0.12		0.12		0.11		0.12		0.12
Total Organic Carbon	mg/L			2.4		2.4		2.3		2.1		1.5		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.04	<	0.05	<	0.05	<	0.05		0.06	<	0.04	٧	0.04	<	0.04	<	0.04
Chloride (Dissolved)	mg/L		120	24		22		26		23		24		26		24		26		25
Sulphate (dissolved)	mg/L			24		23		31		23		22		22		23		23		23
Bromide (dissolved)	mg/L			< 0.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.03	<	0.01	<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.25		0.24		0.29		0.26		0.31		0.30		0.31		0.48		0.36
Nitrate + Nitrite (as N)	as N mg/L			0.25		0.24		0.29		0.26		0.31		0.30		0.31		0.48		0.36
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<u> </u>	0.01	<	0.01	<	0.01		0.01
Hardness	mg/L as CaCO ₃			125	<u> </u>	125		130	L	130	┡	119	<u> </u>	125		125	<u> </u>	124		125
Silver (total)	μg/L	0.1	0.25	0.003	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	μg/L			5	<u> </u>	48	_	18	<u> </u>	43	_	32		4		16	_	137		52
Aluminum (0.2µm)	μg/L	75	100	_1	<	5.0	<	5.0	<	5.0	┡	4.0	<u> </u>	1.0	<	1.0	<	1.0		1.0
Arsenic (total)	μg/L	100	5	0.9	<	1.0		2.4	<	1.0		8.0		0.9		0.8		1.4		1.0
Barium (total)	μg/L			22.0		23.0		22.0		21.0	_	23.2		22.9		22.3		21.2		22.1
Beryllium (total)	μg/L	1100		< 0.01	<	0.5	<	0.5	<	0.5	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	μg/L	200	1500	29		23		22	-	23		20		24		73		16		38
Bismuth (total)	μg/L			< 0.01	<	1.0	<	1.0	<	1.0	┡	0.011	<	0.010	<	0.010		0.040		0.020
Calcium (total)	μg/L			35300		33500	_	34500	<u> </u>	36333	_	34150		34800		35800		37200		35933
Cadmium (total)	μg/L	0.2	0.09	0.006		0.100	<	0.100	<	0.100	_	0.006		0.003		0.006		0.010		0.006
Cobalt (total)	µg/L	0.9		0.081		0.500	<	0.500	<	0.500	-	0.062		0.012		0.013		0.212		0.079
Chromium (total)	µg/L	5		0.4 1.0	<	5.0 1.7	<	5.0 1.5	<	5.0 1.0	-	0.21		0.24		0.25		0.39		0.29
Copper (total)	μg/L μg/L	300	300	1.0	_	100	_	100	<	100	┢	43	_	7		16		174		66
Iron (total)		300	300	1625	È	1700	È	1550	È	1533	Н	1580	È	1620		1520		1700		1613
Potassium (total) Magnesium (total)	μg/L μg/L			8865	-	8700		8800		8733	Н	8205		9260		8700		7560		8507
Manganese (total)	µg/L			0.9		3.9	_	3.2		3.4	┢	3.11		1.11		1.27		9.74		4.04
Molybdenum (total)	µg/L	40	73	1.4		1.2		1.2		1.1	+	1.18		1.20		1.17		1.16		1.18
Sodium (total)	µg/L		- 10	13650	-	13500		17500		14667	1	12550		14100		14300		14100		14167
Nickel (total)	μg/L	25	25	0.6	<	1.0		1.2	<	1.0	\vdash	0.8		0.6		0.5		0.8		0.6
Phosphorus (total)	μg/L	10-30		5	Ė	8		6	Ė	10	H	10		15	<	3		17		12
Lead (total)	µg/L	5	7	0.02	<	0.50	<	0.50	<	0.50	1	0.09	<	0.09	<	0.09		0.16		0.11
Antimony (total)	μg/L	20		0.3	<	0.5	<	0.5	<	0.5	<	0.9	<	0.9	· ·	0.9	<	0.9	<	0.9
Selenium (total)	μg/L	100	1	0.15	<	2.0	<	2.0	<	2.0	Ė	0.11	Ė	0.15		0.16	Ė	0.14	Ė	0.15
Tin (total)	µg/L			0.03	<	1.0	<	1.0	<	1.0	T	0.09		0.10		0.07	<	0.06		0.08
Strontium (total)	μg/L			176		165		170		163	T	184		191		183		155		176
Titanium (total)	μg/L			_1		5.10	<	5.00		5.70	T	1.45		0.26		0.76		6.69		2.57
Thallium (total)	µg/L	0.3	0.8	0.007	<	0.050	<	0.050	<	0.050	T	0.008		0.005	<	0.005		0.006		0.005
Uranium (total)	μg/L	5	15	0.362		0.350		9.690		0.377		0.351		0.390		0.348		0.615		0.451
Vanadium (total)	μg/L	6		0.20		0.51	<	0.50		0.59	T	0.25		0.20		0.25		0.52		0.32
Zinc (total)	μg/L	30	30	2.5	<	5.0	<	5.0	<	5.0	П	3.0	<	2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L			< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		0.02	<	0.04	<	0.04	<	0.04		0.01	<	0.01		0.01	<	0.01		0.01
Thorium-230	Bq/L			< 0.02	<	0.07	<	0.07	<	0.07	<	0.02	<	0.02	٧	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																				
ODO % Sat	%			_2		_2		_2	Г	_2		_2		109.2		97.7		98.9		
ORP	mV			_2		_2		_2		_2		_2		128.4				118.3		
SPC	μs/cm			_2		_2		_2		_2		_2		320.9		304.1		324.2		
Temperature	°C			_2		_2		- 2		_2		_2		10.805		13.202		8.207		
Turbidity	FNU			_2		_2		- 2		_2		_2		0.26		1.69		12.88		
pH	Units			- 2		_2	L	- 2		_2		_2		8.73			Ĺ	7.99		
Staff Gauge	cm			_2		_2		_2		_2		_2								
Notes:													-							

Notes

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 48 de 159

Tableau 58 : Eaux de surface – diffuseur du lac Ontario – à l'extérieure de la limite est de la zone de mélange (BC-LO-E)

Page 49 de 159

		Crit	eria	2016	2017	2018	Т	2019	BC-LO- 2020		20	21	
Parameter	Units	PWQO	CWQG			Average				2021-06-16		2021-11-03	Average
Total Suspended Solids	mg/L			2	3	< 1		2	4	42	2	11	18
pH	no unit	6.5-8.5	6.5-9.0	8.41	8.20	8.18	1	8.21	8.06	8.2	8.03	7.87	8.03
Alkalinity	mg/L as CaCO ₃			96	97	98		98	89	102	92	105	100
Carbonate	mg/L as CaCO ₃			< 2.0	1.4	1.4		1.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃			95	95	96		94	89	102	92	105	100
Total Dissolved Solids	mg/L			182	157	113		235	182	129	197	169	165
Fluoride	mg/L		0.12	0.12	0.11	0.12		0.11	0.13	0.11	0.15	0.11	0.12
Total Organic Carbon	mg/L			1.6	2.4	2.0		2.1	1.5	2.0	2.0	2.0	2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.04	< 0.05	< 0.05	<	0.05	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Chloride (Dissolved)	mg/L		120	24	22	22		23	25	26	24	26	25
Sulphate (dissolved)	mg/L			24	23	23		23	22	23	23	23	23
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.0	<	1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	<	0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.24	0.24	0.28		0.27	0.30	0.30	0.31	0.54	0.38
Nitrate + Nitrite (as N)	as N mg/L			0.24	0.24	0.28		0.27	0.30	0.30	0.31	0.54	0.38
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	<	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			128	125	120		130	125	131	121	133	128
Silver (total)	μg/L	0.1	0.25	0.002	< 0.10	< 0.10	<	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	μg/L			6	65	12		35	40	7	12	76	32
Aluminum (0.2µm)	μg/L	75	100	_1	< 5.0	< 5.0	<	5.0	11.0	2.0	< 1.0	< 1.0	1.3
Arsenic (total)	μg/L	100	5	0.9	< 1.0	< 1.0	<	1.0	0.9	0.9	0.8	0.9	0.9
Barium (total)	μg/L			21.6	23.0	22.0		22.7	24.6	24.2	21.6	23.3	23.0
Beryllium (total)	μg/L	1100		< 0.01	< 0.5	< 0.5	<	0.5	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	μg/L	200	1500	27	23	22		22	22	26	56	17	33
Bismuth (total)	μg/L			< 0.01	< 1.0	< 1.0	<	1.0	< 0.007	< 0.010	< 0.010	< 0.010	< 0.010
Calcium (total)	μg/L			36800	34500	32500		36667	36150	36200	34800	39500	36833
Cadmium (total)	μg/L	0.2	0.09	0.005	< 0.100	< 0.100	<	0.100	0.004	0.005	0.008	0.003	0.005
Cobalt (total)	μg/L	0.9		0.787	< 0.500	< 0.500	<	0.500	0.059	0.019	0.012	0.089	0.040
Chromium (total)	μg/L			0.4	< 5.0	< 5.0	<	5.0	0.74	0.27	0.19	0.31	0.26
Copper (total)	μg/L	5		0.9	2.0	1.4		1.0	1.0	0.9	0.7	0.9	0.8
Iron (total)	μg/L	300	300	14	120	< 100	<	100	43	9	10	96	38
Potassium (total)	μg/L			1630	1650	1500		1533	1655	1690	1510	1710	1637
Magnesium (total)	μg/L			8635	8800	8550		8933	8250	9940	8320	8300	8853
Manganese (total)	μg/L			1.2	5.6	< 2.0		3.0	2.61	1.46	0.91	5.76	2.71
Molybdenum (total)	μg/L	40	73	1.5	1.2	1.2		1.2	1.96	1.24	1.21	1.22	1.22
Sodium (total)	μg/L			13300	13500	13500		14000	12800	15200	13700	14100	14333
Nickel (total)	μg/L	25	25	0.6	< 1.0	< 1.0	<	1.0	0.6	0.5	0.6	0.6	0.6
Phosphorus (total)	μg/L	10-30		7	11	5		8	8	13	< 3	12	9
Lead (total)	μg/L	5	7	0.03	< 0.50	< 0.50	<	0.50	0.02	< 0.09	< 0.09	0.11	0.10
Antimony (total)	μg/L	20		0.2	< 0.5	< 0.5	<	0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.17	< 2.0	< 2.0	<	2.0	0.14	0.15	0.21	0.17	0.18
Tin (total)	μg/L			0.04	< 1.0	< 1.0	<	1.0	0.09	0.12	0.07	< 0.06	0.08
Strontium (total)	μg/L			178	165	165		163	205	200	175	176	184
Titanium (total)	μg/L			_1	5.55	< 5.00		5.25	1.78	0.42	0.41	3.71	1.51
Thallium (total)	μg/L	0.3	0.8	0.005	< 0.050	< 0.050	<	0.050	0.007	0.005	< 0.005	0.008	0.006
Uranium (total)	μg/L	5	15	0.452	0.355	0.540		0.380	0.381	0.425	0.317	0.381	0.374
Vanadium (total)	μg/L	6		0.19	0.58	< 0.50		0.62	0.45	0.22	0.19	0.36	0.26
Zinc (total)	μg/L	30	30	2.5	< 5.0	< 5.0	<	5.0	< 2.0	< 2.0	< 2.0	3.0	2.3
Lead-210	Bq/L			< 0.02	< 0.02	< 0.10	<	0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		0.01	< 0.04	< 0.04	<	0.04	< 0.01	< 0.01	< 0.01	0.01	0.01
Thorium-230	Bq/L			< 0.02	< 0.07	< 0.07	<	0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.06	<	0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters				_	_								
ODO % Sat	%			_2	_2	_2		-2	_2	107.4	98.5	102.8	
ORP	mV			_2	_2	_2		_²	_2	130.7		118.8	
SPC	μs/cm			_2	_2	_2		_2	_2	313.4	303.8	327.6	
Temperature	℃			_2	_2	_2		_2	_2	9.471	13.349	8.154	
Turbidity	FNU			_2	_2	_2		_2	_2	7.1	0.79	12.33	
pH	Units			_2	_2	_2		_²	_2	8.62		7.98	
Staff Gauge	cm			_2	- 2	_2	1	- 2	_2				

Notes:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 50 de 159

Tableau 59 : Eaux de surface – diffuseur du lac Ontario – à l'extérieur de la limite ouest de la zone de mélange (BC-LO-W)

Page 51 de 159

								BC-LO-V	N			
		Crif	eria	2016	2017	2018	2019	2020		20	21	
Parameter	Units	PWQO	CWQG	2010	2011	Average	20.0	2020	2021-06-16	2021-09-13		Average
Total Suspended Solids	mg/L	11140	omac	2	4	1	2	3	6	< 2	11	6
pH	no unit	6.5-8.5	6.5-9.0	8.43	8.18	8.16	8.26	8.09	8.23	8.08	7.86	8.06
Alkalinity	mg/L as CaCO ₃	0.0-0.0	0.0-0.0	93	97	98	99	95	93	98	95	95
Carbonate	mg/L as CaCO ₃			< 2.0	1.4	1.3	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃			93	95	96	94	95	93	98	95	95
Total Dissolved Solids	mg/L do cacca			176	199	143	162	214	154	177	154	162
Fluoride	mg/L		0.12	0.13	0.11	0.13	0.10	0.11	0.11	0.11	0.12	0.11
Total Organic Carbon	mg/L		- ···-	2.1	2.3	2.1	2.3	1.5	2.0	2.0	2.0	2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.04	< 0.05	< 0.05	0.05	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Chloride (Dissolved)	mg/L		120	24	22	22	22	24	25	23	25	24
Sulphate (dissolved)	mg/L			24	23	24	23	22	22	23	22	22
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.23	0.23	0.30	0.28	0.30	0.30	0.30	0.38	0.33
Nitrate + Nitrite (as N)	as N mg/L			0.23	0.23	0.30	0.28	0.30	0.30	0.30	0.38	0.33
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO₃			125	125	120	137	125	126	119	144	130
Silver (total)	μg/L	0.1	0.25	0.002	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	μg/L			5	45	12	43	50	5	11	259	92
Aluminum (0.2µm)	μg/L	75	100	_1	< 5.0	< 5.0	< 5.0	4.5	2.0	< 1.0	< 1.0	1.3
Arsenic (total)	μg/L	100	5	0.8	< 1.0	< 1.0	< 1.0	0.9	0.8	0.7	1.0	0.8
Barium (total)	μg/L			21.6	22.0	22.5	22.3	23.3	23.2	21.3	26.2	23.6
Beryllium (total)	μg/L	1100		< 0.01	< 0.5	< 0.5	< 0.5	< 0.007	< 0.007	< 0.007	0.008	0.007
Boron (total)	μg/L	200	1500	27	24	22	23	20	25	60	21	35
Bismuth (total)	μg/L			< 0.01	< 1.0	< 1.0	< 1.0	0.010	< 0.010	< 0.010	0.010	0.010
Calcium (total)	μg/L			35800	33500	32000	36667	36050	34800	34100	43600	37500
Cadmium (total)	μg/L	0.2	0.09	0.008	< 0.100	< 0.100	< 0.100	0.007	0.003	0.005	0.015	0.008
Cobalt (total)	μg/L	0.9		0.254	< 0.500	< 0.500	< 0.500	0.047	0.015	< 0.004	0.158	0.059
Chromium (total)	μg/L			0.4	< 5.0	< 5.0	< 5.0	0.25	0.22	0.35	0.62	0.40
Copper (total)	μg/L	5		0.8	1.7	2.0	< 1.0	1.1	0.8	0.6	1.2	0.9
Iron (total)	μg/L	300	300	11	< 100	< 100	< 100	63	< 7	12	317	112
Potassium (total)	μg/L			1610	1600	1500	1533	1640	1630	1510	1940	1693
Magnesium (total)	μg/L			8660	8750	8350	9000	8385	9520	8320	8620	8820
Manganese (total)	μg/L			0.7	3.8	< 2.0	3.0	4.54	0.98	0.83	16.98	6.26
Molybdenum (total)	μg/L	40	73	1.3	1.2	1.2	1.1	1.24	1.24	1.20	1.73	1.39
Sodium (total)	μg/L			13350	14000	13500	13667	12600	14500	13800	14100	14133
Nickel (total)	μg/L	25	25	0.6	< 1.0	< 1.0	< 1.0	8.0	0.5	0.6	0.9	0.7
Phosphorus (total)	μg/L	10-30		5	9	5	9	9	6	4	31	14
Lead (total)	μg/L	5	7	0.02	< 0.50	< 0.50	< 0.50	0.09	< 0.09	< 0.09	0.29	0.16
Antimony (total)	μg/L	20		0.3	< 0.5	< 0.5	< 0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.16	< 2.0	< 2.0	< 2.0	0.13	0.13	0.16	0.20	0.16
Tin (total)	μg/L			< 0.01	< 1.0	< 1.0	< 1.0	0.09	0.11	< 0.06	< 0.06	0.08
Strontium (total)	μg/L			173	165	160	167	191	190	175	195	187
Titanium (total)	μg/L			1	< 5.00	< 5.00	< 5.40	2.34	0.18	0.44	12.90	4.51
Thallium (total)	μg/L	0.3	0.8	0.006	< 0.050	< 0.050	< 0.050	0.007	0.005	< 0.005	0.008	0.006
Uranium (total)	μg/L	5	15	0.353	0.355	0.325	0.380	0.353	0.375	0.311	0.391	0.359
Vanadium (total)	μg/L	6		0.20	0.55	< 0.50	< 0.59	0.31	0.20	0.20	0.78	0.39
Zinc (total)	μg/L	30	30	2.5	< 5.0	< 5.0	< 5.0	2.5	3.0	< 2.0	2.0	2.3
Lead-210	Bq/L			0.03	< 0.02	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	1		0.02	< 0.04	< 0.04	< 0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L			< 0.02	< 0.07	< 0.07	< 0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	ļ		< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters				,								
ODO % Sat	%			_2	_2	_2	_2	_2	111.3	98.8	100.8	
ORP	mV			_2	_2	_²	_2	_2	130.3		118.2	
SPC	μs/cm			_2	_2	_2	_2	_2	312.6	303.7	308.2	
Temperature	°C			_2	_2	_2	_2	_2	9.978	13.291	7.903	
Turbidity	FNU			_2	_2	_2	_2	_2	3.24	0.9	12.44	
pH	Units			_2	_2	_2	_2	_2	8.66		7.96	
Staff Gauge	cm		1	_2	_2	_2	_2	-2				

Notes:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

--- Nodata

Tableau 60 : Qualité des eaux de drainage – IGLTD-PH – Emplacement 1 (WC-SW3-02)

Page 52 de 159

		WC-SW3-02																
		2016		2017	2018	3		2019		2020		2021						
Parameter	Units				Avera	age					2021-05-11	2021-11-1	6 Average					
Total Suspended Solids	mg/L	11		5	19	10		11		38	112	52	82					
pH	no unit	8.26		8.17	8.1	6		8.07		8.10	8.02	7.87	7.95					
Alkalinity	mg/L as CaCO ₃	285		305	30	0		265	Т	256	554	220	387					
Carbonate	mg/L as CaCO ₃	3.6		4.2	4.:	2		3.0	<	1.0	< 1.0	< 1.0	< 1.0					
Bicarbonate	mg/L as CaCO ₃	280		300	30	0		255	T	256	554	220	387					
Total Dissolved Solids	mg/L	371		337	61	0		1190	T	1210	2530	674	1602					
Fluoride	mg/L	0.10	<	0.10	< 0.1	0	<	0.10	<	0.06	0.13	0.10	0.12					
Total Organic Carbon	mg/L	4.6		3.5	4.3	3		3.3		3.0	3.0	6.0	4.5					
Ammonia+Ammonium (N)	as N mg/L	0.05	<	0.05	0.0)6	<	0.05		0.05	0.05	0.21	0.13					
Chloride (Dissolved)	mg/L	11.4		15	99	9		385		455	760	160	460					
Sulphate (dissolved)	mg/L	29		25	40	0		64		68	300	64	182					
Bromide (dissolved)	mg/L	0.7	<	1	2	2		7		8	13.2	2.1	8					
Nitrite (as N)	as N mg/L	0.023	<	0.014	< 0.0	10	<	0.020	<	0.030	2.24	0.09	1.17					
Nitrate (as N)	as N mg/L	0.51		1.41	1.5	6		2.21		1.64	2.54	1.45	2.00					
Nitrate + Nitrite (as N)	as N mg/L	0.52		1.41	1.5	6		2.23		1.64	4.78	1.54	3.16					
Mercury (dissolved)	μg/L	< 0.01	<	0.01	< 0.0)1	<	0.01	<	0.01	< 0.01	< 0.01	< 0.01					
Hardness	mg/L as CaCO ₃	304		310	45	5		780		915	1490	430	960					
Silver (total)	μg/L	0.08	<	0.10	0.2	23	<	0.10	<	0.05	0.09	0.05	0.07					
Aluminum (total)	μg/L	192		130	300	00		81		69	1100	146	623					
Aluminum (0.2µm)	μg/L	_1	<	5	2	1		6		6	15	6	11					
Arsenic (total)	μg/L	1425		830	89	0		335		430	2070	182	1126					
Barium (total)	μg/L	30		30	8	1		106		90	318	116	217					
Beryllium (total)	μg/L	0.25	<	0.50	< 0.5	50	<	0.50	<	0.007	0.028	< 0.007	0.018					
Boron (total)	μg/L	42		32	42	2		51		63	104	141	123					
Bismuth (total)	μg/L	0.5	<	1.0	5.	5	<	1.0		0.3	94.6	1.23	47.9					
Calcium (total)	μg/L	99050		107500	1700	000		220000		267000	369000	11600	242500					
Cadmium (total)	μg/L	0.05	<	0.10	< 0.1	0	<	0.10		0.09	4.92	0.071	2.50					
Cobalt (total)	μg/L	5.5		1.4	54.	.1		3.0		39.0	4370	90.3	2230					
Chromium (total)	μg/L	2.7	<	5.0	< 5.	0	<	5.0		0.6	2.95	0.70	1.8					
Copper (total)	μg/L	4.5		1.4	52	.6		2.9		22.8	4380	68	2224					
Iron (total)	μg/L	377		200	315	50		140		433	5980	361	3171					
Potassium (total)	μg/L	1112		870	16	50		2150		1910	6650	4130	5390					
Magnesium (total)	μg/L	12550		13500	205	00		51500		60200	139000	34200	86600					
Manganese (total)	μg/L	65		58	17	'5		75		212	3880	56	1968					
Molybdenum (total)	μg/L	3.7		2.6	3.:	2		2.0		2.8	9.51	4.31	6.9					
Sodium (total)	μg/L	28400		23000	360	000		53500		57100	257000	31700	144350					
Nickel (total)	μg/L	6.4		3.6	41.	.7		4.7		26.0	3030	75.6	1553					
Phosphorus (total)	mg/L	0.096		0.040	0.2	15		0.043		0.009	98	29	64					
Lead (total)	μg/L	0.88	<	0.50	9.7	' 5	<	0.50		4.62	1270	14	642					
Antimony (total)	μg/L	5.3		2.5	3.	8		2.6		2.5	8.6	3.5	6.1					
Selenium (total)	μg/L	3.1	<	2.0	< 2.	0	<	2.0		1.9	0.61	0.35	0.48					
Tin (total)	μg/L	0.5	<	1.0	< 1.	0	<	1.0		0.1	0.08	< 0.06	0.07					
Strontium (total)	μg/L	188		200	40	15		635		803	1110	438	774					
Titanium (total)	μg/L	16		7.6	14	5		7		2.8	52.4	8.67	30.5					
Thallium (total)	μg/L	0.03	<	0.05	0.0)5	<	0.05	<	0.005	0.085	0.010	0.048					
Uranium (total)	μg/L	542		450	42	25		445		528	3610	341	1976					
Vanadium (total)	μg/L	2.7		1.9	7.3	3		1.5		1.6	4.51	1.31	2.91					
Zinc (total)	μg/L	4		9	22	2		8		15	710	14	362					
Lead-210	Bq/L	< 0.02		0.03	0.1	5	<	0.10		0.18	79	0.80	40					
Radium-226	Bq/L	0.11	<	0.04	0.2	28		0.16		0.08	0.26	0.12	0.19					
Thorium-230	Bq/L	0.05	<	0.07	0.2	28	<	0.07	<	0.02	0.07	< 0.02	0.05					
Thorium-232	Bq/L	_1	<	0.06	< 0.0)6	<	0.06	<	0.02	0.09	< 0.02	0.06					
Field Parameters																		
ODO % Sat	%	_2		_2	_2	2		_2	П	_2	96.1	101.1						
ORP	mV	_2		_2	_2	2		_2		_2	146.7	116.2						
SPC	us/cm	_2		_2	_2	2		_2	Т	_2	3070	973						
Temperature	°C	_2		_2	_2	2		_2		_2	9.039	8.413						
Turbidity	FNU	_2		_2	_2	2		_2		_2	47.7	62.97						
pH	Units	_2		_2	_2			_2	Т	_2	7.86	7.79						

Note:

<sup>Analysis not included in laboratory contract.
Field parameters included for current sampling year only.</sup>

n/a – Not Applicable. -- - No data.

Page 53 de 159

Tableau 61: Qualité des eaux de drainage – IGLTD-PH – Emplacement 2 (WC-SW4-02)

					WC-S	SW4-02		
		2016	2	017	2018	2019	2020	2021
Parameter	Units	Av	erage		No Sample	No Sample	No Sample	No Sample
Total Suspended Solids	mg/L	9	T	310	· ·	·		•
pH	no unit	8.09		7.92				
Alkalinity	mg/L as CaCO ₃	250		310				
Carbonate	mg/L as CaCO ₃	2.8		2.4				
Bicarbonate	mg/L as CaCO ₃	250		300				
Total Dissolved Solids	mg/L	452		492				
Fluoride	mg/L	0.10	<	0.10				
Total Organic Carbon	mg/L	4.6		12.0				
Ammonia+Ammonium (N)	as N mg/L	< 0.05	<	0.05				
Chloride (Dissolved)	mg/L	61.0		80				
Sulphate (dissolved)	mg/L	65		56				
Bromide (dissolved)	mg/L	< 1.0	<	1				
Nitrite (as N)	as N mg/L	0.012	<	0.010				
Nitrate (as N)	as N mg/L	< 0.10	<	0.10				
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10				
Mercury (dissolved)	μg/L	< 0.01	<	0.01				
Hardness	mg/L as CaCO ₃	310		360				
Silver (total)	μg/L	< 0.10	<	0.10				
Aluminum (total)	μg/L	36		1500				
Aluminum (0.2µm)	μg/L	_1	<	5.0				
Arsenic (total)	μg/L	< 1		23				
Barium (total)	μg/L	23.0		44				
Beryllium (total)	μg/L	< 0.50	<	0.50				
Boron (total)	μg/L	11		19				
Bismuth (total)	μg/L	< 1.0	<	1.0				
Calcium (total)	μg/L	110000	1	40000				
Cadmium (total)	μg/L	< 0.10	<	0.10				
Cobalt (total)	μg/L	< 0.5		6.8				
Chromium (total)	μg/L	< 5.0	<	5.0				
Copper (total)	μg/L	< 1.0		5.7				
Iron (total)	μg/L	210		4400				
Potassium (total)	μg/L	1700		420				
Magnesium (total)	μg/L	5800		6800				
Manganese (total)	μg/L	7		420				
Molybdenum (total)	μg/L	< 0.5	<	0.5				
Sodium (total)	μg/L	42000		48000				
Nickel (total)	μg/L	< 1.0		4.7				
Phosphorus (total)	mg/L	0.01		0.11				
Lead (total)	μg/L	< 0.50		3.10				
Antimony (total)	μg/L	< 0.5	<	0.5				
Selenium (total)	μg/L	< 2.0	<	2.0				
Tin (total)	μg/L	< 1.0	<	1.0				
Strontium (total)	μg/L	260		330				
Titanium (total)	μg/L	< 5		64.0				
Thallium (total)	μg/L	< 0.05	<	0.05				
Uranium (total)	μg/L	1		2				
Vanadium (total)	μg/L	< 0.5		3.1				
Zinc (total)	μg/L	< 5		9				
Lead-210	Bq/L	< 0.02		0.08				
Radium-226	Bq/L	< 0.04		0.15				
Thorium-230	Bq/L	< 0.07		0.31				
Thorium-232	Bq/L	_1	<	0.06				
Field Parameters								
ODO % Sat	%	_2		_2				
ORP ORP	mV	_2		_2				
SPC	us/cm	_2		_2				
Temperature	°C	_2		_2				
Turbidity	FNU	_2		_2				
pH	Units	_2		_2				
Note:	Office		-					

¹ Analysis not included in laboratory contract.
² Field parameters included for current sampling year only.

n/a - Not Applicable.

^{- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 54 de 159

Tableau 62 : Qualité des eaux de drainage – IGLTD-PH – Emplacement 3 (WC-SW5-02)

Page 55 de 159

							SW5-02	W5-02							
		2016		2017		2018		2019	202	20		2021			
Parameter	Units				١.	Average					2021-05-11	2021-11-16	Average		
Total Suspended Solids	mg/L	7		7		68		31		16	66	51	59		
pH	no unit	8.13		8.10		8.16		7.66	8	.08	8.09	7.84	7.97		
Alkalinity	mg/L as CaCO ₃	244		245		270		158	3	02	514	231	373		
Carbonate	mg/L as CaCO ₃	5.4		3.0		3.9	Г	2.4	< '	.0	< 1.0	< 1.0	< 1.0		
Bicarbonate	mg/L as CaCO ₃	240		240		260		158	3	02	514	231	373		
Total Dissolved Solids	mg/L	315		1347		663		1650	3:	240	2410	720	1565		
Fluoride	mg/L	0.10		0.18		0.10	<	0.10	0	.08	0.15	0.08	0.12		
Total Organic Carbon	mg/L	8		11		6		6		13	2	6	4.0		
Ammonia+Ammonium (N)	as N mg/L	0.05		0.06		0.08		0.10	< 0	.04	0.04	0.19	0.12		
Chloride (Dissolved)	mg/L	8.7		330		125		890	8	10	720	180	450		
Sulphate (dissolved)	mg/L	25		415		81		732	_	'43	290	65	178		
Bromide (dissolved)	mg/L	0.7	<	1.0		2.5		9.5		9.9	12	2	7		
Nitrite (as N)	as N mg/L	0.02	<	0.01	<	0.01		0.02		.17	1.99	0.07	1.03		
Nitrate (as N)	as N mg/L	0.24		0.34		1.10		0.99		.51	2.40	1.27	1.84		
Nitrate + Nitrite (as N)	as N mg/L	0.24		0.34		1.10	L	1.01	_	.52	4.40	1.34	2.87		
Mercury (dissolved)	μg/L	< 0.01	<	0.01	<	0.01	<	0.01		.01	< 0.01	< 0.01	< 0.01		
Hardness	mg/L as CaCO ₃	268		795		450		555		33	1460	460	960		
Silver (total)	μg/L	0.06	<	0.10	<	0.10	<	0.10		.05	0.06	< 0.05	0.06		
Aluminum (total)	μg/L	107 _1		150		1590	H	466	_	66	793	168	481		
Aluminum (0.2µm)	μg/L			5.5	<u> </u>	21	<	7		21	15	3	9		
Arsenic (total)	μg/L	1155		170	<u> </u>	585	-	168		05	1800	240	1020		
Barium (total)	μg/L	29		56	١.	83		81		87	290.0	106.0	198		
Beryllium (total)	μg/L	0.25	<	0.50	<	0.50	<	0.50		.01	0.018	0.008	0.013		
Boron (total)	μg/L	39		47	 	42	١.	63	_	58	99	140	120		
Bismuth (total)	μg/L	0.53	<	1.0	1	1.6	<	1.0).2	87.0	0.89	43.9		
Calcium (total) Cadmium (total)	μg/L μg/L	88500 0.06	<	285000 0.10	<	135000 0.10	<	160000 0.10		.18	358000 4.46	124000 0.142	241000 2.30		
Cobalt (total)	μg/L	2.3	_	2.2	÷	19.5	H	11.5)4.8	3920	163	2042		
Chromium (total)	μg/L	2.7	<	5.0	<	5.0	<	5.0	_	.4	2.71	1.53	2.1		
Copper (total)	μg/L	2.5	È	9.5	È	20.0	È	18.4		1.5	3740	60	1900		
Iron (total)	μg/L	192		275	T	1625	\vdash	865		03	5120	1740	3430		
Potassium (total)	μg/L	928		6900	T	2150	H	5750		930	5990	33300	19645		
Magnesium (total)	μg/L	9950		36000	t	23500	H	39500		500	137000	36400	86700		
Manganese (total)	μg/L	30		122	t	145	H	219	_	89	3400	352	1876		
Molybdenum (total)	µg/L	3.4		5.0		2.9	Г	1.4		5.7	8.55	27.60	18.1		
Sodium (total)	μg/L	25550		132500	ı	54000	T	724500		1300	241000	383000	312000		
Nickel (total)	μg/L	3.3		16.3		16.2	T	35.6	7	8.2	2700	142	1421		
Phosphorus (total)	mg/L	0.08		0.04		0.09	T	0.05	0	.03	76	47	62		
Lead (total)	μg/L	0.43	<	0.50		4.05		1.49	12	2.94	1120	17.9	569		
Antimony (total)	μg/L	3.3		1.3		2.3		1.3	1	.7	7.9	3.1	5.5		
Selenium (total)	μg/L	2.0	<	2.0	<	2.0	<	2.0	2	2.1	0.84	0.48	0.66		
Tin (total)	μg/L	0.5	٧	1.0	<	1.0	<	1.0	().2	0.06	< 0.06	0.06		
Strontium (total)	μg/L	166		570		410		500	8	17	1060	485	773		
Titanium (total)	μg/L	7.7		9.1	L	67		25		20	37.8	7.9	22.8		
Thallium (total)	μg/L	0.03	<	0.05	<	0.05	<	0.05		.01	0.067	0.010	0.039		
Uranium (total)	μg/L	323		460		295		246	_	88	3380	311	1846		
Vanadium (total)	μg/L	2.2		0.9		3.9	L	1.8		1.9	3.95	1.39	2.67		
Zinc (total)	μg/L	4		39		15	L	16		29	635	22	329		
Lead-210	Bq/L	0.03		0.02		0.12	L	0.46		.65	60	0.33	30		
Radium-226	Bq/L	0.07		0.06		0.27	L	0.36		.12	0.21	0.12	0.17		
Thorium-230	Bq/L	0.05	<	0.07	\vdash	0.26	L	0.18		.02	0.09	< 0.02	0.06		
Thorium-232	Bq/L	_1	<	0.06	<	0.06	<	0.06	< 0	.02	< 0.02	< 0.02	< 0.02		
Field Parameters		,		,	L	,	L	,		2					
ODO % Sat	%	_2		_²		_²	L	_²		_ ²	109.2	98.7			
ORP	mV ,	_2		_²		_2		_2 2		- ²	78.3	130.8			
SPC	us/cm	_2		_²		_2	L	_2		_²	3206	1121			
Temperature	°C	_2		_²	\vdash		L	_2 2		_²	10.041	6.97			
Turbidity	FNU	_2		_2	\vdash	_2	H	_2		_²	36.8	53.46			
pH	Units	-								-	8.07	7.85			

Note:

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only. n/a – Not Applicable.

^{- -} No data.

Page 56 de 159

Tableau 63 : Qualité des eaux de drainage – IGLTD-PH – Emplacement 4 (WC-SW6-02)

						6-02	02								
		2016		2017	20	018	П	2019	T	2020				2021	
Parameter	Units				Ave	erage	_		-		20	21-05-11	20	21-11-16	Average
Total Suspended Solids	mg/L	28		19		29	П	7		309		54		104	79
pH	no unit	8.06		8.05		8.04		8.01	T	7.93		8.11		7.93	8.02
Alkalinity	mg/L as CaCO ₃	181		190		190	H	220	t	294		232		181	207
Carbonate	mg/L as CaCO ₃	4.0		2.0		2.0		2.1	<	1.0	<	1.0	<	1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃	178		185	_	185	H	215	Ħ	294		232		181	207
Total Dissolved Solids	mg/L	236	1	231	_	315		353		549		1080		840	960
Fluoride	mg/L	0.11	<	0.10	_	0.10	<	0.10	<	0.06	<	0.06	<	0.06	0.06
Total Organic Carbon	mg/L	8.5		5.8	_	6.9	Ė	7.8	Ħ	2.0		3		3	3.0
Ammonia+Ammonium (N)	as N mg/L	0.05	<	0.05	_	0.08	<	0.05	T	0.04	<	0.04		0.04	0.04
Chloride (Dissolved)	mg/L	5.2		16		31	H	36	T	137		360		260	310
Sulphate (dissolved)	mg/L	15		10		16		21	T	41		68		51	60
Bromide (dissolved)	mg/L	0.7	<	1	<	1	<	1	T	2		5		4	4
Nitrite (as N)	as N mg/L	0.020	<	0.010	< (0.010	<	0.010	<	0.030	<	0.03	<	0.03	0.03
Nitrate (as N)	as N mg/L	0.14		0.45	_	0.50	T	0.72	_	1.97		2.06		0.96	1.51
Nitrate + Nitrite (as N)	as N mg/L	0.14		0.45	_	0.50	T	0.72		1.97		2.06		0.96	1.51
Mercury (dissolved)	µg/L	< 0.01	<	0.01		0.01	<	0.01	<	0.01	<	0.01	<	0.01	< 0.01
Hardness	mg/L as CaCO ₃	205		210	_	250	T	280	T	520		859		652	756
Silver (total)	μg/L	0.05	<	0.10	_	0.10	<	0.10	<	0.05	<	0.05	<	0.05	0.05
Aluminum (total)	μg/L	156		340		129		50		4780		439		669	554
Aluminum (0.2µm)	μg/L	_1		6.0	_	6.5	T	6.0	T	9.0		4		5	5
Arsenic (total)	μg/L	176		81	_	126		83		43		55.5		70.7	63
Barium (total)	μg/L	30		29		32		37		137		134		97	115
Beryllium (total)	μg/L	0.26	<	0.50	<	0.50	<	0.50	T	0.17		0.016		0.038	0.027
Boron (total)	μg/L	35		26		25		24		34		49		47	48
Bismuth (total)	μg/L	0.5	<	1.0	<	1.0	<	1.0	T	0.0		0.090		0.010	0.1
Calcium (total)	μg/L	71450		75000	7	8500		89000	T	177500		262000		212000	237000
Cadmium (total)	μg/L	0.07	<	0.10		0.10	<	0.10		0.02		0.01		0.012	0.01
Cobalt (total)	μg/L	0.3	<	0.5	_	0.5	<	0.5		2.7		1.9		0.9	1
Chromium (total)	μg/L	2.9	<	5.0	_	5.0	<	5.0	T	6.8		1.01		0.95	1.0
Copper (total)	μg/L	1.2	<	1.1	<	1.0	<	1.1		7.9		2		2	2
Iron (total)	μg/L	321		415		295		140	Т	5200		541		803	672
Potassium (total)	μg/L	790		710		685		890	T	2750		2240		1280	1760
Magnesium (total)	μg/L	5635		6150		7100		8100		18700		49900		30000	39950
Manganese (total)	μg/L	32		25		30		18	T	182		77		131	104
Molybdenum (total)	μg/L	1.8		1.2		1.3		1.2		1.3		1.77		1.42	1.6
Sodium (total)	μg/L	8705		7850	1	0200		13000		21300		31800		25100	28450
Nickel (total)	μg/L	1.5	<	1.0		1.1	<	1.0		4.4		3.2		1.1	2
Phosphorus (total)	mg/L	0.07		0.04		0.04		0.04		0.26		39		169	104
Lead (total)	μg/L	1.29		0.87		0.80	<	0.50		2.11		0.73		0.75	1
Antimony (total)	μg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.9	<	0.9	0.9
Selenium (total)	μg/L	1.2	<	2.0	<	2.0	<	2.0		1.2		2.98		1.02	2.00
Tin (total)	μg/L	0.6	<	1.0	<	1.0	<	1.0	T	0.2		0.08	<	0.06	0.07
Strontium (total)	μg/L	123		125		130		160	T	402		659		427	543
Titanium (total)	μg/L	6		16.4		9	<	5		256		24		27	25.6
Thallium (total)	μg/L	0.03	<	0.05	<	0.05	<	0.05	T	0.06		0.009		0.007	0.008
Uranium (total)	µg/L	61		42		57		75	T	66		457		193	325
Vanadium (total)	μg/L	1.7		1.4		1.3		1.0		10.8		2.3		2.3	2.34
Zinc (total)	μg/L	14	<	5	<	5	<	5	T	14		75		4	40
Lead-210	Bq/L	0.02		0.02	<	0.10	<	0.10	<	0.02		0.02	<	0.02	0.02
Radium-226	Bq/L	0.03	<	0.04	<	0.04	<	0.04		0.01		0.02	<	0.01	0.02
Thorium-230	Bq/L	0.05	<	0.07		0.07	<	0.07	<	0.02	<	0.02	<	0.02	< 0.02
Thorium-232	Bq/L	_1	<	0.06	_	0.06	<	0.06	<	0.02	<	0.02	<	0.02	< 0.02
Field Parameters	i i						T		T						
ODO % Sat	%	_2		_2		_2	П	_2	т	_2		85.2		99.1	
ORP ORP	mV	_2		_2		_2		_2	Н	_2		131.3		95.7	
SPC	us/cm	_2		_2		_2	т	_2	Н	_2		405.9		1170	
Temperature	°C	_2		_2		_2		_2	Н	_2		12.529		3.223	
Turbidity	FNU	_2		_2		_2	т	_2	Н	_2		18.5		104.37	
pH	Units	_2		_2		_2		_2		_2		8.14		8.20	
Note:	J						-		_			U. 1-T		0.20	

Note:

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

n/a – Not Applicable. -- - No data.

Page 57 de 159

Tableau 64: Qualité des eaux de surface – ruisseau Brewery – en amont – (GRT-3)

				2018 2019 2020								GRT-3									
			eria		2018				2020					_	2021						
Analysis	Units	PWQO	CWQG			Α	verage			20	21-01-13	20:	21-05-12	20	21-07-22	202	21-10-19	Α١	verage		
Total Suspended Solids	mg/L				12		12		13		9		4		3		4		5		
pH	no unit	6.5-8.5	6.5-9.0		8.20		8.21	<u> </u>	8.24		8.14		8.21		8.22		8.22		8.20		
Alkalinity	mg/L as CaCO ₃				258		248	<u> </u>	248		242		239		261		244		247		
Carbonate	mg/L as CaCO ₃				3.8		3.7	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0		
Bicarbonate	mg/L as CaCO ₃				258		243	<u> </u>	248		242		239		261		244		247		
Total Dissolved Solids	mg/L				560		584	<u> </u>	570		590		609		614		614	<u> </u>	607		
Fluoride	mg/L		0.12	<	0.10		0.11	<u> </u>	0.06	<	0.06	<	0.06	<	0.06	<	0.06	<	0.06		
Total Organic Carbon	mg/L				2		2	<u> </u>	1		2		2		2		1		2		
Ammonia+Ammonium (N)	as N mg/L				0.06		0.06	<u> </u>	0.04		0.04	<	0.04	<	0.04	<	0.04	<u> </u>	0.04		
Chloride (Dissolved)	mg/L		120		145		150	₩	172		170	_	200		200	_	170	-	185		
Sulphate (dissolved)	mg/L			_	24		25	!	24		25		24		24	_	24	!	24		
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3		
Nitrite (as N)	as N mg/L		40	<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03		
Nitrate (as N)	as N mg/L		13		3.34		3.43	<u> </u>	3.83		4.32		4.08		4.01	_	4.01	-	4.11		
Nitrate + Nitrite (as N)	as N mg/L		0.000	_	3.34	١.	3.43	-	3.83		4.32	ŀ.	4.08	-	4.02	ļ.,	4.01	<u> </u>	4.11		
Mercury (dissolved)	μg/L	0.2	0.026	<	0.01	<	0.01	╀	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<u> </u>	0.01		
Hardness Silver (total)	mg/L as CaCO ₃	0.4	0.25	<	313	_	330	Ł	355	L	360	_	351	_	360	Ļ	368	L	360		
Silver (total)	μg/L	0.1	0.25	_	0.1 82	<	0.1	<	0.1 111	<	0.05 29	<	0.05 18	<	0.05 37	<	0.05 25	È	0.05 27		
Aluminum (total)	μg/L	75	100	\vdash			68 5	Ͱ	3	\vdash	3	\vdash	18 4	\vdash	4	\vdash	3	\vdash			
Aluminum (0.2µm)	μg/L	100	100 5	<	6	<	1.0	╀	0.4	\vdash	0.3	\vdash	0.3	\vdash	0.5	\vdash	0.4	\vdash	0.4		
Arsenic (total)	μg/L	100	- 5	_	1.0 120	`	115	╁	123	H	127	\vdash	143		131	\vdash	134	\vdash	134		
Barium (total) Beryllium (total)	μg/L μg/L	1100		<	0.500	<	0.500	╁	0.009	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007		
Boron (total)	μg/L	200	1500	<u>`</u>	33	`	32	+	30	È	31	È	40	È	35	<u>`</u>	28	 	34		
Bismuth (total)	μg/L	200	1500	<	1.0	<	1.0	1	0.008	<	0.007	<	0.010	<	0.010		0.030		0.014		
Calcium (total)	μg/L			_	99000	`	99250	1	112250	È	113000	È	109000	<u> </u>	115000		116000		113250		
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10	 	0.012		0.004	\vdash	0.006		0.010	 	0.005	 	0.006		
Cobalt (total)	μg/L	0.9	0.03	<	0.50	<	0.50	1	0.102		0.004	-	0.052		0.075		0.003	<u> </u>	0.065		
Chromium (total)	μg/L	0.5		<	5.0	<	5.0	H	1.92		1.78		1.25		1.20		1.24	┢	1.37		
Copper (total)	μg/L	5		<	1.0	<	1.1	╁	1.1		0.5		0.3		0.7		0.3	\vdash	0.5		
Iron (total)	μg/L	300	300	Ė	170	Ė	138	\vdash	168		94		53		196		87	\vdash	108		
Potassium (total)	µg/L				1125		1150	\vdash	1250		1260		1250		1660		1490	\vdash	1415		
Magnesium (total)	μg/L				18750		17750	t	18200		18800		19000		17900		18800	H	18625		
Manganese (total)	μg/L				18.3		16.0	t	17.2		14.0		9.1		13.1	\vdash	15.0	H	12.8		
Molybdenum (total)	μg/L	40	73	<	0.50	<	0.50	t	0.24		0.22		0.20		0.18	Н	0.20	l	0.20		
Sodium (total)	µg/L				85500		80500		83400		81600		82500		86600		87800		84625		
Nickel (total)	μg/L	25	25	<	1.0	<	1.0		0.4		0.4		0.3		2.3		0.3		0.8		
Phosphorus (total)	mg/L	10-30			18		17		19		10		8		21		12		13		
Lead (total)	μg/L	5	7		0.54		0.51		0.34		0.34		0.12		0.23		0.13		0.21		
Antimony (total)	µg/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9		
Selenium (total)	μg/L	100	1	<	2.0	<	2.0		0.34		0.33		0.30		0.26		0.28		0.29		
Tin (total)	μg/L			<	1.0	<	1.0		0.09		0.22	<	0.06		0.09		0.07		0.11		
Strontium (total)	μg/L				230		228		248		279		295		254		276		276		
Titanium (total)	μg/L				5.70		6.13		4.11		1.23		0.70		1.40		1.26		1.15		
Thallium (total)	μg/L	0.3	0.8	<	0.050	<	0.050		0.006	<	0.005	<	0.005		0.005		0.005		0.005		
Uranium (total)	μg/L	5	15		1.07		1.03		0.99		1.15		1.26		0.97		0.89		1.07		
Vanadium (total)	μg/L	6			0.94		0.90		0.89		0.80		0.68		0.66		0.63		0.69		
Zinc (total)	μg/L	30	30	<	5	<	5		4		3	<	2		3	L	2	L	3		
Lead-210	Bq/L			<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		
Radium-226	Bq/L	1		<	0.04	<	0.04	<	0.01	<	0.01	<	0.01		0.02		0.02		0.02		
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02		
Field Parameters																					
ODO % Sat	mg/L				_1		_1		_1		89.9		98.5		98.5		98				
ORP	mV				_1		_1		_1		144.4		142.4		116.7		148				
SPC	μs/cm				_1		_1		_1		877		1000		1059		1077				
Temperature	°C				_1		_1		_1		5.668		11.461		14.056		10.271				
Turbidity	FNU				_1		_1		_1		-2.46		1.23		1.67						
rurbiuity																					
pH	Units				_1		_1		_1		8.21		8.33		8.00		8.13				

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 58 de 159

Tableau 65: Qualité des eaux de surface – ruisseau Brewery – en aval – (GRT-3B)

Page 59 de 159

											GRT	-3B							
		Crit	eria		2018		2019		2020						2021				
Analysis	Units	PWQO	CWQG			-	verage			20	21-01-13	20	21-05-12	20	021-07-22	20	21-10-19	A۱	verage
Total Suspended Solids	mg/L				1		6		2		2	<	2		2		2		2
pH	no unit	6.5-8.5	6.5-9.0		8.09		8.17		8.18		8.11		8.22		8.07		8.08		8.12
Alkalinity	mg/L as CaCO₃				253		233		244		244		234		219		240		234
Carbonate	mg/L as CaCO ₃				2.9		3.3	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				248		228		244		244		234		219		240		234
Total Dissolved Solids	mg/L				551		535		565		610		620		580		583		598
Fluoride	mg/L		0.12	<	0.10	<	0.10		0.06		0.07	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2		3		2		2	L	2		3		2		2
Ammonia+Ammonium (N)	as N mg/L				0.09		0.11		0.05		0.05	<	0.04		0.05		0.07		0.05
Chloride (Dissolved)	mg/L		120		145		145		166		170	L	200		180		170		180
Sulphate (dissolved)	mg/L				38		23	<u> </u>	23		24	匚	23		22	L	23		23
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L				0.02		0.01	<	0.03	<	0.03	<	0.03	_	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		2.71		2.67	<u> </u>	3.40		4.10	┡	3.71	<u> </u>	2.94	<u> </u>	3.44		3.55
Nitrate + Nitrite (as N)	as N mg/L				2.72		2.68	L	3.40		4.10	₽	3.71	┡	2.97		3.44		3.56
Mercury (dissolved)	μg/L	0.2	0.026	<	0.01	<	0.01	1	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness Cityon (total)	mg/L as CaCO ₃	0.4	0.05	_	305	L	313	L	352	-	362	 	327	1	342	۱	341	L	343
Silver (total)	μg/L	0.1	0.25	<	0.1	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	μg/L	75	400	_	17	⊢	71	⊢	15	⊢	20	⊢	10	1	5	\vdash	3	\vdash	10
Aluminum (0.2µm)	μg/L	75 100	100 5	<	5 1.0	-	5	⊢	0.4	\vdash	3	\vdash	3	<	0.4	\vdash	3	\vdash	3 0.4
Arsenic (total) Barium (total)	μg/L μg/L	100	-	_	1.0	<	1.0	┢	118	\vdash	0.3 129	\vdash	0.3 138	⊢	120	\vdash	0.5 122	\vdash	127
Beryllium (total)	μg/L μg/L	1100		<	0.500	<	0.500	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	μg/L μg/L	200	1500	Ì	34	È	35	È	35	È	33	È	42	È	34	È	31	È	35
Bismuth (total)	μg/L	200	1500	<	1.0	<	1.0	<	0.007	<	0.007	<	0.010	┢	0.010	<	0.010		0.009
Calcium (total)	μg/L			È	92750	È	95000	È	110825	È	114000	È	101000	H	107000	È	108000		107500
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10	H	0.005		0.005	H	0.008	H	0.003	\vdash	0.003		0.005
Cobalt (total)	µg/L	0.9	0.03	<	0.50	<	0.50	H	0.051		0.058	\vdash	0.051	H	0.067		0.043		0.055
Chromium (total)	μg/L	0.0		<	5.0	<	5.0		0.93		1.27	H	1.04	H	0.77		0.87		0.99
Copper (total)	µg/L	5		Ė	1.0	Ė	1.1		0.9		0.5	H	0.2	H	0.3	<	0.2		0.3
Iron (total)	μg/L	300	300		100		193	l	44		70	Г	48	T	239		36		98
Potassium (total)	μg/L				1173	T	1300		1328		1360	Г	1240	Т	1300		1570		1368
Magnesium (total)	μg/L				18500	T	17250		18375		19100	Г	18000	Т	18100		17600		18200
Manganese (total)	μg/L				25.0		42.0		13.6		23.3		15.4		13.4		9.8		15.5
Molybdenum (total)	μg/L	40	73	<	0.50	<	0.50		0.21		0.19		0.18		0.18		0.22		0.19
Sodium (total)	μg/L				83750		80750		83425		80500		76500		86100		82500		81400
Nickel (total)	μg/L	25	25	<	1.0	<	1.0		0.2		0.3		0.2		1.3		0.2		0.5
Phosphorus (total)	mg/L	10-30			7		22		6		13	<	3		13		8		9
Lead (total)	μg/L	5	7	<	0.50		0.60		0.05		0.17	<	0.09	<	0.09	<	0.09		0.11
Antimony (total)	μg/L	20		<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	μg/L	100	1	<	2.0	<	2.0		0.26		0.34	L	0.31		0.23		0.22		0.28
Tin (total)	μg/L			<	1.0	<	1.0		0.07		0.14	<	0.06		0.13	<	0.06		0.10
Strontium (total)	μg/L				223	┕	213		250	Ш	289	匚	275		251	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	265		270
Titanium (total)	μg/L			<	5.00	┖	6.33	L	0.52	_	0.81	ㄴ	0.43	L	0.26	Ш	0.31	Ш	0.45
Thallium (total)	μg/L	0.3	0.8	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (total)	μg/L	5	15	_	1.85	L	1.85	_	1.56	—	1.80	╙	1.99	┺	1.18	╙	1.01	_	1.50
Vanadium (total)	μg/L	6		<u> </u>	0.74	\vdash	0.88	L	0.64	—	0.72	⊢	0.62	╙	0.54	\vdash	0.53	_	0.60
Zinc (total)	µg/L	30	30	—	5	<	5	1	3	⊢	2	<	2	⊢	2	<	2	L	2
Lead-210	Bq/L			<	0.10	<	0.10	<	0.02	<	0.02	<_	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1	ļ	<	0.04	<	0.04	H	0.01	<	0.01	<u> </u>	0.01	H.	0.02	<	0.01	L.	0.01
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	was /l				_1	⊢	_1	┞	_1	\vdash	01.5	⊢	104.0	⊢	101.0	\vdash	1100	H	
ODO % Sat	mg/L			<u> </u>		⊢	' _1	⊢		H	91.5	\vdash	124.2	⊢	124.8	\vdash	113.3	\vdash	
ORP	mV			\vdash		⊢	<u>-</u> ·	┝		⊢	149.2	⊢	159.2	⊢	99.3	\vdash	175.3	\vdash	
SPC	μs/cm			\vdash	1	\vdash	:	┝		⊢	836	⊢	974	⊢	1007	\vdash	1048	\vdash	
Temperature	°C			\vdash	1	⊢	: 1	-	<u>-'</u>	┢	3.93	\vdash	13.596	⊢	17.656	\vdash	11.352	\vdash	
Turbidity	FNU			\vdash	1	\vdash		⊢		⊢	-3.59	⊢	0.41	⊢	1.95	\vdash	7.00	\vdash	
pH	Units			<u> </u>	_1	\vdash	_1	⊢	_1	├	8.06	\vdash	8.32	Ͱ	7.82	\vdash	7.98	\vdash	
Staff Gauge	cm						-'					ட		1		Щ.			

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

-- - No data.

Tableau 66 : Qualité des eaux de surface - ruisseau de la promenade Highland Sud - en aval -

Page 60 de 159

(HC-D)

										HC-D									
		Crit	eria		2018		2019		2020						2021				
Analysis	Units	PWQO	CWQG			Α	verage			20:	21-01-19	202	21-05-17	202	21-09-07	202	21-11-09	Avei	rage
Total Suspended Solids	mg/L				2		8		5	<	2		2		2	٧	2		2
pH	no unit	6.5-8.5	6.5-9.0		8.14		8.19		8.17		8.12		8.16		8.17		8.21	8	3.17
Alkalinity	mg/L as CaCO ₃				295		280		279		275		273		275		287	2	278
Carbonate	mg/L as CaCO ₃				3.8		4.1	<	1.0	<	1.0	٧	1.0	<	1.0	٧	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				293		275		279		275		273		275		287	2	278
Total Dissolved Solids	mg/L				670		673		659		711		711		663		669	6	689
Fluoride	mg/L		0.12		0.14		0.11		0.13		0.11		0.11		0.13		0.12	0).12
Total Organic Carbon	mg/L				2		3		3		2		3		2		2		2
Ammonia+Ammonium (N)	as N mg/L				0.10		0.11		0.08		0.13	<	0.04	<	0.04		0.05		0.07
Chloride (Dissolved)	mg/L		120		175		173		195		190		200		190		190		193
Sulphate (dissolved)	mg/L				35		32		34		37		35		36		32		35
Bromide (dissolved)	mg/L			<	1.0		1.25	<	0.30	<	0.30	<	0.30	<	0.30	<	0.30		0.30
Nitrite (as N)	as N mg/L				0.02		0.03	<	0.03	٧	0.03	<	0.03	<	0.03	<	0.03		0.03
Nitrate (as N)	as N mg/L		13		3.54		3.16		3.79		4.19		3.77		3.53		3.73	_	3.81
Nitrate + Nitrite (as N)	as N mg/L				3.56		3.19		3.79		4.19		3.77		3.55		3.73		3.81
Mercury (dissolved)	μg/L	0.2	0.026	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01		0.01
Hardness	mg/L as CaCO₃			_	400	<u> </u>	395	<u> </u>	448		444		412	<u> </u>	399		467		431
Silver (total)	μg/L	0.1	0.25	<	0.10	<	0.10	<	0.05	٧	0.05	٧	0.05	<	0.05	٧	0.05	< 0	0.05
Aluminum (total)	μg/L			<u> </u>	16	<u> </u>	40	<u> </u>	31		5		7	<u> </u>	10	<	1		6
Aluminum (0.2µm)	μg/L	75	100	<u> </u>	5	<	5	<u> </u>	2		4		4	_	7		2		4
Arsenic (total)	μg/L	100	5	<u> </u>	7.9		8.4	<u> </u>	8.0		5.7		6.6		8.2		7.7		7.1
Barium (total)	μg/L				195		180		208		191		192		216		209		202
Beryllium (total)	μg/L	1100		<	0.500	<	0.500		0.016	<	0.007	<	0.007	<	0.007	<	0.007		.007
Boron (total)	μg/L	200	1500		460		458		484		379		417		536		421	_	438
Bismuth (total)	μg/L			<	1.0	<	1.0		0.010	<	0.007		0.010		0.030		0.020		.017
Calcium (total)	μg/L				120000		117500		137250		136000		125000		121000		142000		1000
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10		0.006		0.007		0.004	<	0.003		0.012	_	.007
Cobalt (total)	μg/L	0.9		<	0.50	<	0.50		0.221		0.135		0.125		0.098		0.184		.136
Chromium (total)	μg/L	_		<	5.0	<	5.0		0.48		0.81		0.50		0.40		0.41	_	0.53
Copper (total)	μg/L	5		<	1.0	<	1.0		1.1		0.5		0.3		0.2		0.3		0.3
Iron (total)	μg/L	300	300		228	_	315		290		244		220		133		272		217
Potassium (total)	μg/L			_	3025		3175		3833		3470		3060		2930		3700		290
Magnesium (total)	μg/L			-	25250	_	24000		25450		25700		24300		23300		27500		5200
Manganese (total)	μg/L	40		-	37.0	<u> </u>	52.0		38.2		40.6		32.4		12.0		46.3	_	32.8
Molybdenum (total)	µg/L	40	73		0.94	_	0.67		2.21		0.62		0.71		0.57		0.64		0.64
Sodium (total)	µg/L	0.5	05		80250	_	88250		87625		82400		79000		73200		89300		0975
Nickel (total)	µg/L	25	25	_	1.2	<	1.0		1.1		1.1 4		0.9		0.8		0.9	_	0.9
Phosphorus (total) Lead (total)	µg/L	10-30 5	7	<	8 0.50	<	17 0.50		35 0.39		0.12	<	0.09	<	12 0.09		9 0.17		10 0.12
_ ` '	µg/L	20	- /	·	0.50	<	0.50	<	0.39	٧	0.12	<i>'</i>	0.09	\ \	0.09	<	0.17	_	0.9
Antimony (total) Selenium (total)	μg/L	100	1	<i>'</i>	2.0	<	2.0	È	0.65	_	0.59	_	0.37	È	0.9	_	0.30		0.9
Tin (total)	μg/L μg/L	100		<	1.0	<	1.0		0.03		0.39		0.06	<	0.24		0.30		0.10
Strontium (total)	µg/L			È	313	È	298		347		366		382	È	336		383		367
Titanium (total)	µg/L			<	5.0	Н	5.40		3.01		0.43		0.38		0.44		0.26		0.38
Thallium (total)	µg/L	0.3	0.8	<u> </u>	0.050	<	0.050	\vdash	0.023	<	0.43	<	0.005	\vdash	0.009	<	0.20	_	.006
Uranium (total)	µg/L	5	15	È	36.3	È	33.8	H	35.3	Ė	39.4	Ė	40.9	\vdash	25.1	H	26.0		32.9
Vanadium (total)	µg/L	6		H	0.55	\vdash	0.74	H	0.53		0.52		0.36	\vdash	0.30		0.31		0.37
Zinc (total)	μg/L	30	30	<	5	Н	5	H	3		3	<	2	<	2		11		5
Lead-210	Ba/L	- 00	- 50	<	0.10	\vdash	0.11	<	0.02	<	0.02	, V	0.02	<	0.02	<	0.02	< 0	0.02
Radium-226	Bq/L	1		· <	0.04	<	0.04	Ė	0.01	` <	0.02	` '	0.01	<	0.02		0.02		0.01
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02		0.03	<	0.02	<	0.02		0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	` <	0.02	<	0.02	<	0.02	` '	0.02		0.02
Field Parameters				Ė	0.00	Ė	0.00	Ė	J.JL		5.5 <u>L</u>		J.JL	H	J.JL		J.JL		
ODO % Sat	mg/L			H	_1	\vdash	_1	H			96.5		103.8	\vdash	102.9		99.8		
ORP Sat	mV			\vdash		\vdash	1	\vdash			173.5		132.7	\vdash			129.6	_	
SPC	μs/cm			H		\vdash	1	\vdash			981		1146	\vdash	1149		1184		
Temperature	°C			\vdash	_1	\vdash	1	\vdash		\vdash	3.308		12.901	\vdash	15.44		8.117		
Turbidity	FNU			H	<u>-</u> 1	\vdash	<u>-</u> 1	H		\vdash	3.71		1.46	\vdash	1.51		1.44		
pH	Units			H	_1	\vdash	_1	H			8.08		8.16	\vdash			7.97		
Staff Gauge	cm			\vdash	_1	\vdash	<u>-</u> _1	\vdash			20		20	\vdash	20		19		
Starr Sauge	OIII				-		-				20		20		20		ıσ		

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only.

-- - No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 61 de 159

Tableau 67 : Qualité des eaux de surface – ruisseau de la Promenade Highland Sud – en amont (HC-U)

Page 62 de 159

											Н	C-U						
		Crit	eria		2018		2019		2020					2021				
Analysis	Units	PWQO	CWQG			Α	verage			20	21-01-19	2021-05-17	20	21-09-07	20:	21-11-09	Ave	erage
Total Suspended Solids	mg/L				5		6		9		4	5		6		3		5
pH	no unit	6.5-8.5	6.5-9.0		8.07		8.17		8.05		7.96	8.09		8.07		8.01		8.03
Alkalinity	mg/L as CaCO ₃			Ī	295		278		277		274	282		272		285		278
Carbonate	mg/L as CaCO ₃				3.2		3.9	<	1.0	<	1.0	< 1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				288		275		277		274	282		272		285		278
Total Dissolved Solids	mg/L				666		695		693		671	743		657		651		681
Fluoride	mg/L		0.12		0.13		0.12		0.14		0.10	0.10		0.10		0.13		0.11
Total Organic Carbon	mg/L				3		3		2		2	2		2		2		2
Ammonia+Ammonium (N)	as N mg/L			Ī	0.07		0.06		0.05		0.06	< 0.04		0.05		0.04		0.05
Chloride (Dissolved)	mg/L		120	1	152		173		213		190	200		200		200		198
Sulphate (dissolved)	mg/L				30		35		36		37	36		38		34		36
Bromide (dissolved)	mg/L			<	1.0		2.25	<	0.30	<	0.30	< 0.30	<	0.30	<	0.30	<	0.30
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.03	<	0.03	< 0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	t	3.75		3.64		3.99		4.41	4.10	H	3.90		3.92		4.08
Nitrate + Nitrite (as N)	as N mg/L			t	3.75		3.64	\vdash	3.99		4.41	4.10	\vdash	3.90		3.92		4.08
Mercury (dissolved)	µg/L	0.2	0.026	-	0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	0.2	0.020	È	398	Ť	393	È	450	È	427	429	÷	449	È	440	Ì	436
Silver (total)	µg/L as CaCO ₃	0.1	0.25	<	0.10	<	0.10	<	0.05	<	0.05	< 0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	µg/L	0.1	0.20	È	35	<u> </u>	34	È	27	È	11	17	È	44	È	65	<u> </u>	34
` '		75	100	┢	8	<	<u> </u>	-	4	Н	2	3	┢	2		3	 	34
Aluminum (0.2µm) Arsenic (total)	μg/L	100	100 5	Ͱ	4.6	È	2.9	\vdash	3.9	\vdash	2.7	3.4	\vdash	5.6		6.3	 	4.5
	µg/L	100	3	1	200		190	-	217	_			-	233				209
Barium (total)	µg/L	4400		-		_		┢		_	188	203	١.		_	212		
Beryllium (total)	μg/L	1100		<	0.500	<	0.500	-	0.010	<	0.007	< 0.007	<	0.007	<	0.007	<	0.007
Boron (total)	μg/L	200	1500	1	490		433	-	462		346	356	<u> </u>	491		394		397
Bismuth (total)	μg/L			<	1.0	<	1.0		0.018	<	0.007	0.020	<	0.010	<	0.010		0.012
Calcium (total)	μg/L			<u> </u>	125000		122500	_	138500		129000	131000	<u> </u>	138000		133000	_	32750
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10	_	0.008		0.005	0.007	<	0.003		0.013	_	0.007
Cobalt (total)	μg/L	0.9		<	0.50	<	0.50	_	0.229		0.134	0.135		0.155		0.235		0.165
Chromium (total)	μg/L			<	5.0	<	5.0	_	0.63		0.97	0.62		0.63		1.09		0.83
Copper (total)	μg/L	5		<	1.0	<	1.0	_	1.5		0.5	0.4		0.4		0.5		0.5
Iron (total)	μg/L	300	300		503		445		452		382	401		673		1720		794
Potassium (total)	μg/L				2675		2550		3515		2750	2570		2510		2760		2648
Magnesium (total)	μg/L				26250		25000		25350		25400	24500		25500		26300	2	25425
Manganese (total)	μg/L				52.3		47.0		54.0		41.5	37.1		70.9		75.4		56.2
Molybdenum (total)	μg/L	40	73		0.69		0.65		8.47		0.62	0.87		0.53		0.58		0.65
Sodium (total)	μg/L				81250		84500		96300		80200	78200		78400		83600	8	80100
Nickel (total)	μg/L	25	25		1.2		1.1		1.1		1.0	0.9		0.8		1.0		0.9
Phosphorus (total)	μg/L	10-30			11		14		37		3	13		29		30		19
Lead (total)	μg/L	5	7	<	0.50	٧	0.50		0.18		0.19	0.16		0.53		0.62		0.38
Antimony (total)	μg/L	20		<	0.5	<	0.5	<	0.9	<	0.9	< 0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	μg/L	100	1	<	2.0	٧	2.0		1.82		0.60	0.33		0.33		0.38		0.41
Tin (total)	μg/L			<	1.0	<	1.0		0.17		0.22	0.09		0.06		0.07		0.11
Strontium (total)	μg/L				315		300		340		347	388		363		351		362
Titanium (total)	μg/L				5.2		5.13		2.60		0.69	0.85		2.14		3.60		1.82
Thallium (total)	μg/L	0.3	0.8	<	0.050	<	0.050		0.015	<	0.005	0.005		0.009		0.007		0.007
Uranium (total)	μg/L	5	15		8.7		8.8		8.7		10.2	10.6		7.2		8.2		9.1
Vanadium (total)	μg/L	6			0.67		0.74		0.57		0.58	0.48		0.56		0.95		0.64
Zinc (total)	μg/L	30	30	<	5		5		4		4	2		4		11		5
Lead-210	Bq/L			<	0.10	<	0.10	<	0.02	<	0.02	< 0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.04	<	0.04	Т	0.01	<	0.01	0.02	Т	0.02	<	0.01		0.02
Thorium-230	Bq/L			<	0.07	<	0.07		0.03	<	0.02	< 0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	<	0.02	0.04	<	0.02	<	0.02	l	0.03
Field Parameters				Ė	0.00	Ė	0.50	Ė	J.JL	Ė	U.UL	3.01	Ė	U.J.		U.UL		3.50
ODO % Sat	mg/L			┢	_1		_1	\vdash		 	89.5	91.3	┢	88.8		90.2	 	
ORP Sal	mV			⊢		\vdash		\vdash		\vdash	28.9	120.9	⊢		\vdash	124.9	 	
SPC				┢		\vdash		\vdash		-	988		⊢	1159	\vdash	1166		
	µs/cm			┢		-		-		 		1156	┢				 	
Temperature	°C			Ͱ		-		H		 	4.643	11.568	⊢	12.931	-	9.528	-	
Turbidity	FNU			Ͱ		-		—		—	3.18	3.97	╄	2.93	<u> </u>	1.88	<u> </u>	
pH	Units			┞		<u> </u>		<u> </u>		_	7.93	8.11	┞		<u> </u>	7.84	<u> </u>	
Staff Gauge	cm				_1		- ¹											

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 63 de 159

Tableau 68 : Qualité des sédiments – ruisseau de la promenade Highland Sud (HC- D)

			Cri	teria						HC	;-D		
		PS	QG	CC	ME		2010		2012	2018	2019	2020	2021
Param et er	Units	LEL	SEL	ISQG	PEL					Ave	rage	,	
Water Soluble Boron	µg/g						_1		8.8	No Sample	No Sample	No Sample	No Sample
Mercury	µg/g	0.2	2	0.17	0.486		_1		0.07				
Silver	µg/g					<	0.20	<	0.20				
Aluminum	μg/g						3500		3800				
Arsenic	μg/g	6.0	33	5.9	17		27		28				
Barium	µg/g						150		150				
Beryllium	μg/g						0.20		0.20				
Bismuth	μg/g					<	1.0		_1				
Boron	µg/g						21		_1				
Cadmium	μg/g	0.6	10	0.6	3.5		0.20		0.38				
Calcium	μg/g						120000		120000				
Cobalt	µg/g						3.9		4.4				
Copper	μg/g	16	110	35.7	197		10		12				
Chromium	μg/g	26	110				14		15				
Iron	µg/g						13000		14000				
Lithium	μg/g						_1		_1				
Manganese	µg/g						720		810				
Magnesium	μg/g	460	1100				3100		3400				
Molybdenum	μg/g					<	0.50		0.59				
Nickel	μg/g	16	75				5.3		6.0				
Lead	μg/g	31	250	35	91.3		21		24				
Phosphorus	μg/g						740		760				
Potassium	μg/g						440		420				
Antimony	μg/g						0.40		0.81				
Selenium	μg/g						1.2		1.6				
Sodium	μg/g						260		300				
Strontium	μg/g						130		140				
Thallium	μg/g						0.06		0.10				
Tin	μg/g					<	5.0		- ¹				
Titanium	μg/g						<u>-</u> 1		<u>-</u> 1				
Uranium	μg/g						23		29				
Vanadium	μg/g						18		19				
Zinc	μg/g	120	820				110		120				
Lead-210	Bq/g						0.10	<	0.50				
Radium-226	Bq/g						0.03		0.10				
Thorium-230	Bq/g						0.01		0.10				
Thorium-232	Bq/g						0.03	<	0.01				

Note:

PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life,

ISQG = Interim Sediment Quality Guidelines, PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCME value.

¹ Analysis not included in laboratory contract.

Page 64 de 159

Tableau 69: Qualité des sédiments – ruisseau de la promenade Highland Sud (HC-U)

			Cri	teria									НС	C-U							
		PS	QG	CC	ME		2010		2012		2018		2019		2020				2021		
Parameter	Units	LEL	SEL	ISQG	PEL					Αv	erage	-		_		20	21-05-17	20	21-11-09	A	verage
Water Soluble Boron	μg/g						_1		3.9		0.4		0.7		1.2	<	0.5	<	0.5	<	0.5
Mercury	μg/g	0.2	2	0.17	0.486		_1	<	0.05	<	0.05	<	0.05		0.05	<	0.05	<	0.05	<	0.05
Silver	μg/g					<	0.20	<	0.20	<	0.20	<	0.20		0.05	<	0.05	<	0.05	<	0.05
Aluminum	μg/g						1500		1700		1500		1950		2500		1500		1400		1450
Arsenic	μg/g	6.0	33	5.9	17		11		23		6		10		32		6.8		9.7		8.3
Barium	μg/g						34		79		28		39		98		31		31		31
Beryllium	μg/g					<	0.20	<	0.20	<	0.20	<	0.20		0.16		0.06		0.07		0.07
Bismuth	μg/g					<	1.0		_1	<	1.0	<	1.0	<	0.09	<	0.09	<	0.09	<	0.09
Boron	μg/g						7		_1	<	5	<	5		6		2		2		2
Cadmium	μg/g	0.6	10	0.6	3.5	<	0.10		0.16	<	0.10	<	0.10		0.11	<	0.02	<	0.05		0.04
Calcium	μg/g						65000		65000		71000		67000		102000		58000		60000		59000
Cobalt	μg/g						1.6		2.2		1.2		1.4		2.6		1.1		1.3		1.2
Copper	μg/g	16	110	35.7	197		3.8		5.7		1.7		2.3		5.2		1.1		1.7		1.4
Chromium	μg/g	26	110				7.0		10		5.3		6.1	T	11.2		4.5		4.8		4.7
Iron	μg/g						8600		13000		8650		8900		18850		6200		6800		6500
Lithium	μg/g						_1		_1		2.2		2.7		3.5		2.0	<	2.0		2.0
Manganese	μg/g						250		500		135		195		470		140		150		145
Magnesium	μg/g	460	1100				3000		3200		2700		3350		3750		2900		2900		2900
Molybdenum	μg/g					<	0.50	<	0.50	<	0.50	<	0.50	T	1.20		0.20		0.20		0.20
Nickel	μg/g	16	75				2.4		3.5		2.0		2.3		4.0		1.8		2.2		2.0
Lead	μg/g	31	250	35	91.3		6.0		9.5		4.0	Г	4.5		9.7		3.4		3.6		3.5
Phosphorus	μg/g						690		700		630		675		590		610		600		605
Potassium	μg/g					<	200	<	200	<	200		245		320		170		180		175
Antimony	μg/g					<	0.20		0.38	<	0.20	<	0.20	<	0.80	<	0.80	<	0.80	<	0.80
Selenium	μg/g					<	0.50		0.62	<	0.50	<	0.50	<	0.70	<	0.70	<	0.70	<	0.70
Sodium	μg/g						110		140		86	Г	175		155		120		150		135
Strontium	μg/g						95		110		100		93		137		90		110		100
Thallium	μg/g					<	0.05		0.25	<	0.05	<	0.05		0.05	<	0.02	<	0.02	<	0.02
Tin	μg/g					<	5.0		_1	<	1.0		2.8		2.4	<	0.5		1.1		0.8
Titanium	μg/g						_1		_1		245		255		170		190		170		180
Uranium	μg/g						0.71		1.10		0.46	Г	0.64		1.18		0.48		0.39		0.44
Vanadium	μg/g						11		12		11		11		14		8		8		8
Zinc	μg/g	120	820				26		37		17		18		71		12		16		14
Lead-210	Bq/g					<	0.10	<	0.50	<	0.05	<	0.05		0.12	<	0.20		0.04		0.12
Radium-226	Bq/g						0.04	<	0.10		0.08	<	0.05	T	0.04	<	0.04	<	0.02		0.03
Thorium-230	Bq/g						0.02	<	0.10		0.45	<			0.17	<	0.03	<	0.10		0.07
Thorium-232	Bq/g						0.03	<	0.01	<	0.04	<	0.04		0.01		0.01		0.01		0.01
Note:																				•	

PSQG = Provincial Sediment Quality Guidelines , LEL - lowest effect level, SEL - severe effect level

CCME = Canadian Council of Ministers of the Environment, Sediment Quality Guidelines for the Protection of Aquatic Life,

ISQG = Interim Sediment Quality Guidelines, PEL = Probable Effect Level

Bold values indicate an exceedance of a PSQG or CCME value.

¹ Analysis not included in laboratory contract.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 65 de 159

Tableau 70 : Échantillonnage durant une tempête (2021) – bassin versant du ruisseau de la promenade Highland

Page 66 de 159

		Crit	eria						HC	-D					
				20	21/09/22	20	021/09/22	20	21/09/22	20	21/09/22	20	21/09/22	20	21/09/22
Analysis	Units	PWQO	CWQG		9:00AM		10:00AM		1:00AM		12:00PM		1:00PM		2:00PM
Total Suspended Solids	mg/L				6	T	4		2		3		3		5
pH	no unit	6.5-8.5	6.5-9.0		8.17	T	8.18		8.18		8.19		8.17		8.18
Alkalinity	mg/L as CaCO3				275		284		276		277		276		276
Carbonate	mg/L as CaCO3			<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO3				275		284		276		277		276		276
Total Dissolved Solids	mg/L				637	Г	669		700		637		654		649
Fluoride	mg/L		0.12		0.11		0.09		0.09		0.09		0.09		0.10
Total Organic Carbon	mg/L				2.0		2.0		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			<	0.04	<	0.04	<	0.04	٧	0.04	<	0.04		0.04
Chloride (Dissolved)	mg/L		120		220		210		210		220		210		210
Sulphate (dissolved)	mg/L				37		36		36		35		36		35
Bromide (dissolved)	mg/L			<	0.3	<	0.3	<	0.3	٧	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.03	<	0.03	<	0.03	٧	0.03	٧	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.63		3.58		3.55		3.52		3.45		3.40
Nitrate + Nitrite (as N)	as N mg/L				3.63		3.58		3.55		3.52		3.45		3.40
Mercury (dissolved)	μg/L	0.2	0.026	<	0.01	<	0.01	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO3				426		393		407		399		416		383
Silver (total)	μg/L	0.1	0.25	<	0.05	<	0.05	<	0.05	٧	0.05	<	0.05	<	0.05
Aluminum (total)	μg/L				23		7		9		12		13		16
Aluminum (0.2μm)	μg/L	75	100		2	Г	2		2		2		2		4
Arsenic (total)	μg/L	100	5		10.1		8.6		8.7		8.8		9.2		8.8
Barium (total)	μg/L				208	Г	199		210		206		205		200
Beryllium (total)	μg/L	1100		<	0.007	<	0.007	<	0.007	٧	0.007	<	0.007	<	0.007
Boron (total)	μg/L	200	1500		419		417		449		452		470		438
Bismuth (total)	μg/L				0.020	<	0.010	<	0.010	٧	0.010	<	0.010	<	0.010
Calcium (total)	μg/L				130000		120000		124000		122000		128000		117000
Cadmium (total)	μg/L	0.2	0.09		0.008	<	0.003		0.005		0.003		0.003		0.012
Cobalt (total)	μg/L	0.9			0.118		0.103		0.102		0.106		0.125		0.111
Chromium (total)	μg/L				0.34		0.40		0.33		0.36		0.32		0.57
Copper (total)	μg/L	5			5.1		0.7		1.3		1.1		0.9		4.9
Iron (total)	µg/L	300	300		321		192		200		234		262		254
Potassium (total)	μg/L				3350		3070		3200		3260		3400		3210
Magnesium (total)	μg/L				24800	T	22600		23500		23000		23500		22100
Manganese (total)	μg/L				21.4		16.8		16.6		20.0		22.2		22.0
Molybdenum (total)	μg/L	40	73		0.65	T	0.64		0.60		0.60		0.60		0.60
Sodium (total)	μg/L				81300		74300		76600		74900		75300		72900
Nickel (total)	μg/L	25	25		1.0	T	0.9		0.9		0.8		1.0		0.9
Phosphorus (total)	μg/L	10-30			10		6		5		7		7		4
Lead (total)	μg/L	5	7		0.20	Г	0.10		0.11		0.16		0.16		0.21
Antimony (total)	μg/L	20		<	0.9	<	0.9	<	0.9	٧	0.9	<	0.9	<	0.9
Selenium (total)	μg/L	100	1		0.3	Г	0.3		0.2		0.3		0.3		0.3
Tin (total)	μg/L			Ī	0.14		0.08		0.12		0.14		0.13		0.09
Strontium (total)	µg/L			T	349	Π	314		328		327		337		311
Titanium (total)	μg/L				1.26	Г	0.37		0.79		0.59		0.64		0.79
Thallium (total)	μg/L	0.3	0.8	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005		0.005
Uranium (total)	μg/L	5	15	Ī	27.1		25.3		25.9		26.3		25.4		24.9
Vanadium (total)	μg/L	6			0.46	Г	0.35		0.35		0.40		0.40		0.40
Zinc (total)	μg/L	30	30		4	Г	3		3		3		5		3
Cation sum	meq/L				12.15	Г	11.16		11.53		11.32		11.68		10.91
Anion Sum	meq/L				12.53	Н	12.41		12.25		12.53		12.24		12.22
Anion-Cation Balance	% difference			\vdash	-1.55	H	-5.30		-2.99	-	-5.05	H	-2.35	1	-5.68
	70 Uniterence			1		\vdash						 		_	
Ion Ratio	- "			<u> </u>	0.97	\vdash	0.90	<u> </u>	0.94		0.90	<u> </u>	0.95	<u> </u>	0.89
Lead-210	Bq/L			<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		<	0.01	<	0.01		0.02		0.02		0.01	<u> </u>	0.02
Thorium-230	Bq/L			<	0.02	<	0.02	<	0.02	٧	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters				_		辶		<u> </u>						<u> </u>	
ODO % Sat	mg/L			_	96.7	乚	96.6		96.5		96.4	<u> </u>	96.2	<u> </u>	96.3
ORP	mV			_		┖						<u> </u>			
SPC	us/cm			_	1152	┖	1151		1150		1144		1135		1131
Temperature	°C				14.814	Ш	14.777		14.763		14.77		14.78		14.82
Turbidity	FNU				2.57	L	1.67		1.41		1.61		2.21		2.11
pH	Units			L		L									
Staff Gauge	cm			L	24	L	24	L	23	L	22	L	21	L	20
DIA(OO - Description of a LIAY 1 - 1		14: : /	f (1 = 1												

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life Bold values indicate an exceedance of a PWQO or CWQG value

Page 67 de 159

Tableau 71: Qualité des eaux de surface – ruisseau Alexander – en amont (AC-1)

				T							AC	-1					
		Crit	eria		2018		2019		2020			_		2021			
Analysis	Units	PWQO	CWQG	T		_	Average			20	21-01-13	20:	21-05-12	2021-07-22	2021-10-19	Ave	erage
Total Suspended Solids	mg/L			t	22	П	32		30		11		15	15	9		13
pH	no unit	6.5-8.5	6.5-9.0		8.00		8.09		8.02		7.94		7.94	8.03	7.97		7.97
Alkalinity	mg/L as CaCO ₃				295	Т	278	Т	277		270		273	275	280		275
Carbonate	mg/L as CaCO ₃			l	2.7		3.2	<	1.0	<	1.0	<	1.0	< 1.0	< 1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				288		278		277		270		273	275	280		275
Total Dissolved Solids	mg/L				711		713		697		710		789	774	700		743
Fluoride	mg/L		0.12	<	0.10	<	0.10		0.06	<	0.06	<	0.06	< 0.06	< 0.06	<	0.06
Total Organic Carbon	mg/L				2.3		2.2		1.8		2.0		2.0	2.0	2.0		2.0
Ammonia+Ammonium (N)	as N mg/L				0.06		0.06		0.05	<	0.04	<	0.04	0.04	0.05		0.04
Chloride (Dissolved)	mg/L		120		193		190		213		220		250	250	210		233
Sulphate (dissolved)	mg/L				31		30		30		32		32	31	30		31
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<	0.3	<	0.3	٧	0.3	< 0.3	< 0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<	0.03	<	0.03	<	0.03	< 0.03	< 0.03	<	0.03
Nitrate (as N)	as N mg/L		13		4.04		3.95		4.22		4.76		4.24	4.13	4.22		4.34
Nitrate + Nitrite (as N)	as N mg/L				4.04		3.95		4.22		4.76		4.24	4.14	4.22		4.34
Mercury (dissolved)	μg/L	0.2	0.026	<	0.010	<	0.010		0.013	<	0.010	<	0.010	< 0.010	< 0.010	<	0.010
Hardness	mg/L as CaCO ₃			L	400	L	408	L	438		434		403	433	429		425
Silver (total)	μg/L	0.1	0.25	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	< 0.05	< 0.05	<	0.05
Aluminum (total)	μg/L			乚	183	L	164	L	251	<u> </u>	90	<u> </u>	43	181	96	<u> </u>	103
Aluminum (0.2μm)	μg/L	75	100	<	5	<	5		3		5		2	2	3		3
Arsenic (total)	μg/L	100	5		2.0		1.9		2.2		1.3		1.1	1.9	1.7		1.5
Barium (total)	μg/L				138		130		140		146		154	138	149		147
Beryllium (total)	μg/L	1100		<	0.50	<	0.50		0.01		0.007	<	0.007	0.009	< 0.007		800.0
Boron (total)	μg/L	200	1500		53		51		53		52		69	48	51		55
Bismuth (total)	μg/L			<	1.0	<	1.0		0.028		0.018		0.020	0.010	0.020	_	0.017
Calcium (total)	μg/L			-	120000		125000	-	136750		134000		125000	137000	135000	_	32750
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10		0.01		0.006		0.006	0.010	0.006	_	0.007
Cobalt (total)	μg/L	0.9		<	0.50	<	0.50	-	0.19		0.121		0.073	0.115	0.107		0.104
Chromium (total)	μg/L			<	5.0	<	5.0	L	1.7		1.49		0.84	0.91	1.24		1.12
Copper (total)	μg/L	5		-	1.0	<	1.0	L	1.4		0.8		0.5	0.6	0.5		0.6
Iron (total)	μg/L	300	300	-	348		303	-	419		194		92	261	199	-	187
Potassium (total)	µg/L			-	1425	Н	1500	H	1580	-	1690		1370	1680	1940	_	1670
Magnesium (total)	µg/L			-	23750	┝	22500 25.0	H	23450 32.4		24000		22400	22200	22500	-	22775
Manganese (total)	µg/L	40	72	_	25.8	-		┝			14.4		10.9	21.3	22.1	-	17.2
Molybdenum (total)	µg/L	40	73	<	0.50 93000	<	0.50 90750	H	0.20	-	0.21		0.24 87700	0.18	0.20 98000	-	0.21 94575
Sodium (total) Nickel (total)	μg/L μg/L	25	25	<	1.0	<	1.0	┝	94975 0.5		96800		0.3	95800 1.4	0.4	-	0.6
Phosphorus (total)	µg/L	10-30	23	È	38	H	34	┢	46		22		16	44	32		29
Lead (total)	µg/L	5	7	1	0.80	H	0.69	H	0.69		0.56		0.30	0.44	0.28		0.40
Antimony (total)	µg/L	20	'	<	0.50	<	0.09	<	0.09	<	0.9	<	0.9	< 0.9	< 0.9	<	0.40
Selenium (total)	µg/L	100	1	<	2.0	<	2.0	È	0.83	È	0.92	È	0.90	0.84	0.80	<u> </u>	0.87
Tin (total)	µg/L	.00	- '-	<	1.0	<	1.0	H	0.07	H	0.92	<	0.90	0.04	0.08	 	0.07
Strontium (total)	µg/L			Ė	288	È	278	H	310	H	341	Ė	339	303	323	<u> </u>	327
Titanium (total)	µg/L		 	t	11.4	H	10.9	\vdash	11.5	H	4.2	\vdash	2.3	2.6	4.2	 	3.3
Thallium (total)	µg/L	0.3	0.8	<	0.05	<	0.05	H	0.01	<	0.005	<	0.005	< 0.005	< 0.005	<	0.005
Uranium (total)	μg/L	5	15	t	3.05	Ħ	3.30	T	2.95		3.52		3.62	2.95	2.64		3.18
Vanadium (total)	µg/L	6		t	1.23	H	1.25	H	1.24	t	1.02		0.74	0.94	0.90	1	0.90
Zinc (total)	µg/L	30	30	T	5	T	6	Т	4		3		3	4	3		3
Lead-210	µg/L			<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	< 0.02	< 0.02	<	0.02
Radium-226	Bq/L	1	i	<	0.04	<	0.04	Т	0.01	<	0.01		0.01	0.01	< 0.01		0.01
Thorium-230	Bq/L			<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	< 0.02	< 0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	< 0.02	< 0.02	_	0.02
Field Parameters	1			Ī				Г									
ODO % Sat	mg/L			T	_1	Г	_1	Г	-		90.2		85.4	82.6	84.3		
ORP	mV			l	_1	Г	_1	Г	-		153.8		155	121.3	114.9		
SPC	μs/cm			Π	_1		_1		-		972		1195	1244	1248		
Temperature	°C			T	_1		_1	Г	-		5.537		12.472	13.911	11.689		
Turbidity	FNU		İ	Π	_1	Π	_1		-		2.24		2.19	4.41			
pH	Units			T	_1		_1		-		7.88		7.97	7.63	7.81		
Staff Gauge	cm			T	_1	Г	_1	Г	-								
						_		_									

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only.

- - No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 68 de 159

Page 69 de 159

Tableau 72: Qualité des eaux de surface – ruisseau Alexander – en aval (AC-3)

				T							AC	-3							
		Crit	eria		2018		2019		2020	Ī		- <u>v</u>			2021				
Analysis	Units	PWQO	CWQG			-	verage			20	021-01-13	20	21-05-12	202	1-07-22	20	21-10-19	A	verage
Total Suspended Solids	mg/L			t	14		20		39		10		7		11		33		15
pH	no unit	6.5-8.5	6.5-9.0		8.17		8.21		8.24		8.16		8.19		8.22		8.27		8.21
Alkalinity	mg/L as CaCO ₃				288		270		270		268		269		291		271		275
Carbonate	mg/L as CaCO ₃				4.0		4.1	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				283		265		270		268		269		291		271		275
Total Dissolved Solids	mg/L				675		656		647		630		694		680		660		666
Fluoride	mg/L		0.12	<	0.10	<	0.10		0.07	٧	0.06	<	0.06	<	0.06	٧	0.06	٧	0.06
Total Organic Carbon	mg/L				2.1		2.7		1.8		2.0		2.0		2.0		1.0		1.8
Ammonia+Ammonium (N)	as N mg/L				0.06		0.08		0.05		0.04	٧	0.04		0.04	<	0.04	٧	0.04
Chloride (Dissolved)	mg/L		120		163		165		184		180		220		220		180		200
Sulphate (dissolved)	mg/L				31		32		31		32		32		31		31		32
Bromide (dissolved)	mg/L			<	1.0	<	1.0	<		<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			<	0.01	<	0.01	<		<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13		3.67		3.65		3.81		4.37		3.86		3.74		3.79		3.94
Nitrate + Nitrite (as N)	as N mg/L				3.67		3.65		3.81		4.37		3.86		3.75		3.79		3.94
Mercury (dissolved)	μg/L	0.2	0.026	<	0.010	<	0.010	<		<		<	0.010	<	0.010	<	0.010	<	0.010
Hardness	mg/L as CaCO ₃				403		405		437		428		392		438		420		420
Silver (total)	μg/L	0.1	0.25	<	0.10	<	0.10	<		<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	μg/L			_	125	<u> </u>	177		229	L	77		71		142		363		163
Aluminum (0.2µm)	μg/L	75	100		5	<	5		5		3		3		1		4		3
Arsenic (total)	μg/L	100	5		2.3		2.4		3.0		1.7		1.6		2.3		3.7		2.3
Barium (total)	μg/L				140		138		155		146		154		146		151		149
Beryllium (total)	μg/L	1100		<	0.50	<	0.50		0.01		0.007	<	0.007		0.009		0.012		0.009
Boron (total)	μg/L	200	1500		47		47		51		46		58		42		42		47
Bismuth (total)	μg/L			<	1.0	<	1.0		0.030		0.013		0.020		0.030		0.040		0.026
Calcium (total)	μg/L			<u> </u>	117500		122500		136250		132000		121000		139000		132000		131000
Cadmium (total)	μg/L	0.2	0.09	<	0.10	<	0.10		0.02		0.011	<	0.003		0.005		0.019		0.010
Cobalt (total)	μg/L	0.9			0.50	<	0.50		0.26		0.141		0.089		0.232		0.384		0.212
Chromium (total)	μg/L			<	5.0	<	5.0		1.4	<u> </u>	1.15		1.02		0.99	<u> </u>	2.08		1.31
Copper (total)	μg/L	5			1.6		1.7		1.7		0.8		0.7		8.0		1.3		0.9
Iron (total)	μg/L	300	300	ļ	540		375		554	ļ	239		171		271		726		352
Potassium (total)	μg/L			_	1400		1500		1573	L	1730		1340		1700		1930		1675
Magnesium (total)	μg/L			<u> </u>	23250		22750		23350	<u> </u>	24000		22000		22400	_	22100		22625
Manganese (total)	μg/L				26.3		29.8		58.9	ļ	22.0		16.4		19.6	<u> </u>	78.0		34.0
Molybdenum (total)	μg/L	40	73	<	0.50	<	0.50		0.25	<u> </u>	0.24		0.29		0.26	_	0.29		0.27
Sodium (total)	μg/L			<u> </u>	73500	-	73000		77275	ļ	77400		69700		78400		74900		75100
Nickel (total)	μg/L	25	25	-	1.1		1.3		0.6	ļ	0.5		0.4		1.6	<u> </u>	0.9		0.9
Phosphorus (total)	μg/L	10-30	<u> </u>	-	26		37		46	1	23		16		38		67		36
Lead (total)	μg/L	5	7	-	0.63	-	0.99		1.17	<u> </u>	0.77		0.43		0.64	<u> </u>	1.23		0.77
Antimony (total)	μg/L	20	<u> </u>	<	0.5	<	0.5	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9	<	0.9
Selenium (total)	μg/L	100	1	<	2.0	<	2.0	_	0.72	┡	0.89		0.78	_	0.82	1	0.79		0.82
Tin (total)	μg/L		 	1	3.5	<	1.0	H	0.10	┡	0.20	-	0.06	_	0.19	1	0.06		0.13
Strontium (total)	μg/L		 	\vdash	275	1	270	\vdash	306	┡	323	<u> </u>	327	\vdash	303		311		316
Titanium (total)	μg/L			١.	8.5	١.	11.7		10.6	١.	3.4	<u>.</u>	3.4		6.3		16.1		7.3
Thallium (total)	μg/L	0.3	0.8	<	0.05	<	0.05		0.01	<	0.005	<	0.005		0.005	-	0.007		0.006
Uranium (total)	μg/L	5	15	-	7.10	-	8.78		7.03	1	7.80		7.43		5.35		4.47		6.26
Vanadium (total)	μg/L	6		-	0.99		1.15		1.22	₩	0.87		0.74		0.98	-	1.51		1.03
Zinc (total)	μg/L	30	30	-	5	-	6	<u> </u>	7	L	5	_	4	_	5	1_	6	_	5
Lead-210	μg/L		 	<	0.10	<	0.10	H	0.03	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1	<u> </u>	<	0.04	<	0.04	_	0.02	<	0.01	<	0.01	_	0.02	1_	0.03	_	0.02
Thorium-230	Bq/L		 	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L		 	Ě	0.06	^	0.06	^	0.02	<u>`</u>	0.02	`	0.02	<	0.02	<	0.02	`	0.02
Field Parameters			-	1	1	1	1	H		┡	07.4	-	07.7	_	07.0	1	00.1		
ODO % Sat	mg/L			₩	_1_	1	_1	<u> </u>		L	97.1	-	97.7	<u> </u>	97.2	1	89.1		
ORP	mV .			₽-	_1	₽-	_1	_		L	147.4	<u> </u>	150.3	<u> </u>	115.6	1	38.3		
SPC	µs/cm			⊢	_1 _1	1	_11	L		L	920	-	1104	_	1138	1	1141		
Temperature	°C		.	<u> </u>		1		L		┡	5.275	_	13.249	_	15.122	1	11.383		
Turbidity	FNU			₩	_1	1	-1-	L		L	5.62	<u> </u>	17.94	\vdash	13.26	1			
pН	Units			<u> </u>	_1	<u> </u>	_1	L		L	8.12	<u> </u>	8.28	Щ	8.05	1	8.16		
Staff Gauge	cm				<u>-</u> 1		- ¹		-										

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG - Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

Bold values indicate an exceedance of a PWQO or CWQG value ¹ Field parameters included for current sampling year only.

-- - No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 70 de 159

Page 71 de 159

Tableau 73 : Qualité des eaux de surface – port de Port Hope et lac Ontario – Emplacement 1 (PHH-1)

												PHH-1								
		Crit	eria	2016		2017	Г	2018		2019		2020				20:	21			
Parameter	Units	PWQO	CWQG				Α	verage					20	21-06-16	202	21-09-13	20	21-11-03	Αv	erage
Total Suspended Solids	mg/L			6		11	Π	5		3		4		3		7	<	2		4
pH	no unit	6.5-8.5	6.5-9.0	8.39		8.29	Г	8.36		8.38	T	8.36		8.30		8.41		8.37		8.36
Alkalinity	mg/L as CaCO ₃			188		205		203		200		197		175		194		222		197
Carbonate	mg/L as CaCO ₃			8.5		3.8		4.3		4.4		3.5	<	1.0		11.0		7.0		6.3
Bicarbonate	mg/L as CaCO ₃			179		205	Г	203		193		194		175		184		215		191
Total Dissolved Solids	mg/L			236		326	Γ	207		245		270		209		266		294		256
Fluoride	mg/L		0.12	0.08		0.10	<	0.10	<	0.10	Г	0.07	<	0.06		0.06	<	0.06		0.06
Total Organic Carbon	mg/L			1.7		4.8		3.2		2.8		2.0		2.0		2.0		3.0		2.3
Ammonia+Ammonium (N)	as N mg/L			0.05		0.06	<	0.05		0.16		0.10	<	0.04		0.06	<	0.04		0.05
Chloride (Dissolved)	mg/L		120	14		15		22		14		15		17		14		20		17
Sulphate (dissolved)	mg/L			15		13		15		13		13		14		14		14		14
Bromide (dissolved)	mg/L			< 0.3	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	٧	0.3
Nitrite (as N)	as N mg/L			< 0.03		0.01	<	0.01		0.02	<	0.03	<	0.03	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L		13	0.58		0.71		1.09		0.77		0.66		0.55		0.65		1.32		0.84
Nitrate + Nitrite (as N)	as N mg/L			0.58		0.72		1.09		0.79		0.66		0.55		0.65		1.32		0.84
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			219		225	Γ	220		237	Г	218		199		209	П	255		221
Silver (total)	μg/L	0.1	0.25	0.003	<	0.1	<	0.1	<	0.1	<		<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (total)	μg/L			16	T	162	Г	75		44		68		41		48	Г	32		40
Aluminum (0.2µm)	μg/L	75	100	_1		7.5	<	5.0		6.0	Ī	8.0		1.0		2.0	<	1.0		1.3
Arsenic (total)	μg/L	100	5	0.6	<	1.0	<	1.0	<	1.0	T	0.7		0.6		0.5		0.3		0.5
Barium (total)	μg/L			57.4		59.5	Г	51.3		53.7		65.0		62.6		57.6		58.0		59.4
Beryllium (total)	μg/L	1100		< 0.01	<	0.5	<	0.5	<	0.5	<		<	0.007	<	0.007	<	0.007	<	0.007
Boron (total)	μg/L	200	1500	20	1	17	Т	15		15	H	17		18		45		11		25
Bismuth (total)	µg/L			< 0.01	<	1.0	<	1.0	<	1.0	<		<	0.010	<	0.010	<	0.010	<	0.010
Calcium (total)	μg/L			67300		73000	Г	66000		70000		68700		58400		63700		84600		68900
Cadmium (total)	µg/L	0.2	0.09	0.01	<	0.1	<	0.1	<	0.1	t	0.006		0.004		0.010	<	0.003		0.006
Cobalt (total)	µg/L	0.9		0.235	<	0.500	<	0.500	<	0.500	H	0.064		0.066		0.046		0.046		0.053
Chromium (total)	µg/L			0.45	<	5.0	<	5.0	<	5.0	H	0.70		0.33		0.26		0.30		0.30
Copper (total)	μg/L	5		2.6		1.5	Ħ	1.1	<	1.0	H	0.8		0.5		0.3	H	0.3		0.4
Iron (total)	μg/L	300	300	109	1	290	t	167		117	t	141		107		111	H	127		115
Potassium (total)	µg/L			1085	1	1550	t	1083		1013	t	1155		963		1090		1390		1148
Magnesium (total)	µg/L			12450		11000	t	10700		11667	t	11350		12800		12200		10600		11867
Manganese (total)	μg/L			18.1		32.0	Т	22.3		22.7		22.6		19.9		17.4		17.1		18.1
Molybdenum (total)	μg/L	40	73	0.57	<	0.50	Т	0.51	<	0.50	H	1.09		0.48		0.46		0.45		0.46
Sodium (total)	μg/L			8425		9650	T	9833		9533		8290		9170		9090		11000		9753
Nickel (total)	μg/L	25	25	0.3	<	1.0	<	1.0	<	1.0	t	0.2		0.1		0.2	H	0.1		0.1
Phosphorus (total)	μg/L	10-30		15		39	Т	16		37		22		20		15		14		16
Lead (total)	μg/L	5	7	0.14	<	0.50	<	0.50	<	0.50		0.14		0.20		0.13	<	0.09		0.14
Antimony (total)	µg/L	20		0.2	<	0.5	<	0.5	<	0.5	<		٧	0.9	<	0.9	<	0.9	٧	0.9
Selenium (total)	µg/L	100	1	0.12	<	2.0	<	2.0	<	2.0	H	0.09		0.10		0.06	Ħ	0.13		0.10
Tin (total)	μg/L			0.01	<	1.0	<	1.0	<	1.0	T	0.09		0.09	<	0.06	<	0.06		0.07
Strontium (total)	μg/L			174	T	170	T	160		163	T	202		183		173	Т	191		182
Titanium (total)	µg/L			_1	T	9.00	T	6.43		5.70	T	2.81		2.02		1.32	Т	1.48		1.61
Thallium (total)	μg/L	0.3	0.8	< 0.01	<	0.05	<	0.05	<	0.05	T	0.006	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (total)	μg/L	5	15	0.76	t	0.75	Г	0.84		0.74	T	0.78		0.89		0.68	П	0.74		0.77
Vanadium (total)	µg/L	6		0.61	t	1.11	Т	0.72	Т	0.95	T	0.88		0.71		0.72	Г	0.47		0.63
Zinc (total)	μg/L	30	30	2	<	5	<	5	<	5	T	2		2	<	2	<	2		2
Lead-210	Bq/L			0.02	t	0.03	<	0.10	<	0.10	<		<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	1		< 0.01	<	0.04	<	0.04	<	0.04	<		<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L			< 0.02	<	0.07	<	0.07	<	0.07	<		<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			< 0.02	<	0.06	<		<	0.06	<		<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	T.				T		T		Г		T						П			
ODO % Sat	%			_2	t	_2	T	_2	Т	_2	t	_2		109.1		104.1	T	103.3		
ORP	mV			_2	t	_2	T	_2	T	_2	T	_2		122.9			Т	123.5		
SPC	μs/cm			_2	t	_2	T	_2	T	_2	T	_2		414.4		427.5	Т	491.5		
Temperature	°C			_2		_2	T	_2	\vdash	_2	t	_2		19.076		16.842	Т	6.643		
Turbidity	FNU			_2	t	_2	T	_2	H	_2	H	_2		6.94		5.44	H	3.8		
pH	Units			_2	t	_2	T	_2	H	_2	H	_2		8.58			H	8.36		
Staff Gauge	cm			_2	t	_2	T	_2	T	_2	T	_2					Т			
Note:	<u> </u>				-		_		_		•		_				_			

Note

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

-- - No data.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 72 de 159

Page 73 de 159

Tableau 74 : Qualité des eaux de surface – port de Port Hope et lac Ontario – Emplacement 2 (PHH-2)

										PHH-2				
		Crit	eria	2016	2017	2018	3		2019	2020		20	21	
Parameter	Units	PWQO	CWQG			Avera	ae				2021-06-16	2021-09-13	2021-11-03	Average
Total Suspended Solids	mg/L	11140	ongo	3	5	1			2	4	5	7	3	5
рН	no unit	6.5-8.5	6.5-9.0	8.05	8.22	8.2			8.32	8.19	8.14	8.29	8.18	8.20
Alkalinity	mg/L as CaCO ₃			153	185	19	0		150	188	156	181	214	184
Carbonate	mg/L as CaCO ₃			< 2.0	2.9	3.	2		2.9	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃			152	185	18	7		147	188	156	181	214	184
Total Dissolved Solids	mg/L			223	270	21	5		200	270	206	249	289	248
Fluoride	mg/L		0.12	0.10	< 0.10	< 0.	0	<	0.10	< 0.06	0.07	0.07	0.08	0.07
Total Organic Carbon	mg/L			1.6	3.5	3.	8		2.7	3.0	3.0	2.0	3.0	2.7
Ammonia+Ammonium (N)	as N mg/L			0.12	0.12	0.0	16		0.11	0.04	< 0.04	0.06	0.04	0.05
Chloride (Dissolved)	mg/L		120	19	18	2	(19	15	21	16	22	20
Sulphate (dissolved)	mg/L			19	14	1			18	13	16	16	14	15
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.		<	1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	0.02	< 0.0			0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.40	0.57	0.9			0.49	0.47	0.43	0.59	1.34	0.79
Nitrate + Nitrite (as N)	as N mg/L			0.40	0.58	0.9			0.51	0.47	0.44	0.59	1.34	0.79
Mercury (dissolved)	μg/L	0.2	0.026	< 0.01	< 0.01	< 0.0		<	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			182	200	20			193	224	181	200	230	204
Silver (total)	μg/L	0.1	0.25	< 0.002	< 0.1	< 0.		<	0.1	< 0.05	< 0.05	< 0.05	0.09	0.06
Aluminum (total)	μg/L			14	84	15		<u> </u>	40	158	45	30	41	39
Aluminum (0.2µm)	μg/L	75	100	_1	< 5.0	< 5.			5.3	10.0	2.0	1.0	< 1.0	1.3
Arsenic (total)	μg/L	100	5	1.9	2.0	3.			2.5	2.3	6.3	1.6	17.4	8.4
Barium (total)	μg/L			47.2	52.5	52	-		40.7	65.5	54.9	52.5	55.2	54.2
Beryllium (total)	μg/L	1100		< 0.01	< 0.5	< 0.		<	0.5	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	μg/L	200	1500	24	23	10			20	18	21	83	13	39
Bismuth (total)	μg/L			0.03	< 1.0	< 1.		<	1.0	0.009	0.110	0.040	1.070	0.407
Calcium (total)	μg/L		0.00	54450	62500	630		_	53000	71100	52800	60300	75700	62933
Cadmium (total)	μg/L	0.2	0.09	0.00	< 0.1	< 0.		<	0.1	0.005	0.003	0.007	0.005	0.005
Cobalt (total)	μg/L	0.9		0.095 0.43	< 0.500 < 5.0	< 0.5 < 5.		<	0.500	0.129 0.54	0.116 0.32	0.057 0.27	0.771 0.25	0.315 0.28
Chromium (total) Copper (total)	μg/L	5		1.3	< 5.0 2.4	< 5. 2.		<	5.0 1.5	0.54	0.32	0.27	2.0	1.1
Iron (total)	μg/L μg/L	300	300	75	185	29		<	100	253	145	80	133	119
Potassium (total)	µg/L	300	300	1370	1600	12		Ì	1333	1280	1220	1160	1340	1240
Magnesium (total)	μg/L			11180	10500	103			10267	11200	12000	11900	9970	11290
Manganese (total)	µg/L			20.8	31.0	40			16.7	50.6	29.8	16.2	18.5	21.5
Molybdenum (total)	μg/L	40	73	0.95	0.56	0.9			0.76	0.48	0.71	0.65	0.68	0.68
Sodium (total)	µg/L		- ' -	10830	11500	108			12333	8660	11000	10400	11200	10867
Nickel (total)	µg/L	25	25	0.3	< 1.0	< 1.		<	1.0	0.3	0.5	0.3	1.6	0.8
Phosphorus (total)	µg/L	10-30		17	30	4			23	23	28	11	17	19
Lead (total)	µg/L	5	7	0.24	0.57	1.3		<	0.50	0.35	1.38	0.46	12.04	4.63
Antimony (total)	μg/L	20		< 0.2	< 0.5	< 0.		<	0.5	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.13	< 2.0	< 2.		<	2.0	0.10	0.11	0.19	0.10	0.13
Tin (total)	μg/L			< 0.01	< 1.0	< 1.		<	1.0	0.12	0.09	0.07	< 0.06	0.07
Strontium (total)	μg/L			172	160	16	3		167	190	186	175	175	179
Titanium (total)	μg/L			_1	6.95	10.	37	<	5.00	6.53	2.44	1.56	2.02	2.01
Thallium (total)	μg/L	0.3	0.8	< 0.01	< 0.05	< 0.0)5	<	0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	μg/L	5	15	1.77	3.80	2.7			2.30	1.67	7.01	1.98	97.06	35.35
Vanadium (total)	μg/L	6		0.49	0.91	0.9)1		0.84	0.96	0.68	0.57	0.61	0.62
Zinc (total)	μg/L	30	30	2	< 5	< 5		<	5	3	3	< 2	< 2	< 2
Lead-210	Bq/L			< 0.02	< 0.02	< 0.	0	<	0.10	< 0.02	< 0.02	< 0.02	0.02	< 0.02
Radium-226	Bq/L	1		0.02	< 0.04	0.0)5	<	0.04	0.03	0.02	0.01	0.19	0.07
Thorium-230	Bq/L			< 0.02	< 0.07	0.1		<	0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L			< 0.02	< 0.06	< 0.0)6	<	0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters						<u> </u>								
ODO % Sat	%			_2	_2				_2	_2	104.2	94.6	105.2	
ORP	mV			_2	_2				_2	_2	130.6		125.7	
SPC	μs/cm			_2	_2	-			-²	_2	395.7	411.7	511	
Temperature	°C			_2	_2	-			_²	_2	18.437	16.56	6.476	
Turbidity	FNU			_2	_2	-			_2 2	_2	5.68	3.46	3.43	
pH	Units			_2	_2	-		<u> </u>	_2 2	_2	8.38		8.21	
Staff Gauge	cm			_2	_2	-			- 2	_2				
M-4														

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

-- - No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 74 de 159

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 75 de 159

Tableau 75 : Qualité des eaux de surface – port de Port Hope et lac Ontario – Emplacement 3 (PHH-4)

Page 76 de 159

l								PHH-4	•			
		Crit	teria	2016	2017	2018	2019	2020		20	21	
Parameter	Units	PWQO	CWQG			Average			2021-06-16	2021-09-13	2021-11-03	Average
Total Suspended Solids	mg/L			2	1	2	2	3	2	< 2	3	2
pH	no unit	6.5-8.5	6.5-9.0	8.37	8.18	8.34	8.31	8.15	8.07	8.19	7.86	8.04
Alkalinity	mg/L as CaCO ₃			126	94	144	122	96	92	93	93	93
Carbonate	mg/L as CaCO ₃			4.5	1.3	3.4	2.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃			123	93	143	118	96	92	93	93	93
Total Dissolved Solids	mg/L			193	255	158	185	180	131	171	151	151
Fluoride	mg/L		0.12	0.11	0.13	0.11	< 0.10	0.11	0.12	0.12	0.12	0.12
Total Organic Carbon	mg/L			1.3	2.3	2.6	2.4	1.5	2.0	2.0	2.0	2.0
Ammonia+Ammonium (N)	as N mg/L			0.06	< 0.05	< 0.05	0.05	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Chloride (Dissolved)	mg/L		120	21	22	20	21	24	27	23	24	25
Sulphate (dissolved)	mg/L			21	23	19	20	21	23	22	22	22
Bromide (dissolved)	mg/L			< 0.3	< 1.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L			< 0.03	< 0.01	< 0.01	0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L		13	0.35	0.20	0.50	0.36	0.29	0.30	0.25	0.38	0.31
Nitrate + Nitrite (as N)	as N mg/L			0.35	0.20	0.50	0.36	0.29	0.30	0.25	0.38	0.31
Mercury (dissolved)	µg/L	0.2	0.026	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃			159	120	165	160	126	123	122	144	130
Silver (total)	µg/L	0.1	0.25	< 0.002	< 0.1	< 0.1	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	μg/L			16	20	26	76	45	3	4	65	24
Aluminum (0.2µm)	μg/L	75	100	_1	< 5.0	< 5.0	< 5.3	4.5	3.0	< 1.0	2.0	2.0
Arsenic (total)	ua/L	100	5	0.8	< 1.0	< 1.0	1.0	0.9	0.9	0.7	0.9	0.8
Barium (total)	μg/L	<u> </u>	t - T	34.1	21.5	36.0	27.7	25.6	22.0	21.3	24.8	22.7
Beryllium (total)	μg/L	1100		< 0.01	< 0.5	< 0.5	< 0.5	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	µg/L	200	1500	25	21	19	21	22	25	33	20	26
Bismuth (total)	μg/L		1000	< 0.01	< 1.0	< 1.0	< 1.0	< 0.007	< 0.010	< 0.010	< 0.010	< 0.010
Calcium (total)	µg/L			47000	32500	45500	45333	36550	34100	35100	43100	37433
Cadmium (total)	μg/L	0.2	0.09	0.01	< 0.1	< 0.1	< 0.1	0.005	0.010	0.006	0.007	0.008
Cobalt (total)	μg/L	0.9	0.03	0.157	< 0.500	< 0.500	< 0.500	0.036	0.009	0.004	0.039	0.017
Chromium (total)	ua/L	0.5		0.49	< 5.0	< 5.0	< 5.0	0.74	0.26	0.26	0.28	0.27
Copper (total)	μg/L	5		0.43	1.6	1.1	< 1.1	0.9	1.0	0.6	0.20	0.8
Iron (total)	µg/L	300	300	47	< 100	105	< 163	49	< 7	< 7	79	31
Potassium (total)	μg/L			1415	1500	1200	1400	1635	1650	1520	1980	1717
Magnesium (total)	µg/L			9985	8500	9100	9100	8295	9150	8470	8940	8853
Manganese (total)	µg/L			10.0	< 2.0	13.0	12.3	2.8	0.6	0.4	4.5	1.8
Molybdenum (total)	μg/L	40	73	1.43	1.10	0.75	0.93	1.86	1.32	1.37	1.57	1.42
Sodium (total)	µg/L	70	-/-	12100	13500	11500	13333	12200	13800	13500	14900	14067
Nickel (total)	μg/L	25	25	0.5	< 1.0	< 1.0	< 1.0	0.6	0.6	0.6	0.6	0.6
Phosphorus (total)	μg/L	10-30	23	8	6	9	10	8	10	< 3	14	9
Lead (total)	μg/L	5	7	0.07	< 0.50	< 0.50	< 0.50	0.06	< 0.09	< 0.09	0.10	0.09
/	μg/L	20	- '	< 0.07	< 0.50	< 0.50	< 0.50	< 0.9	< 0.09	< 0.09	< 0.10	< 0.09
Antimony (total)		100	1	0.15	< 2.0	< 2.0	< 2.0	0.12			0.18	
Selenium (total) Tin (total)	μg/L	100	1	< 0.15	< 1.0	< 1.0	< 1.0	0.12	0.15 0.09	0.16	< 0.06	0.16 0.07
	μg/L				160	160	163	205	191	182	< 0.06 198	190
Strontium (total)	μg/L	-		181 _1	< 5.00	5.20	< 5.00	1.87	0.18	0.20	3.04	1.14
Titanium (total)	μg/L	0.2	0.0									
Thallium (total)	μg/L	0.3	0.8	0.01		< 0.05	< 0.05	0.006	0.000		0.006	0.005
Uranium (total) Vanadium (total)	μg/L	5 6	15	0.66	0.35	0.62	0.45	0.40	0.40	0.31	0.46	0.39
	μg/L		20	0.36	< 0.50 < 5	0.54	0.77	0.46	0.20	0.19	0.39	0.26
Zinc (total)	μg/L	30	30				< 5		< 2	_		
Lead-210	Bq/L	_		< 0.02	0.11	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02 < 0.01	< 0.02	< 0.02
Radium-226	Bq/L	1		0.01	< 0.04	< 0.04	< 0.04	< 0.01	0.01		< 0.01	< 0.01
Thorium-230	Bq/L			< 0.02 < 0.02	< 0.07 < 0.06	< 0.07	< 0.07	< 0.02	< 0.02 < 0.02	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	-	-	< 0.02	< 0.06	< 0.06	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Field Parameters	10/			,	,	,	,	,		4000	4	
ODO % Sat	%	ļ		_ ²	_2	_2	_2	_2	98	100.6	102.4	
ORP	mV			_2	_2	_2	_2	_2	128.1		119.9	
SPC	μs/cm			_2	_2	_2	_2	_2	313.6	301.5	307.1	
Temperature	°C			_2	_2	_2	_2	_2	9.468	15.84	7.819	
Turbidity	FNU	l		_2	_2	-2	_2	-2	1.48	0.36	5.11	
pH Staff Gauge	Units			_2	_2 _2	_²	_²	_2	8.63		8.02	

Note:

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 77 de 159

Tableau 76: Qualité des eaux de surface – lac Ontario et port de Port Hope – Pendant des activités de dragage (PHH-1a)

		Crit	eria								PHI	H-1a							
Analysis	Units	PWQO	CWQG	2021-06-30	2021-07-16 ¹	2021-07-09 ¹	2021-07-23 ¹	2021-08-05	2021-09-16	2021-09-21	2021-09-29	2021-10-13	2021-10-18	2021-10-28	2021-11-03	2021-11-09	2021-11-15	2021-11-23	2021-11-29
Total Suspended Solids	mg/L			13	No Sample	No Sample	No Sample	25	3	6	12	5	8	4	< 2	2	10	4	10
Hardness	mg/L as CaCO ₃							222	201	190	206	225	272	274	255	249	250	261	242
Silver (total)	μg/L	0.1	0.25	< 0.05				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (total)	μg/L			102				181	82	48	110	53	123	46	32	29	105	36	97
Arsenic (total)	μg/L	100	5	0.7				0.6	0.6	0.5	0.5	0.4	0.5	0.3	0.3	0.4	0.5	0.3	0.4
Barium (total)	μg/L			60.3				70.8	63.9	59.4	63.4	66.6	64.5	58.2	58.0	62.4	57.9	61.4	58.7
Beryllium (total)	μg/L	1100		< 0.007				< 0.007	< 0.007	< 0.007	0.008	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	μg/L	200	1500	21				15	18	16	22	23	20	15	11	18	24	25	11
Bismuth (total)	μg/L			0.01				< 0.01	0.03	0.02	< 0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.06
Calcium (total)	μg/L			66200				68800	61100	58700	66200	71200	91700	91400	84600	80000	82000	84600	77900
Cadmium (total)	μg/L	0.2	0.09	0.006				0.010	0.005	< 0.003	0.015	0.005	0.007	< 0.003	< 0.003	0.011	0.006	0.003	< 0.003
Cobalt (total)	μg/L	0.9		0.083				0.130	0.084	0.045	0.105	0.060	0.088	0.067	0.046	0.096	0.088	0.059	0.072
Chromium (total)	μg/L			0.52				1.26	0.55	0.24	0.40	0.35	0.44	0.18	0.30	0.30	0.54	0.48	0.44
Copper (total)	μg/L	5		0.5				1.0	0.4	0.3	0.5	0.5	0.5	0.4	0.3	0.8	0.5	0.7	0.3
Iron (total)	μg/L	300	300	201				389	180	123	223	129	206	143	127	169	200	149	161
Potassium (total)	μg/L			1240				1060	1180	1040	1190	1350	1950	1570	1390	1180	1890	1330	1160
Magnesium (total)	μg/L			11400				12300	11600	10500	10000	11300	10400	11200	10600	11900	11100	12100	11500
Manganese (total)	μg/L			26.0				35.2	21.9	15.6	25.4	15.6	23.2	17.8	17.1	24.2	26.1	20.6	22.9
Molybdenum (total)	μg/L	40	73	0.51				0.42	0.50	0.43	0.68	0.45	0.38	0.36	0.45	0.44	0.34	0.42	0.46
Sodium (total)	μg/L			9340				9870	8940	8020	12500	10900	11800	13100	11000	11000	13800	15400	23800
Nickel (total)	μg/L	25	25	0.2				0.7	0.2	0.3	0.2	0.4	0.3	0.3	0.1	< 0.1	0.3	0.5	< 0.1
Phosphorus (total)	μg/L	10-30		28				50	33	22	33	14	33	6	14	15	25	12	8
Lead (total)	μg/L	5	7	0.70				0.91	0.83	0.23	0.34	0.20	0.18	0.10	< 0.09	0.25	0.16	0.09	0.19
Antimony (total)	μg/L	20		< 0.9				< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Selenium (total)	μg/L	100	1	0.10				0.12	0.08	0.08	0.17	0.11	0.13	0.11	0.13	0.10	0.14	0.09	0.13
Tin (total)	μg/L			0.11				0.17	0.07	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.06	< 0.06	< 0.06	< 0.06
Strontium (total)	μg/L			180				181	175	173	166	203	213	207	191	201	186	199	199
Titanium (total)	μg/L			5.15				8.79	3.84	2.36	7.15	2.00	5.42	5.08	1.48	1.40	6.34	2.41	2.36
Thallium (total)	μg/L	0.3	8.0	< 0.005				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	μg/L	5	15	0.67				0.64	0.71	0.82	0.81	0.88	0.78	0.88	0.74	0.79	0.98	1.05	0.97
Vanadium (total)	μg/L	6		1.0				0.96	0.85	0.59	0.85	0.72	0.84	0.65	0.47	0.43	0.65	0.46	0.40
Zinc (total)	μg/L	30	30	14				6	2	2	< 2	< 2	3	2	< 2	12	< 2	3	< 2
Radium-226	Bq/L	1		< 0.005				0.009	< 0.005	< 0.005	< 0.005	0.019	< 0.005	< 0.005	< 0.010	0.027	< 0.005	< 0.005	< 0.005

PWQO = Provincial Water Quality Objectives, Ministry of the Environment CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ No Sample due to logistical isssues

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 78 de 159

Tableau 77 : Qualité des eaux de surface – lac Ontario et port de Port Hope – Pendant des activités de dragage (PHH-2a)

		Crit	eria								PHH-2a	1							
Analysis	Units	PWQO	CWQG	2021-06-16 ²	2021-07-09 ^{1,2}	2021-07-16 ^{1,2}	2021-07-23 ^{1,2}	2021-08-05 ²	2021-09-16	2021-09-21	2021-09-29	2021-10-13	2021-10-18	2021-10-28	2021-11-03	2021-11-09	2021-11-15	2021-11-23	2021-11-29
Total Suspended Solids	mg/L			66	No Sample	No Sample	No Sample	14	7	22	8	5	6	10	3	3	21	5	7
Hardness	mg/L as CaCO ₃							211	175	167	208	236	276	220	230	258	254	257	252
Silver (total)	μg/L	0.1	0.25	< 0.05				< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	0.09	< 0.05	< 0.05	< 0.05	0.09
Aluminum (total)	μg/L			199				115	63	185	81	89	104	70	41	34	143	72	95
Arsenic (total)	μg/L	100	5	7.1				78.4	5.3	4.6	5.7	22.2	20.2	2.8	17.4	21.8	13.7	39.2	29.2
Barium (total)	μg/L			76.8				67.0	50.6	50.1	63.9	68.0	66.9	45.3	55.2	62.8	59.0	63.0	62.2
Beryllium (total)	μg/L	1100		0.010				< 0.007	< 0.007	0.010	< 0.007	0.009	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Boron (total)	μg/L	200	1500	33				25	20	22	24	24	20	16	13	15	23	28	10
Bismuth (total)	μg/L			0.11				2.64	0.51	0.33	0.56	1.55	0.69	0.15	1.07	1.98	0.34	1.63	2.09
Calcium (total)	μg/L			66300				65400	52700	51600	66600	75100	94000	70900	75700	83000	82900	82900	80600
Cadmium (total)	μg/L	0.2	0.09	0.013				0.005	0.004	0.007	0.013	< 0.003	0.006	< 0.003	0.005	0.011	0.007	0.006	0.006
Cobalt (total)	μg/L	0.9		0.242				1.420	0.253	0.252	0.340	0.661	0.368	0.146	0.771	0.923	0.393	1.280	1.090
Chromium (total)	μg/L			0.60				0.59	0.40	0.51	0.52	0.18	0.54	0.30	0.25	0.39	0.79	0.39	0.47
Copper (total)	μg/L	5		1.2				4.5	1.1	1.1	1.2	1.6	1.2	0.8	2.0	2.0	1.0	3.0	2.4
Iron (total)	μg/L	300	300	434				290	142	322	182	161	198	165	133	193	239	168	183
Potassium (total)	μg/L			1580				1650	1290	1340	1330	1410	2110	1580	1340	1280	1990	1380	1260
Magnesium (total)	μg/L			11600				11600	10600	9370	10200	11800	10100	10500	9970	12300	11400	12100	12200
Manganese (total)	μg/L			83.6				41.8	18.3	32.3	25.1	22.6	26.4	17.8	18.5	29.1	29.8	25.9	28.8
Molybdenum (total)	μg/L	40	73	0.70				1.06	0.75	0.74	0.66	0.75	0.58	0.80	0.68	0.65	0.50	0.76	0.73
Sodium (total)	μg/L			11200				13600	9970	9860	13200	11600	11700	12900	11200	11800	14200	15600	25600
Nickel (total)	μg/L	25	25	0.7				3.7	0.7	0.7	0.9	1.4	1.1	0.7	1.6	1.6	1.0	2.7	1.6
Phosphorus (total)	μg/L	10-30		58				24	16	49	34	36	36	15	17	19	28	18	26
Lead (total)	μg/L	5	7	2.40				20.7	3.0	2.8	5.7	10.5	5.4	2.3	12.0	19.1	4.9	24.5	32.2
Antimony (total)	μg/L	20		< 0.9				1.1	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	1.1	1.0
Selenium (total)	μg/L	100	1	0.13				0.12	0.12	0.11	0.09	0.07	0.15	0.11	0.10	0.09	0.20	0.09	0.09
Tin (total)	μg/L			0.08				0.13	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.07	< 0.06	< 0.06	< 0.06
Strontium (total)	μg/L			203				194	173	182	173	209	216	197	175	213	191	196	195
Titanium (total)	μg/L			8.32				6.02	3.14	9.12	3.84	3.76	4.55	3.55	2.02	1.74	7.27	2.41	2.35
Thallium (total)	μg/L	0.3	0.8	< 0.005				0.005	< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (total)	μg/L	5	15	6.26				222	6.68	8.44	26.5	60.9	53.8	8.2	97.06	101	74.3	220	147
Vanadium (total)	μg/L	6		1.16				1.19	0.66	0.80	0.83	0.94	0.93	0.53	0.61	0.56	0.79	0.80	0.55
Zinc (total)	μg/L	30	30	5				5	3	3	2	< 2	< 2	3	< 2	11	< 2	2	< 2
Radium-226	Bq/L	1		0.045				0.462	< 0.005	0.010	0.136	0.282	0.680	0.047	0.190	0.291	0.154	0.510	0.492

PWQO = Provincial Water Quality Objectives, Ministry of the Environment

CWQG= Canadian Water Quality Guidelines for Protection of Aquatic Life

Bold values indicate an exceedance of a PWQO or CWQG value

¹ No Sample due to logistical issues

² Sample location PHH-2

Page 79 de 159

Annexe B RÉSULTATS DE LA SURVEILLANCE DES EAUX SOUTERRAINES À PORT HOPE

Tableau 78: WC-IW93-22

		Crite	oria							WC-	We	3_22	_				_	
		COPC	Table 3	2016	20	17		2018	П	2019	_	2020	<u> </u>			2021		
B	11	COFC	Table 3	2010	20					2019		2020	00/	24.05.40				
Parameter pH	Units pH			8.14		.26	A۱	/erage 8.24		8.23		8.30	202	21-05-19 8.33	20.	21-12-14 8.36	A	verage 8.35
Alkalinity	mg/L as CaCO₃			97	_	100		100		98		99		100	-	105	_	103
	_				_	1.7					H			2.0	-	2.0	H	2.0
Carbonate	mg/L as CaCO ₃ mg/L as CaCO ₃			1.7 96		98		1.6 99		1.6 96	H	1.5 98		98	-	103	H	101
Bicarbonate Total Dissolved Solids	mg/L as CaCO ₃			96		96 31		78		80	H	127		134	-	103		120
Fluoride	mg/L	1.5		0.33		1.33		0.30		0.32		0.33		0.32	-	0.34	H	0.33
Total Organic Carbon	mg/L	1.5		0.33		1.49		0.57		0.62	<	1.00		1.0	<	1.0	H	1.0
Dissolved Organic Carbon				0.53	_	1.49		0.57		0.62	<	1.00		1.0	_	1.0	H	1.0
Ammonia+Ammonium (N)	as N mg/L			0.33	_	1.43		0.32		0.39	È	0.18		0.19	<u> </u>	0.21	Н	0.20
Chloride (dissolved)	mg/L			0.20		1.0	<	1.0	<	1.0		0.16		0.19		0.60	Н	0.55
Sulphate (dissolved)	mg/L			9.0	_	B.9	_	9.1	<u> </u>	9.2	\vdash	9.8		10		11	H	10
Bromide (dissolved)	mg/L			1.3		1.0	<	1.0	<	1.0	<	0.3	<	0.30	<	0.30	_	0.30
Nitrite (as N)	as N mg/L			< 0.010	_	.010	<	0.010	Ì	0.012	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L			< 0.010).10	<	0.010	<	0.10	<	0.030	<	0.05	<	0.06	<	0.03
Nitrate + Nitrite (as N)	as N mg/L			< 0.10).10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L	1	0.29	0.06	_).10	<	0.10	<	0.10	<	0.00	<	0.00	<	0.00	<	0.00
Hardness	mg/L as CaCO₃	-	0.23	75	_	76		75	Ė	75	Ė	78		83.5	Ė	86.2	Ė	84.9
Silver (dissolved)	µg/L as CaCO ₃		1.5	0.05	_	1.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L		1.5	3.0	_	5.0	<	5.0	<	5.0	È	4.0	È	1	È	3	È	2
Arsenic (dissolved)	μg/L	25	1900	1.4	_	1.3	Ė	1.4	Ė	1.3		1.6		1.4		1.5		1.5
Barium (dissolved)	μg/L	1000	29000	51		52		54	Н	54		57		58.5		57.0	Н	57.8
Beryllium (dissolved)	µg/L	1000	67	0.25		0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	73	_	70		73	Ė	73	Ė	70		73		55	Ė	64
Bismuth (dissolved)	µg/L	3000	43000	0.5		1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L			11450		2000		12000		12000		13400		13600		12900	H	13250
Cadmium (dissolved)	μg/L	5	2.7	0.05).10	<	0.10	<	0.10	<	0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	0.50		0.50	<	0.50	<	0.50		0.01		0.009		0.031	H	0.020
Chromium (dissolved)	μg/L		810	2.7	_	5.0	<	5.0	<	5.0		0.4		0.2		0.3		0.3
Copper (dissolved)	μg/L	1000	87	0.3	_	1.0	<	1.0	<	1.0	<	0.2	<	0.20		0.30	Н	0.25
Iron (dissolved)	μg/L			71		100	<	100	<	100		33		29		36		33
Potassium (dissolved)	μg/L			620		595		610		580		612		619		617		618
Magnesium (dissolved)	μg/L			11100	11	1500		11000		11000		11300		11800		11400		11600
Manganese (dissolved)	μg/L			1.8	< :	2.0	<	2.0	<	2.0		1.8		1.44		1.54		1.49
Molybdenum (dissolved)	μg/L		9200	1.8		1.8		1.9		1.9		1.8		1.80		2.00		1.90
Sodium (dissolved)	μg/L			14100	15	5000		14000		14000		14000		15000		14900		14950
Nickel (dissolved)	μg/L		490	0.6	< '	1.0	<	1.0	<	1.0	<	0.1	<	0.10	<	0.10	<	0.10
Phosphorus (dissolved)	μg/L			19		11		9		8		3	<	3	<	3	<	3
Lead (dissolved)	μg/L	10	25	0.26	< 0).50	<	0.50	<	0.50		0.01	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	6	20000	0.35	< 0).50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	1.0	< :	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L			0.6	<	1.0	<	1.0	<	1.0	<	0.1	<	0.06		0.08		0.07
Strontium (dissolved)	μg/L			494	4	180		490		490		589		572		453		513
Titanium (dissolved)	μg/L			2.5	< :	5.0	<	5.0	<	5.0		0.1	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	μg/L		510	0.028	< 0.	.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	0.06).10	<	0.10	<	0.10		0.03		0.065		0.006		0.036
Vanadium (dissolved)	μg/L		250	0.26	_	.50	<	0.50	<	0.50		0.01	<	0.01		0.05		0.03
Zinc (dissolved)	μg/L		1100	3.5	_	5.0	<	5.0	<	5.0	<	2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02	0	.06	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		0.03		.03	<	0.04	<	0.04		0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		< 0.01		.04	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1		-1	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2		- ²		- 2		_2		_2		32.1		31.6		
ORP	mV			_2		_2		_2		_2		_2		71.6				
SPC	μs/cm			_2		_2		_2		_2		_2		229.4		208.9		
Temperature	°C			_2		_2		_2	Н	_2		_2		10.747		9.157		
	FNU			_2		_2		_2		_2		_2		5.73		10.21		
Turbidity				_2		_2				_2	H	2				10.21		
pH	Units											<u>-</u>		8.57				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 80 de 159

Tableau 79: WC-MW1-02

		Crit	eria			WC-	-MW1-02		
		COPC	Table 3	2016	2017	2018	2019	2020	2021
Parameter	Units				Average			No Sample	
pH	pН			8.27	8.26	8.31	,	Well Damage	d
Alkalinity	mg/L as CaCO ₃			155	160	200		1	
Carbonate	mg/L as CaCO ₃			5.4	2.7	3.8			
Bicarbonate	mg/L as CaCO ₃			146	155	200			
Total Dissolved Solids	mg/L			195	197	200			
Fluoride	mg/L	1.5		0.80	0.68	0.76			
Total Organic Carbon	mg/L			1.67	1.08	1.10			
Dissolved Organic Carbon	mg/L			0.83	0.83	0.78			
Ammonia+Ammonium (N)	as N mg/L			0.57	0.63	0.60			
Chloride (dissolved)	mg/L			7.9	8.8	8.1			
Sulphate (dissolved)	mg/L			10.0	9.9	9.3			
Bromide (dissolved)	mg/L			0.7	< 1.0	< 1.0			
Nitrite (as N)	as N mg/L			0.010	< 0.010	< 0.010			
Nitrate (as N)	as N mg/L			< 0.10	< 0.10	< 0.10			
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	< 0.10	< 0.10			
Mercury (dissolved)	μg/L	1	0.29	0.06	< 0.10	< 0.10			
Hardness	mg/L as CaCO ₃		4	59	59	54			
Silver (dissolved)	μg/L		1.5	0.05	< 0.10	< 0.10			
Aluminum (dissolved)	µg/L	25	1000	7.5	44.5	16.0			
Arsenic (dissolved)	µg/L	25	1900	0.6 93	< 1.0	< 1.0			
Barium (dissolved) Beryllium (dissolved)	µg/L	1000	29000		78	81		-	
	µg/L	5000	67 45000	0.25 270	< 0.50 270	< 0.50			
Boron (dissolved)	µg/L	5000	45000	0.5	< 1.0	250 < 1.0			
Bismuth (dissolved) Calcium (dissolved)	μg/L μg/L			11500	12000	11000			
Cadmium (dissolved)	μg/L	5	2.7	0.05	< 0.10	< 0.10			
Cobalt (dissolved)	μg/L	3	66	0.54	< 0.10	< 0.10			
Chromium (dissolved)	μg/L		810	2.7	< 5.0	< 5.0			
Copper (dissolved)	µg/L	1000	87	0.3	< 1.0	< 1.0			
Iron (dissolved)	µg/L	1000	- 07	54	< 100	< 100			
Potassium (dissolved)	μg/L			2920	2550	2600			
Magnesium (dissolved)	µg/L			7255	6800	6500			
Manganese (dissolved)	µg/L			1.7	6.3	2.9			
Molybdenum (dissolved)	μg/L		9200	2.4	2.2	2.2			
Sodium (dissolved)	μg/L			49950	49500	47000			
Nickel (dissolved)	μg/L		490	0.6	< 1.0	< 1.0			
Phosphorus (dissolved)	μg/L			67	270	160			
Lead (dissolved)	μg/L	10	25	0.26	< 0.50	< 0.50			
Antimony (dissolved)	μg/L	6	20000	0.35	< 0.50	< 0.50			
Selenium (dissolved)	μg/L	10	63	1.1	< 2.0	< 2.0			
Tin (dissolved)	μg/L			0.5	< 1.0	< 1.0			
Strontium (dissolved)	μg/L			894	760	770			
Titanium (dissolved)	μg/L			2.5	< 5.0	< 5.0			
Thallium (dissolved)	μg/L		510	0.028	< 0.050	< 0.050			
Uranium (dissolved)	μg/L	20	420	0.06	0.14	< 0.10			
Vanadium (dissolved)	μg/L		250	0.26	< 0.50	< 0.50			
Zinc (dissolved)	μg/L		1100	3.5	< 5.0	< 5.0			
Lead-210	Bq/L	0.20		< 0.02	< 0.02	< 0.10			
Radium-226	Bq/L	0.49		0.030	< 0.040	< 0.040			
Thorium-230	Bq/L	0.65		< 0.010	< 0.070	< 0.070			
Thorium-232	Bq/L	0.60		_1	< 0.060	< 0.060			
Field Parameters									
ODO % Sat	%			- 2	_2	_2	_2		
ORP	mV			_2	_2	_2	_2		
SPC	μs/cm			_2	_2	_2	_2		
Temperature	°C			_2	_2	_2	_2		
Turbidity	FNU			_2	_2	_2	_2		
pH	Units			_2	_2	_2	_2		
P	5. III.0								

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 81 de 159

Tableau 80: WC-MW1-03

		Crite	eria							WC-I	MW	1-03					_	
		COPC	Table 3	2016	П	2017	Г	2018		2019		2020				2021	_	
Parameter	Units						┰	verage	_				203	21-05-18	20	21-11-26	Δ	verage
pH	pH			7.94	П	7.90	rî	7.62		7.70		7.52	202	7.28	20	7.20		7.24
Alkalinity	mg/L as CaCO ₃			494	H	430	H	450		400		460		389		409		399
Carbonate	mg/L as CaCO ₃			3.0	t	3.2	H	1.8		2.0	٧	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			494	H	425	H	450		400	_	460		389	È	409		399
Total Dissolved Solids	mg/L as cacc ₃			595	T	496	H	678		648		715		900		751		826
Fluoride	mg/L	1.5		0.25	┢	0.24	Н	0.21	H	0.19		0.25		0.20		0.21		0.21
Total Organic Carbon	mg/L	1.5		8.6	H	9.0	H	3.7		4.2		2.5		3.0		3.0		3.0
Dissolved Organic Carbon	mg/L			2.9	┢	3.4	Н	2.7	H	2.3		2.5		3.0	H	3.0		3.0
Ammonia+Ammonium (N)	as N mg/L			< 0.05	H	0.11	H	0.09	H	0.09		0.06	<	0.04		0.04		0.04
Chloride (dissolved)	mg/L			43	T	51	H	61		85		115		150		180		165
Sulphate (dissolved)	mg/L			30	t	16	H	71	H	67		104		95	H	56		76
Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0		0.3		0.40		1.00		0.70
Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010	<	0.010	٧	0.030	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	Ė	0.07	Ė	0.07
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	<	0.10	<	0.10	<	0.10	· ·	0.06	<	0.06		0.07		0.07
Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10		0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃		0.23	520	H	455	Ė	560		540		524		621		609		615
Silver (dissolved)	µg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	٧	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L		1.5	3.0	Ė	132.5	<	31.0	<	5.0		1.5		2.0	Ė	1.0		1.5
Arsenic (dissolved)	µg/L	25	1900	< 1.0	H	1.2	H	1.3	H	1.2		0.9		1.2	H	0.8		1.0
Barium (dissolved)	µg/L	1000	29000	119	H	115		140		160		140		161		171		166
Beryllium (dissolved)	µg/L	1000	67	0.25	<	0.50	<	0.50	<	0.50	٧	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	45	Н	26	H	38		29		24		21		29		25
Bismuth (dissolved)	μg/L	3000	43000	0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L			133000	H	130000	H	160000		155000		111100		178000		186000		182000
Cadmium (dissolved)	μg/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10		0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	1.13	Ė	0.62	Ė	0.87	<	0.50		0.15		0.676	Ė	0.189	Ė	0.433
Chromium (dissolved)	μg/L		810	2.7	<	5.0	<	5.0	<	5.0		0.4		0.2		0.1		0.16
Copper (dissolved)	μg/L	1000	87	0.3	<	1.0	<	1.0	<	1.0		0.4		0.50	<	0.20		0.35
Iron (dissolved)	μg/L	1000		224	Ė	750	Ė	1510	Ė	560		25		1670	Ė	2520		2095
Potassium (dissolved)	μg/L			2130	H	1030	Н	1500	H	2200		2135		1750	H	1860		1805
Magnesium (dissolved)	µg/L			44400	H	32000	Н	38500		37500		25200		40400		37600		39000
Manganese (dissolved)	µg/L			88	H	94	Н	127		145		35		128		278.00		203.00
Molybdenum (dissolved)	μg/L		9200	8.5	T	5.4	Н	1.9		3.7		10.0		3.9		2.5		3.2
Sodium (dissolved)	μg/L		3200	31700	H	33000		33500		36000		29350		37600		39200		38400
Nickel (dissolved)	μg/L		490	1.8	t	1.7	H	1.4	<	1.0		0.6		1.6		0.6		1.1
Phosphorus (dissolved)	μg/L			120	t	1450	Н	185		182	<	3		14		23		19
Lead (dissolved)	μg/L	10	25	0.26	T	0.51	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	1.0	<	2.0	<	2.0	<	2.0		0.0		0.06		0.08		0.07
Tin (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L			784	ı	550	Т	670		755		762		1080		1130		1105
Titanium (dissolved)	μg/L			2.5	1	7.5	<	5.0	<	5.0		0.1		0.14	<	0.05		0.10
Thallium (dissolved)	μg/L		510	0.028	<	0.050	<	0.050	<	0.050	٧	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	9.0		7.6		4.2		4.9		5.6		6.7		3.4		5.1
Vanadium (dissolved)	μg/L		250	1.2	Т	0.8	<	0.5		1.0		1.2		0.14		0.17		0.16
Zinc (dissolved)	μg/L		1100	4.0	<	5.0	<	5.0	<	5.0		3.0		2.0	<	2.0		2.0
Lead-210	Bq/L	0.20		< 0.02	T	0.05	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		< 0.01	<	0.04	<	0.04	<	0.04		0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		< 0.01	<	0.07	<	0.07	<		<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2	Т	_2		_2		_2		_2		25.6		39.6		
ORP Sat	mV			_2	\vdash	2		_2		_2		_2		-71.8		-52.0		
				2	\vdash	2		_2		_2		_2						
SPC	μs/cm				1									1215		1384.0		
Temperature	°C			_2	_	_2		_2		_2		_2		10.275		9.323		
Turbidity	FNU			_2		- 2		- 2		_2		- 2		67.22		23.82		
pH	Units			_2		- 2		- 2		-2		- 2		7.22		6.97		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 82 de 159

Tableau 81: WC-MW2-02

Page 83 de 159

		Crit	eria			WC-M	IW2-02		
		COPC	Table 3	2016	2017	2018	2019	2020	2021
Parameter	Units		1 4 4 1 4				T FOUND		
pH	pH					WEEL IN			
Alkalinity	mg/L as CaCO ₃								
Carbonate	mg/L as CaCO ₃								
Bicarbonate	mg/L as CaCO ₃								
Total Dissolved Solids	mg/L as cacc ₃		1						
Fluoride	mg/L	1.5							
Total Organic Carbon	mg/L	1.5							
Dissolved Organic Carbon	_								
Ammonia+Ammonium (N)	as N mg/L								
Chloride (dissolved)	mg/L								
Sulphate (dissolved)	mg/L								
Bromide (dissolved)	mg/L								
Nitrite (as N)	as N mg/L								
Nitrate (as N)	as N mg/L								
Nitrate + Nitrite (as N)	as N mg/L								
Mercury (dissolved)	μg/L	1	0.29						
Hardness	mg/L as CaCO₃								
Silver (dissolved)	µg/L		1.5						
Aluminum (dissolved)	μg/L								
Arsenic (dissolved)	µg/L	25	1900						
Barium (dissolved)	μg/L	1000	29000						
Beryllium (dissolved)	μg/L		67						
Boron (dissolved)	μg/L	5000	45000						
Bismuth (dissolved)	μg/L								
Calcium (dissolved)	μg/L								
Cadmium (dissolved)	μg/L	5	2.7						
Cobalt (dissolved)	μg/L		66						
Chromium (dissolved)	μg/L		810						
Copper (dissolved)	μg/L	1000	87						
Iron (dissolved)	μg/L								
Potassium (dissolved)	μg/L								
Magnesium (dissolved)	μg/L								
Manganese (dissolved)	μg/L								
Molybdenum (dissolved)	μg/L		9200						
Sodium (dissolved)	μg/L								
Nickel (dissolved)	μg/L		490						
Phosphorus (dissolved)	μg/L								
Lead (dissolved)	μg/L	10	25						
Antimony (dissolved)	μg/L	6	20000						
Selenium (dissolved)	μg/L	10	63						
Tin (dissolved)	μg/L								
Strontium (dissolved)	μg/L								
Titanium (dissolved)	μg/L								
Thallium (dissolved)	μg/L		510						
Uranium (dissolved)	μg/L	20	420						
Vanadium (dissolved)	μg/L		250						
Zinc (dissolved)	μg/L		1100						
Lead-210	Bq/L	0.20							
Radium-226	Bq/L	0.49							
Thorium-230	Bq/L	0.65							
Thorium-232	Bq/L	0.60							
Field Parameters									
ODO % Sat	%								
ORP	mV								
SPC	μs/cm								
Temperature	°C								
Turbidity	FNU								
pH	Units								
PH CORO - Contoninanto ef l		.,	5	<u> </u>	0 ""	1, , ,,			<u> </u>

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Page 84 de 159

Tableau 82: WC-MW3A-11R

		Crit	eria						1	WC-MW3A-	11R ³						
		COPC	Table 3	2015	2016		2017		2018	2019	2020	1			2021		
Parameter	Units						Ave	rac	ie e			20	021-04-28	20	21-12-17	A۱	/erage
pH	pH			7.61	7.50		7.63	Ī	7.64	7.65	7.64	Ť	7.48		7.42		7.45
Alkalinity	mg/L as CaCO ₃			142	123		130	t	140	145	152	t	150		160		155
Carbonate	mg/L as CaCO ₃			< 2.0	1.5	<	1.0	<	1.0	< 1.0	< 1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			142	123		130		140	145	152		150		160		155
Total Dissolved Solids	mg/L			3695	7445		7980	Т	4210	4010	4885		4620		3950		4285
Fluoride	mg/L	1.5		0.37	0.28		0.28	T	0.29	0.37	0.49		0.46		0.57		0.52
Total Organic Carbon	mg/L			< 1.0	1.1		1.5	Г	1.5	1.4	1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L			_1	0.95		0.90		1.23	0.87	1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mg/L			_1	7.2		4.9	Г	4.5	4.0	4.4		4.13		3.89		4.0
Chloride (dissolved)	mg/L			1900	4150		2800		2300	2050	2600		2700		2200		2450
Sulphate (dissolved)	mg/L			8	27		12	<	2	< 10	1	<	2	<	2	٧	2
Bromide (dissolved)	mg/L			25	54		35		38	32	34		33		31		32
Nitrite (as N)	as N mg/L				< 0.010	<	0.010	<	0.010	< 0.010	< 0.300	<	0.30	<	0.30	<	0.30
Nitrate (as N)	as N mg/L			_1	< 0.10	<	0.10	<	0.10	< 0.10	< 0.60	<	0.06	<	0.60		0.33
Nitrate + Nitrite (as N)	as N mg/L			_1	< 0.10	<	0.10	<	0.10	< 0.10	< 0.60	<	0.30	<	0.60		0.45
Mercury (dissolved)	μg/L	1	0.29	< 0.01	0.06	<	0.10	<	0.10	< 0.10	< 0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			1178	3350		2300	_	1850	1600	2220		2120		2240		2180
Silver (dissolved)	μg/L		1.5	0.030	0.25	<	0.10	<	0.10	< 0.10	0.28	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			5	13	<	5	<	5	33	9	<	1	<u> </u>	2		2
Arsenic (dissolved)	μg/L	25	1900	13.5	2.6	<	1.0	<	1.0	< 1.0	1.4	<	0.2	<	0.2	٧	0.2
Barium (dissolved)	μg/L	1000	29000	1615	6180	_	3550	<	2800	2650	3060	<	2990 0.007	<	3370	_	3180
Beryllium (dissolved)	μg/L	5000	67 45000	< 0.01 217	1.25 457	<	0.50 440	^	0.50 380	. 0.00	0.04 453	<	418	<	0.007 449	<	0.007 434
Boron (dissolved) Bismuth (dissolved)	μg/L μg/L	5000	45000	0.02	2.5	<	1.0	<	1.0	455 < 1.0	0.039	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L µg/L			279000	706000		485000	H	390000	340000	513500	÷	503000	<u>`</u>	651000		577000
Cadmium (dissolved)	μg/L μg/L	5	2.7	< 0.003	0.25	_	0.10	<	0.10	< 0.10	0.02	<	0.003	<	0.003	_	0.003
Cobalt (dissolved)	μg/L μg/L	3	66	0.003	2.53	-	0.10	<	0.10	< 0.10	0.02	È	0.003	`	0.003	_	0.003
Chromium (dissolved)	µg/L		810	0.06	12.7	<	5.0	<	5.0	< 5.0	0.04	╁	1.0		0.10		0.6
Copper (dissolved)	µg/L	1000	87	2.8	1.3	<	1.0	<	1.0	< 1.0	1.1	<	0.2	<	0.2	<	0.2
Iron (dissolved)	μg/L	1000	- 07	536	1155	Ė	800	Ė	440	520	656	Ė	675	Ė	771		723
Potassium (dissolved)	μg/L			18100	33900	1	26500	Т	22000	19500	21100	t	19800		20900		20350
Magnesium (dissolved)	μg/L			159500	385000		270000	Т	215000	180000	213500	t	192000		198000		195000
Manganese (dissolved)	μg/L			17	51		46		34	23	29		23.5		19.4		21
Molybdenum (dissolved)	μg/L		9200	1.9	1.8		0.7	Г	0.5	< 0.5	0.5		0.1		0.3		0.2
Sodium (dissolved)	μg/L			600000	1106500		850000		665000	605000	636500		583000		628000		605500
Nickel (dissolved)	μg/L		490	2.6	2.6	<	1.0	<	1.0	< 1.0	0.6	<	0.1		0.2		0.2
Phosphorus (dissolved)	μg/L			75	56		81		34	56	17		10		23		17
Lead (dissolved)	μg/L	10	25	0.03	1.26	<	0.50	<	0.50	< 0.50	0.06	<	0.09	<	0.09	٧	0.09
Antimony (dissolved)	μg/L	6	20000	0.65	1.35	<	0.50	<	0.50	< 0.50	4.95	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	57.0	5.0	<	2.0	<	2.0	< 2.0	0.2	<	0.04		0.07		0.06
Tin (dissolved)	μg/L			0.12	2.6	<	1.0	<	1.0	< 1.0	0.3	<	0.06		0.10		0.08
Strontium (dissolved)	μg/L			22850	60350	_	42000	┖	32500	31000	35350		37800		38000		37900
Titanium (dissolved)	μg/L			0.5	13	<	5.0	<	5.0	< 5.0	0.3	<u> </u>	0.08		0.05		0.07
Thallium (dissolved)	μg/L		510	0.008	0.128	<	0.050	<	0.050	< 0.050	< 0.028	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	0.0	0.3	<	0.1	<	0.1	< 0.1	0.0	-	0.005		0.015		0.010
Vanadium (dissolved) Zinc (dissolved)	μg/L		250	0.1 17.5	2.6 13.5	_	0.5 5.0	<	0.5 5.0	< 0.5 < 5.0	0.2 11.0	1	0.23 3.0		0.12 5.0		0.18 4.0
Lead-210	μg/L	0.20	1100	< 0.02	< 0.02	_	0.02	`	0.10	< 0.10	< 0.02	<	0.02	<	0.02	_	0.02
Radium-226	Bq/L Bq/L	0.49		0.02	0.10	È	0.02	-	0.10	0.10	0.02	÷	0.02	È	0.02	<u> </u>	0.02
Thorium-230	Bq/L Bq/L	0.49		< 0.04	0.10	<	0.11	~	0.04	< 0.07	< 0.02	-	0.04	<	0.10	<	0.07
Thorium-232	Bq/L	0.60		_1	_1	<	0.07	<	0.06	< 0.07	< 0.02	<	0.02	<	0.02	<	0.02
Field Parameters		0.00				H	0.00	Ė	0.00	0.00	0.02	Ė	0.02	Ė	0.02		3.02
ODO % Sat	%			_2	_2		_2	H	_2	_2	_2		19		37.8		
ORP Sat				_2	_2	H	_2	H	_2	_2	_2		-54				
	mV			_2	_2		2	H	_2	_2	_2	1			177.7		
SPC	μs/cm			_2	_		_2	H	_2	_2			7213		5239.9		
Temperature	℃				_2	_		L	_		_2	1	10.181		8.749		
Turbidity	FNU			_2	_2		_2	L	_2	_2	_2		50.93		22.91		
pH	Units			_2	_2		_2		_2	_2	_2		7.50		6.23		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

³ Installation took place in 2011 to replace WC-MW3A-02.

Page 85 de 159

Tableau 83: WC-MW3B-02

		Crit	oria							WC-M	W3	R-02						
		COPC	Table 3	2016	Г	2017	1	2018	Г	2019	Ï	2020				2021		
Parameter	Units				<u> </u>			Average	<u> </u>		_		20,	21-04-29		21-12-08	Δ	verage
pH	pH			No Sample		8.19		8.24		8.29		8.36	201	8.35	20.	8.31		8.33
Alkalinity	mg/L as CaCO ₃			no campio		120		140		150	Н	383		169		480		325
Carbonate	mg/L as CaCO ₃					1.8		2.3		2.8	Н	2.5		3.0	<	1.0		2.0
Bicarbonate	mg/L as CaCO ₃					120		140		145	Н	381		165	È	480		323
Total Dissolved Solids	mg/L as cacc ₃							480	H	480	Н	280		140		475		308
Fluoride	mg/L	1.5				0.44		0.38	\vdash	0.43	\vdash	0.45		0.42		0.44		0.43
Total Organic Carbon	mg/L	1.5						1.9		9.2	Н	1.0		1.0		1.0		1.0
Dissolved Organic Carbon	Ŭ							0.75		1.35		1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	mg/L as N mg/L							0.75		0.062	H	0.055	<	0.04		0.07		0.06
									<u> </u>		\vdash		`					
Chloride (dissolved) Sulphate (dissolved)	mg/L					2.5		2.1		4.3	H	2.9		2.1		2.4 12		2.3
	mg/L				-	14	-	13	١.	18	L			11	_		Ι.	12
Bromide (dissolved)	mg/L				<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L				<	0.010	<	0.010		0.011	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L				<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Nitrate + Nitrite (as N)	as N mg/L				<	0.10	<	0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Mercury (dissolved)	μg/L	1	0.29		<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃					53		55		56		987		87		1310		699
Silver (dissolved)	μg/L		1.5		<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L				<	5.0	<	5.0		5.5		3.0	<	1.0		115		58
Arsenic (dissolved)	μg/L	25	1900			1.2	<	1.0	<u> </u>	1.4		1.4		1.0		1.4		1.2
Barium (dissolved)	μg/L	1000	29000			34		39		34		30		28		32		30
Beryllium (dissolved)	μg/L		67		<	0.50	<	0.50	<	0.50	<	0.01	<	0.007		0.011		0.009
Boron (dissolved)	μg/L	5000	45000			97		98		110		100		94		87		91
Bismuth (dissolved)	μg/L				<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L					11000		12000		12400		16450		13500		18700		16100
Cadmium (dissolved)	μg/L	5	2.7		<	0.10	<	0.10	<	0.10		0.01		0.017	<	0.003		0.010
Cobalt (dissolved)	μg/L		66		<	0.50	<	0.50	<	0.50		0.04		0.004		0.218		0.111
Chromium (dissolved)	μg/L		810		<	5.0	<	5.0	<	5.0		0.3		0.2		0.4		0.3
Copper (dissolved)	μg/L	1000	87		<	1.0	<	1.0		3.6		0.4		0.2		0.2		0.2
Iron (dissolved)	μg/L				<	100	<	100	<	100		10	<	7		172		90
Potassium (dissolved)	μg/L					920		860		815		940		752		652		702
Magnesium (dissolved)	μg/L					6000		6300		5950		6200		6030		6710		6370
Manganese (dissolved)	μg/L				<	2.0		4.2		2.1		3.2		0.1		13.6		6.8
Molybdenum (dissolved)	μg/L		9200			9		8		13		6		5.70		7.32		6.51
Sodium (dissolved)	μg/L					37000		34000		36000		30950		30200		37900		34050
Nickel (dissolved)	μg/L		490		<	1.0	<	1.0		1.1		0.2	<	0.1		0.3		0.2
Phosphorus (dissolved)	μg/L							1700		2280		5	٧	3		16		10
Lead (dissolved)	μg/L	10	25		<	0.50	<	0.50	<	0.50		0.02	<	0.09		0.17		0.13
Antimony (dissolved)	μg/L	6	20000			3.4		1.3		1.6		1.1	٧	0.9	<	0.9	٧	0.9
Selenium (dissolved)	μg/L	10	63		<	2.0	<	2.0	<	2.0	٧	0.0	٧	0.04	٧	0.04	٧	0.04
Tin (dissolved)	μg/L				<	1.0	<	1.0	<	1.0		0.4		0.13		0.13		0.13
Strontium (dissolved)	μg/L					340		370		350		398		373		367		370
Titanium (dissolved)	μg/L				<	5.0	<	5.0	<	5.0		0.3		0.09		7.34		3.72
Thallium (dissolved)	μg/L		510		<	0.050	<	0.050	<	0.050	<	0.005		0.005	<	0.005		0.005
Uranium (dissolved)	μg/L	20	420			0.49		0.45		0.71		0.31		0.19		0.44		0.32
Vanadium (dissolved)	μg/L		250			0.5		0.7		1.5		0.2		0.16		0.82		0.49
Zinc (dissolved)	μg/L		1100		<	5.0	<	5.0		5.3		2.5	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20				0.03	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49			<	0.04	<	0.04	<	0.04	<	0.01	<	0.01		0.01		0.01
Thorium-230	Bq/L	0.65			<		<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60			<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_1		_1		_1		_1	Н	_1		54.9		58.4		
				_1		_1		1		_1		1						
ORP	mV													83.6				
SPC	μs/cm			_1		- 1		_1		_1		_1		268.7		262.1		
Temperature	°C			_1		- 1		- 1		_1		_1		9.893		7.232		
Turbidity	FNU			_1		_1		_1		_1		_1		8027.2		2125.0		
pH	Units			_1		_1		- 1		_1		_1		8.79				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Field parameters included for current sampling year only.

^{- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 86 de 159

Tableau 84: WC-MW3C-02

Page 87 de 159

		Crit	eria							WC-N	/W:	3C-02						
		COPC	Table 3	2016		2017		2018		2019	_	2020				2021		
Parameter	Units				_		_	verage	_				20	21-04-29		21-12-08	Δ	verage
pH	pH			8.17		8.19	rî	8.23		8.21		7.95	20.	7.83	20.	8.03	_	7.93
Alkalinity	mg/L as CaCO ₃			194	Н	180	Н	180	Н	195		722		337		350		344
Carbonate	mg/L as CaCO ₃			5.3	H	2.5	H	2.9	Н	2.9	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			190	H	175	H	175	H	190		722		337		350		344
Total Dissolved Solids	mg/L			294		195		210		273		473		406		320		363
Fluoride	mg/L	1.5		0.38	Н	0.29	Н	0.26	Н	0.30		0.25		0.24		0.24		0.24
Total Organic Carbon	mg/L			1.2	Т	1.4	Т	4.2		2.0		2.5		3.0		3.0		3.0
Dissolved Organic Carbon	mg/L			0.8		0.8		0.8		1.4		3.0		3.0		3.0		3.0
Ammonia+Ammonium (N)	as N mg/L			0.16		0.26		0.34		0.09		0.13		0.25		0.21		0.23
Chloride (dissolved)	mg/L			2.3		2.2		2.4		3.0		19.5		15		14		15
Sulphate (dissolved)	mg/L			29		25		24		25		22		20		21		21
Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0	<	0.3	٧	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L			< 0.010		0.031	<	0.010	<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (as N)	as N mg/L			0.16	<	0.10	<	0.10	<	0.11		0.12	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			0.16	<	0.10	<	0.10	<	0.11		0.13		0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	<	0.01	٧	0.01	٧	0.01	<	0.01
Hardness	mg/L as CaCO ₃			123		130		135		140		1675		1180		465		823
Silver (dissolved)	μg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	<	0.05	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			4	<	5	<	5	<	5		22		9		3		6
Arsenic (dissolved)	μg/L	25	1900	6.1		4.4		4.4		3.0		4.3		4.0		1.8		2.9
Barium (dissolved)	μg/L	1000	29000	77		82		97		95		116		149		209		179
Beryllium (dissolved)	μg/L		67	0.25	<	0.50	<	0.50	<	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	43		48		38		38		44		42		38		40
Bismuth (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	<	0.007	٧	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L			18600		20000		19500		21000		26700		38800		52100		45450
Cadmium (dissolved)	μg/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10	<	0.00		0.007	<	0.003		0.005
Cobalt (dissolved)	μg/L		66	0.51	<	0.50	<	0.50	<	0.50		0.07		0.130		0.179		0.155
Chromium (dissolved)	μg/L		810	2.7	<	5.0	<	5.0	<	5.0		0.4		0.2		0.1		0.2
Copper (dissolved)	μg/L	1000	87	0.3	<	1.0	<	1.0	<	1.0		0.3		1.5	<	0.2		0.9
Iron (dissolved)	μg/L			55	<	100	<	100	<	100		23		33		42		38
Potassium (dissolved)	μg/L			1410		1500		1350		1400		1565		1470		1870		1670
Magnesium (dissolved)	μg/L			18030		19500		20500		20500		22300		27600		35800		31700
Manganese (dissolved)	μg/L			1.7	H	5.9	H	5.9		3.7		3.3		8.2		15.5		11.9
Molybdenum (dissolved)	μg/L		9200	16.9	H	10.3	H	6.2		11.6		6.7		2.90		4.81		3.86
Sodium (dissolved)	μg/L		***	44150		34500	_	24500	_	35500		63900		66500		77200		71850
Nickel (dissolved)	μg/L		490	0.6	<	1.0	<	1.0	<	1.0		0.2	_	0.60	_	0.80	_	0.7
Phosphorus (dissolved)	μg/L	10	25	0.26	<	0.50	<	0.50	<	0.50	<	5 0.01	٧	0.09	<	0.09	<	0.09
Lead (dissolved) Antimony (dissolved)	μg/L μg/L	6	20000	0.50	<u>`</u>	0.80	<	0.50	`	0.55	<	0.01	<i>'</i>	0.90	<	0.09	<	0.09
Selenium (dissolved)	μg/L	10	63	1.0	<	2.0	<	2.0	<	2.0	`	0.90	<u> </u>	0.90	<	0.90	<u>`</u>	0.05
Tin (dissolved)	μg/L	10	03	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.05	<	0.04	<	0.05
Strontium (dissolved)	μg/L			420	È	440	È	460	È	435		572	_	762	Ì	898	Ì	830
Titanium (dissolved)	μg/L			2.5	<	5.0	<	5.0	<	5.0		0.6		0.77	<	0.05		0.41
Thallium (dissolved)	μg/L		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	2.30	È	1.35	È	0.76	È	1.67	È	2.16	Ė	2.50	Ė	2.60	È	2.55
Vanadium (dissolved)	μg/L		250	1.7	Н	1.1		0.6		1.7		1.0		1.13		1.57		1.35
Zinc (dissolved)	μg/L		1100	3.5	<	5.0	<	5.0	<	5.0		3.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02		0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		0.025	<	0.040	<	0.040	<	0.040		0.025		0.01		0.01		0.01
Thorium-230	Bq/L	0.65		0.040	<	0.070	<	0.070	<	0.070	<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1	<		<		<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2		_2		_2		_2		_2		64.2		43.5		
ORP	mV			_2		_2		_2		_2		_2		119				
SPC	μs/cm			_2		2		_2		_2		_2						
				_2	H	2	H	_2	H	2		_2		611		574.9		
Temperature	°C													10.297		7.762		
Turbidity	FNU			_2		_2		_2		_2		- 2		640.04		766.2		
pH	Units			_2		- 2		_2		_2		_2		7.90				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 88 de 159

Tableau 85: WC-MW3D-02

		Crit	eria							WC-N	IW	3D-02						
		COPC	Table 3	2016		2017		2018	Г	2019		2020				2021		
Parameter	Units				_		_	verage	_				20	21-04-29		21-12-08	Δ	verage
pH	pH			8.08		8.24	r	8.11	П	8.00		7.71	20	7.44	20	7.68	-	7.56
Alkalinity	mg/L as CaCO ₃			310		310		445	H	510		788		765		695		730
Carbonate	mg/L as CaCO ₃			10.0		4.9		5.4	H	4.7	٧	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			300		300		440	H	500	_	788	È	765	È	695	È	730
Total Dissolved Solids	mg/L as cacc ₃			383	H	291		498	H	600		722		846	H	820		833
Fluoride	mg/L	1.5		0.31		0.29		0.23	H	0.19		0.18		0.17		0.15		0.16
Total Organic Carbon	mg/L	1.5		1.8		3.3		6.8		8.5		9.0		9.0		10.0		9.5
Dissolved Organic Carbon	mg/L			_1	t	2.4		5.9	H	7.6		8.5		9.0		10.0		9.5
Ammonia+Ammonium (N)	as N mg/L			_1		0.065		0.120		0.074		0.255		0.18		0.12		0.15
Chloride (dissolved)	mg/L			14	t	15		25	H	33		63		65		79		72
Sulphate (dissolved)	mg/L			32		23		18	H	14		16		15		17		16
Bromide (dissolved)	mg/L			0.3	<	1.0	<	1.0	<			0.8		0.8		0.9		0.9
Nitrite (as N)	as N mg/L			_1	<	0.010	<	0.010	<		٧	0.030	<	0.03	<	0.03	<	0.030
Nitrate (as N)	as N mg/L			_1		0.13		0.17		0.17		0.26		0.18		0.31		0.25
Nitrate + Nitrite (as N)	as N mg/L			_1		0.13		0.17	t	0.17		0.26		0.18		0.31		0.25
Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<		<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			157		160		240	T	285		1071		1450		660		1055
Silver (dissolved)	µg/L		1.5	0.05	<	0.10	<	0.10	<		٧	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			3.0	Г	26.5	<	5.0	<			8.5	<	1.0	<	1.0	<	1
Arsenic (dissolved)	μg/L	25	1900	4.5		4.4		3.4	Г	2.8		4.6		1.6		1.9		1.8
Barium (dissolved)	μg/L	1000	29000	64		83		140	T	155		208		324		393		359
Beryllium (dissolved)	μg/L		67	0.25	<	0.50	<	0.50	<		٧	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	47		53		48		51		53		54		53		54
Bismuth (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	٧	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L			20750		20500		31500		36500		56450		78600		96200		87400
Cadmium (dissolved)	μg/L	5	2.7	0.05	<	0.10	<	0.10	<			0.01		0.009		0.005		0.007
Cobalt (dissolved)	μg/L		66	0.52	<	0.50	<	0.50	<	0.50		0.22		0.440		0.576		0.508
Chromium (dissolved)	μg/L		810	2.7	<	5.0	<	5.0	<			0.3		0.3		0.2		0.2
Copper (dissolved)	μg/L	1000	87	0.3	<	1.0	<	1.0	<			0.2		0.4		0.6		0.5
Iron (dissolved)	μg/L			58	<	100	<	100	<	100		158		22		12		17
Potassium (dissolved)	μg/L			1939		1950		2300	T	2450		3120		3110		3420		3265
Magnesium (dissolved)	μg/L			25400		26500		39500		47000		62350		81000		94600		87800
Manganese (dissolved)	μg/L			1.4		10.1		8.9		17.7		19.6		13.0		11.9		12.5
Molybdenum (dissolved)	μg/L		9200	9.5		6.2		4.9		5.0		5.1		3.9		4.8		4.4
Sodium (dissolved)	μg/L			75850		87500		97500	Π	120000		110300		90400		97200		93800
Nickel (dissolved)	μg/L		490	0.7	<	1.0	<	1.0	<	1.1		1.0		1.8		1.9		1.9
Phosphorus (dissolved)	μg/L			450		256		350	Π	665		32	<	3	<	3	<	3
Lead (dissolved)	μg/L	10	25	0.26	<	0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	6	20000	0.55		0.58		0.61		0.75		1.35	<	0.90		1.20		1.1
Selenium (dissolved)	μg/L	10	63	1.0	<	2.0	<	2.0	<	2.0		0.2		0.23		0.32		0.28
Tin (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	٧	0.1	<	0.06		0.06		0.06
Strontium (dissolved)	μg/L			723		685		1075		1200		1730		2470		3010		2740
Titanium (dissolved)	μg/L			2.5		5.5	<	5.0	<			0.6		0.36		0.15		0.26
Thallium (dissolved)	μg/L		510	0.028	<	0.050	<	0.050	<	0.050	٧	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	2.6		3.1		2.6		3.4		3.2		3.40		3.15		3.28
Vanadium (dissolved)	μg/L		250	1.2		1.4		1.6	Ĺ	8.0		2.2		2.90		4.64		3.77
Zinc (dissolved)	μg/L		1100	3.5	<	5.0	<	5.0	<			2.0	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02	<	0.02	<	0.10	<		٧	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		0.025	<	0.040	<	0.040	<	0.040		0.020	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65			<	0.070			<			0.020		0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters									L									
ODO % Sat	%			_2		- 2		- 2		_2		- 2		55.2		- 3		
ORP	mV			_2		_2		_2		_2		_ 2		134.6		_3		
SPC	us/cm			_2		_2		_2	Г	_2		_2		1385		_3		
Temperature	°C			_2		_2		_2	H	_2		_2		9.907		_3		
Turbidity	FNU			_2		_2		2	H	_2		_2		684.84		_3		
				2	H	2		2	\vdash	_2		2				_3		
pH	Units			-		-						-		7.38		-"		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

³ Insufficient volume of groundwater for field parameters

^{-- -} No data.

Page 89 de 159

Tableau 86: WC-MW4A-02

Personneter			Crite	eria	WC-MW4A-02							IA-02							
PH					2016		2017		2018								2021		
PH	Parameter	Units							verage	-				20:	21-05-05	20	21-12-08	A	verage
Akalaminy					7.99		8.09	É		Π	8.07		7.96					Ė	
Carbonale						1		H		T									
Bicathonale						T				T		٧		<		<		<	
Total Dissolved Solide mgl. 1.5	Bicarbonate	Ů								Т									
File of the Component 1.5 0.20										T									
Total Organic Carbon mgil.			1.5			T				T									
Dissolved Organic Carbon mg/L		_								Т		٧		<		<		<	
Chloride (diseolved) mg/L		_			0.61		0.60		0.56	<	0.50		1.00	<	1.0	<	1.0	<	1.0
Suphate (dissolved) mg/L	Ammonia+Ammonium (N)	as N mg/L			0.062		0.078		0.093		0.078		0.075	<	0.04		0.06		0.05
Brombe (dissolved) mg/L	Chloride (dissolved)	mg/L			5		6		6		14		6		6.4		6.3		6.4
Nitrie (as N)	Sulphate (dissolved)	mg/L			31		31		29		28		36		28		25		27
Nirate (as N)	Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0	٧	0.3	<	0.3	<	0.3	<	0.3
Narabe Naribe (as N) as Nmgl.	Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010		0.010	٧	0.030	<	0.030	<	0.030	<	0.03
Mercury (dissolved) ug/L 1 0.29 0.06 < 0.10 < 0.10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Nitrate (as N)	as N mg/L			< 0.10	<	0.10		0.11	<	0.10	٧	0.06	<	0.06	<	0.06	<	0.06
Hardness mg/L as CaCO ₂ 211 200 200 190 247 674 261 488	Nitrate + Nitrite (as N)	as N mg/L			< 0.10	<	0.10		0.11	<	0.10	٧	0.06	<	0.06	<	0.06	<	0.06
Sever (dissolved) Jg/L 1.5 0.05 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	٧	0.01	٧	0.01	<	0.01	<	0.01
Alumnum (dissolved)	Hardness	mg/L as CaCO ₃			211		200		200		190		247		674		261		468
Arsenic (dissolved) Barlum (diss	Silver (dissolved)	μg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	٧	0.05	<	0.05	<	0.05	<	0.05
Barium (dissolved) pg/L 000 2900 101 100 100 88 97 104 95 99	Aluminum (dissolved)	μg/L								<									
Beryllim (dissolved)	Arsenic (dissolved)	μg/L	25	1900	3.6		3.7		4.6		6.1		5.5		5.3		5.1		5.2
Boron (dissolved) Jig/L Soun	Barium (dissolved)		1000	29000															
Bismuth (dissolved)						<		<		<		<		<		<		<	
Calcium (dissolved)	Boron (dissolved)	μg/L	5000	45000											20				20
Cadmium (dissolved)						<		<		<		<		<		<		<	
Cobalt (dissolved) μg/L 810 2.6 6.50 6						<u> </u>													
Chromium (dissolved) μg/L 1000 87 0.3 4 1.0 4 1	` '		5			_		_		-				<		<		<	
Copper (dissolved)						_		_		_									
Prontolissolved Pig/L Protosisium (dissolved Pig/L Protosisium (dissolved Pig/L Protosisium (dissolved Pig/L Protosisium (dissolved Pig/L						_		_		_									
Potassium (dissolved) pg/L			1000	87		<		<		_		٧		<		<		<	
Magnesium (dissolved) μg/L 23650 22500 22000 21500 21450 22100 21400 21750 Manganese (dissolved) μg/L 6.8 7.1 37.0 13.0 10.7 9.4 8.9 9.1 Molybdenum (dissolved) μg/L 9200 1.7 1.7 1.8 2.6 1.5 2.1 1.8 1.9 Sodium (dissolved) μg/L 490 0.6 1.0 1.1 0.1 < 0.1						<u> </u>		_		<									
Manganese (dissolved) µg/L						_				⊢									
Molybdenum (dissolved) µg/L	` ` '					<u> </u>		_		_									
Sodium (dissolved) μg/L 490 0.6 1.0 1.10 1.10 0.11 0.	_ \					<u> </u>				⊢									
Nicker (dissolved) µg/L				9200		-				⊢									
Phosphorus (dissolved) µg/L 10 25 0.26 0.50 0.50 0.50 0.03 0.09 0.09 0.09 0.09 Antimony (dissolved) µg/L 6 20000 0.35 0.50 0.50 0.50 0.50 0.03 0.09 0.09 0.09 0.09 Antimony (dissolved) µg/L 10 63 1.0 0.0 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 Tin (dissolved) µg/L 10 63 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 Strontium (dissolved) µg/L 10 348 325 325 285 349 330 321 326 Titanium (dissolved) µg/L 2.5 0.028 0.050 0.050 0.050 0.03 0.18 0.05 0.02 Tinalium (dissolved) µg/L 20 420 0.1 0.2 0.4 2.7 0.8 0.564 0.378 0.471 Vanadium (dissolved) µg/L 250 0.28 0.50 0.50 0.50 0.50 0.06 0.04 0.03 0.04 Zinc (dissolved) µg/L 1100 3.5 5.0 5.0 5.0 0.50 0.00 0.00 0.00 0.04 Lead-210 Bg/L 0.49 0.030 0.040 0.040 0.010 0.010 0.011 0.01 0.01 0.01 Thorium-230 Bg/L 0.49 0.030 0.040 0.040 0.040 0.010 0.011 0.01 0.01 0.01 Thorium-230 Bg/L 0.65 0.060 0.040 0.040 0.040 0.000 0.000 0.000 0.000 0.000 0.000 Field Parameters 0	` '					Η.		<u> </u>		⊢									
Lead (dissolved) µg/L 10 25 0.26 < 0.50 < 0.50 < 0.50 < 0.03 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.00 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00		- 0		490		<		<		⊢				<		_		<	
Antimony (dissolved)			- 40			Ł		Ļ		Ι.				_		_		Ι.	
Selenium (dissolved) pg/L 10 63 1.0 < 2.0 < 2.0 < 2.0 < 0.0 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04						+		_		_		_		_		_		_	
Tin (dissolved) μg/L						_		_		_		_		_		_		_	
Strontium (dissolved) µg/L 348 325 325 285 349 330 321 326 Titanium (dissolved) µg/L 2.5 < 5.0 < 5.0 < 5.0 < 5.0 < 0.05 Titanium (dissolved) µg/L 20 420 0.1 0.2 0.4 2.7 0.8 0.564 0.378 0.471 Vanadium (dissolved) µg/L 250 0.28 < 0.50 < 0.50 < 0.50 < 0.50 < 0.06 0.04 0.03 0.04 Zinc (dissolved) µg/L 1100 3.5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 0.005 Lead-210 Bq/L 0.20 400 0.030 < 0.040 < 0.040 0.010 < 0.02 < 0.02 < 0.02 < 0.02 Radium-226 Bq/L 0.49 0.65 0.040 < 0.040 < 0.040 0.010 < 0.010 < 0.01 < 0.01 < 0.01 < 0.01 Thorium-230 Bq/L 0.65 0.040 < 0.070 < 0.070 < 0.070 < 0.070 < 0.020 < 0.02 < 0.02 < 0.02 < 0.02 Field Parameters 0.60 -1 < 0.65 -2 -2 -2 -2 -2 -2 -2 -			10	03		_		_		_						_		_	
Titanium (dissolved) µg/L	'					÷		È		È		<u> </u>		È		<u> </u>		È	
Thallium (dissolved) μg/L 20 420 0.1 0.2 0.4 2.7 0.8 0.564 0.378 0.471						-		_		-						_			
Uranium (dissolved) μg/L 20 420 0.1 0.2 0.4 2.7 0.8 0.564 0.378 0.471 Vanadium (dissolved) μg/L 250 0.28 < 0.50				510		_		_		_		<		<				<	
Vanadium (dissolved) μg/L 250 0.28 < 0.50 < 0.50 < 0.50 0.06 0.04 0.03 0.04 Zinc (dissolved) μg/L 1100 3.5 < 5.0			20			Ė		È		È		Ė		Ė		Ė		È	
Zinc (dissolved)			- 20			<		<		<									
Lead-210 Bq/L 0.20 < 0.02 < 0.02 < 0.10 < 0.10 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0						_		_		_				<		<		<	
Radium-226 Bq/L 0.49 0.030 < 0.040 < 0.040 < 0.040 0.010 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.0			0,20			_		_		_		<		_		_		_	
Thorium-230 Bq/L 0.65 0.040 < 0.070 < 0.070 < 0.070 < 0.020 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.0						_		_		_				_		_		_	
Thorium-232 Bq/L 0.60 -¹ < 0.060 < 0.060 < 0.060 < 0.060 < 0.020 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.						_		_		_		<				_		_	
Field Parameters ODO % Sat % -2<						_		_		-		_		_		_		_	
ODO % Sat																			
ORP mV -2 -2 -2 -2 -2 94.4 SPC		0/2			_2		_2		_2		_2		_2		27.1		74.4		
SPC µs/cm -² <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>74.4</td><td></td><td></td></th<>																	74.4		
Temperature °C -2 -2 -2 -2 10.695 9.686 Turbidity FNU -2 -2 -2 -2 506.83 54.43	-					1		H		\vdash							070.4		
Turbidity FNU -2 -2 -2 -2 506.83 54.43		•				\vdash		L		\vdash									
1110 000.00 04.40	•																		
pH Units -2 -2 -2 -2 -2 7.69	Turbidity	FNU															54.43		
	pH	Units			_2		- 2		- 2	L	_2		_2		7.69				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 90 de 159

Tableau 87: WC-MW4B-02

Page 91 de 159

		Crite	aria							WC-N	IW.	4B_02						
		COPC	Table 3	2016	Г	2017	Г	2018	Г	2019		2020	Г			2021		
Parameter	Units				_		_	verage	_				202	21-05-06		21-12-09	A۱	/erage
pH	pH			8.02		8.04	É	7.94		8.05		8.03		8.04		8.02		8.03
Alkalinity	mg/L as CaCO ₃			215		195		160		170		220		212		211		212
Carbonate	mg/L as CaCO ₃			2.1		2.0		1.3	H	1.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			215		195		155		170		220		212		211		212
Total Dissolved Solids	mg/L			274		240		318		303		259		286		303		295
Fluoride	mg/L	1.5		0.18		0.18		0.18		0.17		0.19		0.17		0.19		0.18
Total Organic Carbon	mg/L			< 1.0		2.3		2.2		2.0		1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L			_1		1.37		1.04		0.79		1.00		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mg/L			_1		0.050		0.081	<	0.050	٧	0.040	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L			7		8		59		28		20		24		32		28
Sulphate (dissolved)	mg/L			39		36		62		49		48		47		41		44
Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0	٧	0.3	<	0.30		0.40		0.4
Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010	<	0.010	٧	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L			< 0.10	<	0.10		0.10	<	0.10	٧	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	<	0.10		0.10	<	0.10	٧	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	٧	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			226		205		195		205		395		382		300		341
Silver (dissolved)	μg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	٧	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			3.0		7.1	<	5.0	<	5.0		2.0	<	1.0	<	1.0	<	1.0
Arsenic (dissolved)	μg/L	25	1900	1.8		1.4	<	1.0		1.1		1.0		1.0		1.2		1.1
Barium (dissolved)	μg/L	1000	29000	120		109		85		105		141		125		134		130
Beryllium (dissolved)	μg/L		67	0.25	<	0.50	<	0.50	<	0.50	٧	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	23		28		30		24		30		26		18		22
Bismuth (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	٧	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L			46000		43500	_	51500		47500		96850		48000		53200		50600
Cadmium (dissolved)	μg/L	5	2.7	0.06	<	0.10	<	0.10	<	0.10		0.01		0.012	<	0.003		0.008
Cobalt (dissolved)	μg/L		66	0.53	<	0.50	<	0.50	<	0.50		0.34		0.010		0.036		0.023
Chromium (dissolved)	μg/L		810	2.7	<	5.0	<	5.0	<	5.0		0.4		0.25		0.14		0.20
Copper (dissolved)	μg/L	1000	87	0.3	<	1.0	<	1.0	<	1.0		0.4		0.5	<	0.2		0.4
Iron (dissolved)	μg/L			55	<	100	<	100	<	100		654	<	7	<	7	<	7
Potassium (dissolved)	μg/L			2420		2350		3250		2750		2515		2670		2510		2590
Magnesium (dissolved)	µg/L			26850		23000		16500		20500		31600		23600		26500		25050
Manganese (dissolved)	μg/L		0200	10.2 17		5.0		4.3 19		2.6		120 8		0.4 11.7		3.0 10.6		1.7
Molybdenum (dissolved) Sodium (dissolved)	μg/L μg/L		9200	13500		13 11500		50500	Н	13 27000		26050	-	20100		22700		11.2 21400
Nickel (dissolved)	μg/L		490	0.7	<	1.0	<	1.0	<	1.0		0.8		0.2		0.3	-	0.3
Phosphorus (dissolved)	μg/L		490	560	_	1245	<u> </u>	375	<u> </u>	620		9		8	<	3		6
Lead (dissolved)	μg/L	10	25	0.26	<	0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	µg/L	6	20000	0.35	<	0.50	È	0.55	<	0.50	٧	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	1.0	<	2.0	<	2.0	<	2.0	Ť	0.30	<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L	-10	- 03	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	µg/L			440	Ė	350	Ė	330	Ė	380		686		416		458	Ė	437
Titanium (dissolved)	μg/L			2.5	<	5.0	<	5.0	<	5.0		0.1		0.08	<	0.05		0.07
Thallium (dissolved)	μg/L		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	0.4		0.4		2.2		1.6		3.1		1.33		1.05		1.19
Vanadium (dissolved)	µg/L		250	1.20		0.85		0.64		0.60		0.54		0.91		0.98		0.95
Zinc (dissolved)	μg/L		1100	3.5	<	5.0	<	5.0	<	5.0		2.5	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L	0.20		< 0.02	<	0.02	<	0.10	<	0.10		0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		0.030	<	0.040	<	0.040	<	0.040	٧	0.010		0.01	<	0.01		0.01
Thorium-230	Bq/L	0.65		0.040	<	0.070	<	0.070	<	0.070	٧	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	0.60		_1	<	0.060	<	0.060	<	0.060	٧	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2		_2		_2		_2		_2		74.9		82.2		
ORP	mV			_2		_2		_2		_2		_2		138.9				
SPC	μs/cm			_2		_2		_2		_2		_2		381		516.0		
	°C			_2		_2		_2		_2		_2						
Temperature				_2		_2		_2		_2		_2		10.672		10.231		
Turbidity	FNU													117.2		127.20		
pH	Units			_2		- 2		_2		_2		_2		8.14				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. Bold values indicate an exceedance of the COPC or Table 3 criteria.

Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 92 de 159

Tableau 88: WC-OW1-87

		Crite	orio							WC-	OW/	14 07						
		COPC	Table 3	2016	Г	2017		2018		2019	-	2020				2021		
Parameter	Units				-		Α	verage	_				20	21-04-23	20	21-11-22	Δv	erage
pH	pH			7.75	Г	7.94	Γ	7.80		7.82		7.58	20	7.47	20	7.39		7.43
Alkalinity	mg/L as CaCO ₃			307	H	345		325	H	320		323		335		310		323
Carbonate	mg/L as CaCO ₃			1.8	H	2.9		1.9		2.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃			307	t	345		325	T	315		323		335		310		323
Total Dissolved Solids	mg/L			370	H	403		345		468		452		494		551		523
Fluoride	mg/L	1.5		0.09	<	0.10		0.12		0.10		0.09		0.10		0.11		0.11
Total Organic Carbon	mg/L			1.9	H	2.1		1.7		2.0		1.5		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L			2.1	H	1.7		1.6	H	1.7		2.0		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L			< 0.050	<	0.050		0.095	<	0.050	<	0.040	<	0.04	<	0.04	<	0.04
Chloride (dissolved)	mg/L			16	H	12		14	m	31		31		42		74.00		58
Sulphate (dissolved)	mg/L			25	H	11		26		46		56		61		100		81
Bromide (dissolved)	mg/L			0.7	<	1.0	<	1.0	<	1.0	<	0.3	٧	0.3		0.4		0.4
Nitrite (as N)	as N mg/L			< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L			< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃			330	Г	325		325		360		463		472		432		452
Silver (dissolved)	μg/L		1.5	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			3.7	<	5.0	<	5.0	<	5.0	<	1.0		1.0		2.0		1.5
Arsenic (dissolved)	μg/L	25	1900	1.0	<	1.0	<	1.0	<	1.0		0.8		0.9		0.9		0.9
Barium (dissolved)	µg/L	1000	29000	67	Г	80		79	Г	84		89		95		114		104
Beryllium (dissolved)	μg/L		67	0.25	<	0.50	<	0.50	<	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	20	t	28		21	T	15		16		13		16		15
Bismuth (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	<	0.007	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L			106000	T	105000		103000		110000		116500		113000		122000		117500
Cadmium (dissolved)	μg/L	5	2.7	0.05	<	0.10	<	0.10	<	0.10		0.00		0.009	<	0.003		0.006
Cobalt (dissolved)	μg/L		66	0.59	<	0.50	<	0.51	T	0.51		0.45		0.584		0.858		0.721
Chromium (dissolved)	μg/L		810	2.5	<	5.0	<	5.0	<	5.0		0.1		0.23		0.11		0.17
Copper (dissolved)	μg/L	1000	87	0.4	<	1.0	<	1.0		1.8		0.3		0.4		0.3		0.4
Iron (dissolved)	μg/L			135	T	190		175	T	200		203		215		259		237
Potassium (dissolved)	μg/L			668	T	705		615		580		657		623		687		655
Magnesium (dissolved)	μg/L			15550		16500		16500		20500		21050		21800		27100		24450
Manganese (dissolved)	μg/L			48		55		55		61		63		69		83		76
Molybdenum (dissolved)	μg/L		9200	0.77	Г	0.51	<	0.50	<	0.50		0.35		0.40		0.38		0.39
Sodium (dissolved)	μg/L			18200	Г	26000		18000		17000		21400		19700		28600		24150
Nickel (dissolved)	μg/L		490	0.7	<	1.0	<	1.0	<	1.0		0.6		0.8		1.5		1.2
Phosphorus (dissolved)	μg/L			52	Г	130		71		46	<	3		4		8		6
Lead (dissolved)	μg/L	10	25	0.26	<	0.50	<	0.50	<	0.50		0.02	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	6	20000	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	1.0	<	2.0	<	2.0	<	2.0	<	0.0		0.05	<	0.04	<	0.05
Tin (dissolved)	μg/L			0.5	<	1.0	<	1.0	<	1.0	<	0.1	٧	0.06	<	0.06	٧	0.06
Strontium (dissolved)	μg/L			225		225		220		245		268		274		332		303
Titanium (dissolved)	μg/L			2.5	<	5.0	<	5.0	<	5.0		0.1		0.13		0.11		0.12
Thallium (dissolved)	μg/L		510	0.028	<	0.050	<	0.050	<	0.050	<	0.005		0.011	<	0.005		0.008
Uranium (dissolved)	μg/L	20	420	7.7		8.1		5.8		5.0		3.8		4.2		3.6		3.9
Vanadium (dissolved)	μg/L		250	0.27	<	0.50	<	0.50	<	0.50		0.11		0.11		0.12		0.12
Zinc (dissolved)	μg/L		1100	3.5	<	5.0		5.5		5.2		2.0		3.0		2.0		2.5
Lead-210	Bq/L	0.20		< 0.02	<	0.06	<	0.10	<	0.10	<	0.02	٧	0.02	<	0.02	٧	0.02
Radium-226	Bq/L	0.49		0.03	<	0.03	<	0.04	<	0.04	<	0.01		0.01	<	0.01		0.01
Thorium-230	Bq/L	0.65		0.04	Γ	0.04		0.04	<	0.07	<	0.02	٧	0.02	<	0.02	٧	0.02
Thorium-232	Bq/L	0.60		_1		_1		0.04	<	0.06	<	0.02	٧	0.02	<	0.02	<	0.02
Field Parameters																		
ODO % Sat	%			_2		_2		_2		_2		_2		41.2		47.1		
ORP	mV			_2	Г	_2		_2		_2		_2		86.1		74.5		
SPC	μs/cm			_2	Н	_2		_2		_2		_2		747		918.0		
	°C			_2	H	_2		_2	H	_2		_2						
Temperature					H				H					10.559		10.015		
Turbidity	FNU			_2	L	_2		_2		_²		_2		145.88		59.34		
pH	Units			_2		_2		_2		- ²		- 2		7.55		7.30		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. **Bold values** indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 93 de 159

Tableau 89: WC-OW2-75

		Crit	eria		WC	-OW2-75
		COPC	Table 3	2016	2017	2018
Parameter	Units				rage	WELL DECOMMISSIONED
pH	pH			8.09	8.06	WEEL BECOMMISSIONED
Alkalinity	mg/L as CaCO ₃			254	185	
Carbonate	mg/L as CaCO ₃			2.6	2.1	
Bicarbonate	mg/L as CaCO ₃			254	185	
Total Dissolved Solids	mg/L			309	234	
Fluoride	mg/L	1.5		0.08	< 0.10	
Total Organic Carbon	mg/L			1.2	1.5	
Dissolved Organic Carbon	mg/L			1.3	1.5	
Ammonia+Ammonium (N)	as N mg/L			< 0.050	< 0.050	
Chloride (dissolved)	mg/L			13.0	10.3	
Sulphate (dissolved)	mg/L			15	7	
Bromide (dissolved)	mg/L			0.7	< 1.0	
Nitrite (as N)	as N mg/L			< 0.010	< 0.010	
Nitrate (as N)	as N mg/L			0.72	0.60	
Nitrate + Nitrite (as N)	as N mg/L			0.72	0.60	
Mercury (dissolved)	μg/L	1	0.29	0.06	< 0.10	
Hardness	mg/L as CaCO ₃			235	170	
Silver (dissolved)	μg/L		1.5	0.05	< 0.10	
Aluminum (dissolved)	μg/L			3.5	10.3	
Arsenic (dissolved)	μg/L	25	1900	359	310	
Barium (dissolved)	μg/L	1000	29000	19	13	
Beryllium (dissolved)	μg/L		67	0.25	< 0.50	
Boron (dissolved)	μg/L	5000	45000	13	15	
Bismuth (dissolved)	μg/L			0.5	< 1.0	
Calcium (dissolved)	μg/L			84000	60000	
Cadmium (dissolved)	μg/L	5	2.7	0.05	< 0.10	
Cobalt (dissolved)	μg/L		66	0.88	1.05	
Chromium (dissolved)	μg/L		810	2.8	< 5.0	
Copper (dissolved)	μg/L	1000	87	0.3	< 0.5	
Iron (dissolved)	μg/L			56	< 100	
Potassium (dissolved)	μg/L			506	400	
Magnesium (dissolved)	μg/L			5775	3900	
Manganese (dissolved)	μg/L			1	< 2	
Molybdenum (dissolved)	μg/L		9200	1.6	1.5	
Sodium (dissolved)	μg/L			31400	15500	
Nickel (dissolved)	μg/L		490	0.6	< 1.0	
Phosphorus (dissolved)	μg/L	- 10		150	32	
Lead (dissolved)	μg/L	10	25	0.26	< 0.50	
Antimony (dissolved)	μg/L	6	20000	4.5	3.7	
Selenium (dissolved)	μg/L	10	63	2.1	< 2.0 < 1.0	
Tin (dissolved)	μg/L			0.5 149	< 1.0 101	
Strontium (dissolved)	μg/L			2.5	< 5.0	
Titanium (dissolved) Thallium (dissolved)	μg/L		E10			
Uranium (dissolved)	μg/L μg/L	20	510 420	0.028 182	< 0.050 130	
Vanadium (dissolved)	μg/L μg/L	20	250	1.05	0.92	
Zinc (dissolved)	µg/L		1100	3.5	< 5.0	
Lead-210	Bq/L	0.20	1100	0.02	< 0.02	
Radium-226	Bq/L	0.49		0.025	< 0.040	
Thorium-230	Ba/L	0.65		0.023	< 0.070	
Thorium-232	Bq/L	0.60		_1	_1	
Field Parameters	T-					
ODO % Sat	%			_2	_2	
ORP Sat	mV			_2	2	
				_2	_2	
SPC	µs/cm			_2	_2	
Temperature	°C					
Turbidity	FNU			_2	_2	
pH	Units			_2	_2	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 94 de 159

Tableau 90: WC-OW2A-75 et WC-OW2A-19

			WC-	-OW2A-75			WC-OW2A-1	9	
		2016	2017	2018	2019	2020		2021	
Parameter	Units	Ave	rane	WELL DECOMMISSIONED	Δνε	rage	2021-04-22	2021-11-29	Average
pH	pH	7.90	7.82	Replaced by WC-OW2A-19	7.76	7.50	7.40	7.44	7.42
Alkalinity	mg/L as CaCO ₃	486	470	Topiacea by the citizat to	420	478	478	553	516
Carbonate	mg/L as CaCO ₃	2.9	3.1		2.3	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃	486	470		420	478	478	553	516
Total Dissolved Solids	mg/L	576	610		450	497	514	494	504
Fluoride	mg/L	0.09	< 0.10		< 0.10	0.07	< 0.06	< 0.06	< 0.06
Total Organic Carbon	mg/L	3.6	2.7		1.7	1.5	1.0	1.0	1.0
Dissolved Organic Carbon	mg/L	2.2	2.1		1.1	1.0	1.0	2.0	1.5
Ammonia+Ammonium (N)	as N mg/L	< 0.050	0.076		0.061	< 0.040	< 0.04	0.05	0.05
Chloride (dissolved)	mg/L	4.3	4.6		6.6	6.7	7.80	7.10	7
Sulphate (dissolved)	mg/L	57	58		31	28	26	22	24
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.30	< 0.30	< 0.30
Nitrite (as N)	as N mg/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	μg/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO₃	399	385		465	1372	1710	1000	1355
Silver (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	μg/L	3.0	< 5.0		< 5	< 1	3	2	3
Arsenic (dissolved)	μg/L	1.6	1.5		< 1.0	0.6	0.7	0.7	0.7
Barium (dissolved)	μg/L	234	240		135	146	125	108	117
Beryllium (dissolved)	μg/L	0.25	< 0.50		< 0.50	< 0.01	< 0.007	< 0.007	< 0.007
Boron (dissolved)	μg/L	9	11		11	11	9	13	11
Bismuth (dissolved)	μg/L	0.5	< 1.0		< 1.0	< 0.007	< 0.007	< 0.010	0.009
Calcium (dissolved)	μg/L	114500	110000		125000	130000	128000	129000	128500
Cadmium (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.00	0.018	0.003	0.011
Cobalt (dissolved)	μg/L	0.52	< 0.50		0.97	0.41	0.500	0.564	0.532
Chromium (dissolved)	μg/L	2.7	< 5.0		< 5.0	0.4	0.23	0.20	0.22
Copper (dissolved)	μg/L	0.3	< 1.0		< 1.0	0.5	0.5	< 0.2	0.4
Iron (dissolved)	μg/L	1740	1750		355	452	299	239	269
Potassium (dissolved)	µg/L	1760	1700		1150	1100	977	1020	999
Magnesium (dissolved)	µg/L	28950	28000		36500	35350	37800	34800	36300
Manganese (dissolved)	µg/L	22 0.73	22 0.68		51 0.68	20 0.39	18 0.29	17 0.30	17 0.30
Molybdenum (dissolved)	μg/L	72700	68500		11000	11000	11700	11900	11800
Sodium (dissolved)	µg/L	0.6	< 1.0		1.5	0.7	0.8	0.9	0.9
Nickel (dissolved) Phosphorus (dissolved)	μg/L μg/L	261	148		1165	< 3	< 3	< 3	< 3
Lead (dissolved)	μg/L	0.26	< 0.50		< 0.50	0.03	0.06	< 0.09	0.08
Antimony (dissolved)	μg/L	0.25	< 0.50		< 0.50	< 0.90	< 0.90	< 0.09	< 0.90
Selenium (dissolved)	µg/L	1.0	< 2.0		< 2.0	0.1	0.10	0.13	0.12
Tin (dissolved)	µg/L	0.5	< 1.0		< 1.0	< 0.1	< 0.06	0.06	0.06
Strontium (dissolved)	µg/L	307	300		320	344	344	335	340
Titanium (dissolved)	μg/L	2.5	< 5.0		< 5.0	0.1	0.06	0.36	0.21
Thallium (dissolved)	µg/L	0.028	< 0.050		< 0.050	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (dissolved)	µg/L	0.1	< 0.1		4.1	2.7	4.6	6.6	5.6
Vanadium (dissolved)	µg/L	0.27	< 0.50		< 0.50	0.21	0.26	0.33	0.30
Zinc (dissolved)	µg/L	4	< 5		< 5	2	7	< 2	5
Lead-210	Bq/L	< 0.02	0.03		< 0.10	< 0.02	< 0.02	< 0.02	< 0.02
Radium-226	Bq/L	0.030			< 0.040	0.010	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L	0.040	< 0.070		< 0.070	< 0.020	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	_1	< 0.060		< 0.060	< 0.020	< 0.02	< 0.02	< 0.02
Field Parameters									
ODO % Sat	%	_2	_2		_2	_2	67.2	86.2	
ORP	mV	_2	_2		_2	_2	121.9	113.1	
SPC	μs/cm	_2	_2		_2	_2	751	805.0	
		_2	_2		_2	_2			
Temperature	°C	_2	_2		_2		5.915	10.724	
Turbidity	FNU					_2	1528.7	288.3	
рН	Units	_2	_2		_2	_2	7.51	7.27	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. **Bold values** indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 95 de 159

Tableau 91: WC-OW2-87 et WC-OW2-19

		WC-OW2-87		WC-OW2-19						
		2016	2017	2018	2019			2021		
Parameter	Units	Δνε	rage	WELL DECOMMISSIONED	Δνο	rage	2021-04-22	2021-11-26	Average	
pH	pH	7.84	7.77	Replaced by WC-OW2-19	7.77	7.66	7.51	7.32	7.42	
Alkalinity	mg/L as CaCO ₃	501	495	1.000.0000.000.000.000.000.000	440	413	410	407	409	
Carbonate	mg/L as CaCO ₃	2.6	2.7		2.5	< 1.0	< 1.0	< 1.0	< 1.0	
Bicarbonate	mg/L as CaCO ₃	501	495		440	413	410	407	409	
Total Dissolved Solids	mg/L	639	631		680	646	706	594	650	
Fluoride	mg/L	0.09	< 0.10		< 0.10	0.08	0.06	< 0.06	0.06	
Total Organic Carbon	mg/L	10.1	2.8		3.0	2.5	2.0	2.0	2.0	
Dissolved Organic Carbon	mg/L	2.7	2.5		2.8	2.5	3.0	3.0	3.0	
Ammonia+Ammonium (N)	as N mg/L	< 0.050	0.105		0.050	0.045	< 0.04	< 0.04	< 0.04	
Chloride (dissolved)	mg/L	5.2	6.6		4.8	4.9	5.3	4.8	5.1	
Sulphate (dissolved)	mg/L	74	79		150	135	130	54	92	
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.3	< 0.3	< 0.3	
Nitrite (as N)	as N mg/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030	
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06	
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06	
Mercury (dissolved)	μg/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	
Hardness	mg/L as CaCO ₃	328	320		305	262	277	243	260	
Silver (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	
Aluminum (dissolved)	μg/L	3.0	< 5.0		< 5.0	5.0	< 1.0	3.0	2.0	
Arsenic (dissolved)	μg/L	1.2	1.3		1.4	1.5	1.8	1.7	1.8	
Barium (dissolved)	μg/L	130	135		27	25	26	26	26	
Beryllium (dissolved)	μg/L	0.25	< 0.50		< 0.50	< 0.01	< 0.007	< 0.007	< 0.007	
Boron (dissolved)	μg/L	10	< 10		< 10	9	8	9	9	
Bismuth (dissolved)	μg/L	0.5	< 1.0		< 1.0	< 0.007	< 0.007	< 0.010	0.009	
Calcium (dissolved)	μg/L	98000	95000		90500	78800	80200	74600	77400	
Cadmium (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.00	0.052	< 0.003	0.028	
Cobalt (dissolved)	μg/L	0.52	< 0.50		< 0.50	0.06	0.08	0.07	0.07	
Chromium (dissolved)	μg/L	2.7	< 5.0		< 5.0	< 0.1	0.3	0.1	0.2	
Copper (dissolved)	μg/L	0.5	< 1.0		< 1.0	< 0.2	0.3	< 0.2	0.3	
Iron (dissolved)	μg/L	1655	1650		1350	1165	1070	1190	1130	
Potassium (dissolved)	µg/L	1515	1600		1600	1445	1480	1360	1420	
Magnesium (dissolved)	μg/L	19800	20000		19500	16750	17500	15500	16500	
Manganese (dissolved)	μg/L	26	19		18	16	18	14	16	
Molybdenum (dissolved)	μg/L	0.89	1.15		8.2	9.5	11.7	11.6	11.6	
Sodium (dissolved)	µg/L	110500	115000		150000	137500	146000	133000	139500	
Nickel (dissolved)	µg/L	0.6 43	< 1.0 51		< 1.0 9	0.2	< 0.1	0.2	0.2	
Phosphorus (dissolved)	µg/L						13	10	12	
Lead (dissolved)	µg/L	0.26	< 0.50 < 0.50		< 0.50 < 0.50	0.02	0.02 < 0.90	< 0.09 < 0.90	0.06	
Antimony (dissolved) Selenium (dissolved)	µg/L	0.35 1.0	< 0.50 < 2.0		< 0.50 < 2.0	< 0.90 0.1	< 0.90 0.10	< 0.90 0.06	< 0.90 0.08	
Tin (dissolved)	μg/L	0.51	< 1.0		< 1.0	0.1	< 0.06	< 0.06	< 0.06	
Strontium (dissolved)	μg/L μg/L	237	225		150	138	138	139	139	
Titanium (dissolved)	μg/L	2.5	< 5.0		< 5.0	0.1	0.06	0.23	0.15	
Thallium (dissolved)	μg/L	0.028	< 0.050		< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	
Uranium (dissolved)	μg/L	0.020	0.000		0.030	0.13	0.12	0.08	0.10	
Vanadium (dissolved)	μg/L	0.09	< 0.50		< 0.50	0.08	0.12	0.05	0.10	
Zinc (dissolved)	μg/L	3.5	< 5.0		< 5.0	< 2.0	4.0	6.0	5.0	
Lead-210	Bq/L	< 0.02	< 0.02		< 0.10	< 0.02	< 0.02	< 0.02	< 0.02	
Radium-226	Bq/L	0.025	< 0.040		< 0.04	< 0.01	< 0.01	< 0.01	< 0.01	
Thorium-230	Bq/L	0.040				< 0.02	< 0.02	< 0.02	< 0.02	
Thorium-232	Bq/L	_1	< 0.060		< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	
Field Parameters										
ODO % Sat	%	_2	_2		_2	_2	28.5	24.2		
ORP Sat	mV	_2	_2		_2	_2	-52.7	-27.4		
		_2	2		2	_2				
SPC	μs/cm	_2	_		_2		932	982.0		
Temperature	°C		_2			_2	9.061	8.986		
Turbidity	FNU	_2	_2		_2	_2	2.81	2.8		
pH	Units	_2	_2		_2	_2	7.41	7.37		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011. **Bold values** indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 96 de 159

Tableau 92: WC-OW3-79

Page 97 de 159

								WC-	OW	/3-79						
		2016	2	017		2018		2019	Ī	2020				2021		
Parameter	Units				Δ۱	/erage			_		20	21-04-21	20:	21-12-03	Α	verage
pH	pH	7.90		8.05	Ė	7.95		8.06	Г	8.17		8.01		7.92	Ť	7.97
Alkalinity	mg/L as CaCO ₃	167		170		175		170	H	172		166	H	167		167
Carbonate	mg/L as CaCO ₃	1.6		1.8		1.5		1.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	167		170		175		170	H	172		166	t	167		167
Total Dissolved Solids	mg/L	184		172		158		213	t	229		266	T	177		222
Fluoride	mg/L	0.20		0.18		0.21		0.17	T	0.18		0.17	T	0.19		0.18
Total Organic Carbon	mg/L	1.05		0.59		0.68		0.71	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.69		0.54		0.59		0.55	<	1.00	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L	< 0.050		0.060		0.080		0.068	T	0.055		0.08	T	0.04		0.06
Chloride (dissolved)	mg/L	1.6		1.5		1.7		1.8		1.8		2.3		1.9		2.1
Sulphate (dissolved)	mg/L	25		25		26		26		25		25		25		25
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	٧	1.0	<	0.3	<	0.3	<	0.3	٧	0.3
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	٧	0.010	<	0.030	<	0.030	<	0.030	٧	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10	<	0.06	<	0.06	<	0.06	٧	0.06
Mercury (dissolved)	μg/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	183		133		170		180		176		164		179		172
Silver (dissolved)	μg/L	0.05	<	0.10	<	0.10	٧	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.0		127.5	<	5.0	٧	5.0		1.5	<	1.0	<	1.0	٧	1.0
Arsenic (dissolved)	μg/L	2.9		1.9		3.1		3.2		3.8		3.8		3.6		3.7
Barium (dissolved)	μg/L	127		85		135		140		135		131		145		138
Beryllium (dissolved)	μg/L	0.25	<	0.50	<	0.50	٧	0.50	<	0.01	<	0.007	<	0.007	٧	0.007
Boron (dissolved)	μg/L	37		15		20		19		20		20		20		20
Bismuth (dissolved)	μg/L	0.5	<	1.0	<	1.0	٧	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L	39850	3	33000		37000		40000		41150		39200		46300		42750
Cadmium (dissolved)	μg/L	0.05	<	0.10	<	0.10	٧	0.10		0.00		0.013	<	0.003		0.008
Cobalt (dissolved)	μg/L	0.52	<	0.50	<	0.50	٧	0.50		0.01	<	0.004		0.025		0.015
Chromium (dissolved)	μg/L	2.6	<	5.0	<	5.0	٧	5.0		0.4		0.2	<	0.1		0.1
Copper (dissolved)	μg/L	0.3		2.5	<	1.0	٧	1.0		0.4	٧	0.2	<	0.2	٧	0.2
Iron (dissolved)	μg/L	161		160		200		215		215		211		243		227
Potassium (dissolved)	μg/L	1515		985		1400		1400		1465		1380		1730		1555
Magnesium (dissolved)	μg/L	19700	,	12650		19000		19500		19450		20600		18300		19450
Manganese (dissolved)	μg/L	19		23		15		14		16		15		16		16
Molybdenum (dissolved)	μg/L	1.1		0.9		1.2		1.2		1.2		1.2		1.1		1.1
Sodium (dissolved)	μg/L	9050		7900		8300		8500		8710		8920		9830		9375
Nickel (dissolved)	μg/L	0.6		1.1	<	1.0	<	1.0	<	0.1	<	0.1		1.9		1.0
Phosphorus (dissolved)	μg/L	29		18		12		19		8		8		58		33
Lead (dissolved)	μg/L	0.26		0.74	<	0.50	٧	0.50		0.04	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	٧	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L	368		240		385		380		417		389		422		406
Titanium (dissolved)	μg/L	2.5	<	5.0	<	5.0	<	5.0		0.1	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	μg/L	0.028	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	0.1		0.4	<	0.1	<	0.1		0.0		0.05		0.04		0.04
Vanadium (dissolved)	μg/L	0.26		0.62	<	0.50	<	0.50		0.02	<	0.01		0.12		0.07
Zinc (dissolved)	μg/L	3.5		23	<	5.0	<	5.0		3.5		2.0		2.0		2.0
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.03	<	0.04	<	0.04	٧	0.04	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	< 0.01		0.07	<	0.07	<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	_1	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%	_2		- 2		_2		- 2		_2		49.7		49.4		
ORP	mV	_2		_2		_2		_2		_2		97		68.8		
SPC	μs/cm	_2		_2		_2		_2		_2		187.1		358.8		
Temperature	°C	_2		_2		_2		_2		_2		9.572		8.262		
Turbidity	FNU	_2		_2		_2		_2	H	_2		1.33		0.78		
		2		_2		_2		_2	H	_2						
pH	Units	-		-				-		-		8.12		7.95		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Tableau 93: WC-OW3-87

Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 98 de 159

		Ì						WC-	٠O١	W3-87						
		2016	П	2017		2018		2019	Ť	2020				2021		
Parameter	Units		-		A	verage	_		_		20	21-04-23	20	21-12-13	A	verage
pH	pH	8.04	Π	8.07	П	7.92		8.10	Т	7.99		7.79		7.94		7.87
Alkalinity	mg/L as CaCO ₃	207	T	185		195		185	t	185		203		210		207
Carbonate	mg/L as CaCO ₃	2.2	H	2.1		1.5		2.2	<		٧	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	207	t	185		195		185	T	185		203		210		207
Total Dissolved Solids	mg/L	241	T	190	T	235		265	T	245		249		214		232
Fluoride	mg/L	0.11	t	0.12	T	0.12		0.11	T	0.11		0.12		0.12		0.12
Total Organic Carbon	mg/L	1.8	T	1.8		1.8		2.0	T	1.5		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L	1.90		1.55		1.70		1.70	T	2.00		2.0		2.0		2.0
Ammonia+Ammonium (N)	as N mg/L	< 0.050	<	0.050		0.075		0.052	T	0.060	<	0.04		0.06		0.05
Chloride (dissolved)	mg/L	6.1	T	4.1		4.0		6.0	T	4.9		8.0		5.4		6.7
Sulphate (dissolved)	mg/L	12.6		9.2		7.9		8.7	T	8.5		9		9		9
Bromide (dissolved)	mg/L	0.7		3.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L	< 0.010		0.010	<	0.010	٧	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	0.06	<	0.10	<	0.10	٧	0.10	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	217		180		180		190	Γ	196		215		189		202
Silver (dissolved)	μg/L	0.05	<	0.10	<	0.10	٧	0.10	<	0.05	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.0	<	5.0	<	5.0	٧	5.0		6.0	٧	1.0		2.0		1.5
Arsenic (dissolved)	μg/L	4.4		5.0		4.5		4.2	Γ	5.1		4.1		5.9		5.0
Barium (dissolved)	μg/L	165		160		155		165	L	160		156		164		160
Beryllium (dissolved)	μg/L	0.25	<	0.50	<	0.50	٧	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	15		12		10		11		12		10		18		14
Bismuth (dissolved)	μg/L	0.5	<	1.0	<	1.0	٧	1.0	<	0.0	٧	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L	66400		54500		54000		58500	Г	60650		59900		58300		59100
Cadmium (dissolved)	μg/L	0.05	<	0.10	<	0.10	٧	0.10		0.00	٧	0.003	٧	0.003	٧	0.003
Cobalt (dissolved)	μg/L	0.52	<	0.50	<	0.50	٧	0.50		0.02		0.01		0.05		0.03
Chromium (dissolved)	μg/L	2.6	<	5.0	<	5.0	٧	5.0		0.3		0.2	<	0.1		0.2
Copper (dissolved)	μg/L	0.3	<	1.0	<	1.0		2.1		0.2	٧	0.2	٧	0.2	٧	0.2
Iron (dissolved)	μg/L	171		200		155	٧	155		162		93		151		122
Potassium (dissolved)	μg/L	1070		1000		970		975		1065		916		1100		1008
Magnesium (dissolved)	μg/L	11650		10500		10000		10450		10450		9760		10500		10130
Manganese (dissolved)	μg/L	10.6		9.9		10.1		10.8		9.6		9		9		9
Molybdenum (dissolved)	μg/L	0.4	<	0.5	<	0.5	٧	0.5	L	0.2		0.3		0.4		0.4
Sodium (dissolved)	μg/L	8005		5000		5000		5600	L	5250		5940		5600		5770
Nickel (dissolved)	μg/L	0.6	<	1.0	<	1.0	٧	1.0	L	0.2		0.2		0.2		0.2
Phosphorus (dissolved)	μg/L	27		27		43		23	L	4		3		5		4
Lead (dissolved)	μg/L	0.26	<	0.50	<	0.50	٧	0.50	L	0.01	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	0.35	<	0.50	<	0.50	٧	0.50	<		<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	<	2.0	<	2.0	<		<	0.04		0.07		0.06
Tin (dissolved)	μg/L	0.5	<	1.0	<	1.0	<	1.0	<		<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L	215		195		195		205	L	207		212		217		215
Titanium (dissolved)	μg/L	2.5	<	5.0	<	5.0	٧	5.0	L	0.3		0.18		0.19		0.19
Thallium (dissolved)	μg/L	0.028	<	0.050	<	0.050	<	0.050	<			0.005	<	0.005		0.005
Uranium (dissolved)	μg/L	0.66		0.14		0.16		0.30	L	0.15		1.19		0.18		0.68
Vanadium (dissolved)	μg/L	0.26	<	0.50	<	0.50	٧	0.50	L	0.07		0.05		0.20		0.13
Zinc (dissolved)	μg/L	3.5	<	5	<	5.0	٧	5.0	L	2.5	٧	2.0		3.0		2.5
Lead-210	Bq/L	< 0.02	<	0.02	<	0.10	<	0.10	<		<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.03	<	0.04	<	0.04	<	0.04	L	0.01		0.01	<	0.01		0.01
Thorium-230	Bq/L	0.04	<	0.07	<	0.07	٧.	0.07	<		<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L	-'	<	0.06	<	0.06	<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters			_						L							
ODO % Sat	%	_2		_2		_2		- 2	L	- 2		49.8		68.8		
ORP	mV	_2		_2		_2		- 2		- ²		83.3				
SPC	μs/cm	_2		_2		_2		_2		- 2		207.6		362.1		
Temperature	°C	_2	П	_2		_2		_2	T	_2		11.358		10.206		
Turbidity	FNU	_2		_2		_2		_2	t	_2		55.76		65.99		
•		2		2		_2		_2	H	_2						
pH	Units	-		-		-		-	L	-		7.77				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

Tableau 94: WC-OW4-79

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 99 de 159

								WC-	OW	/4-79						
		2016		2017		2018		2019		2020				2021		
Parameter	Units				<u> </u>	verage					20:	21-04-15	20	21-12-01	A	verage
pH	pH	7.97		8.09		7.85		8.17		7.99		7.72		7.60		7.66
Alkalinity	mg/L as CaCO ₃	149		150		150		145		162		153		157		155
Carbonate	mg/L as CaCO ₃	1.7		1.7		1.2		2.0		1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	144		145		150		140		162		153		157		155
Total Dissolved Solids	mg/L	156		101		158		183		151		134		183		159
Fluoride	mg/L	0.21		0.21		0.20		0.21		0.23		0.24		0.11		0.18
Total Organic Carbon	mg/L	1.0		8.0		1.1		1.3		1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.82		0.62		0.77		0.83		1.00	<	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L	0.10		0.10		0.11		0.12		0.09		0.06		0.07		0.07
Chloride (dissolved)	mg/L	1.8		1.3		1.8		1.6		1.9		2.3		2.1		2.2
Sulphate (dissolved)	mg/L	11.0		9.1		13.5		10.9		13.0		13		14		14
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	٧	1.0		0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	٧	0.010		0.030	٧	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10		0.06	٧	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10		0.06	٧	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	0.06	<	0.10	<	0.10	٧	0.10	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	142		135		140		140		232		170		157		164
Silver (dissolved)	μg/L	0.05	<	0.10	<	0.10	٧	0.10	<	0.05	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.0	<	5.0	<	5.0	٧	5.0		7.0		1.0		4.0		2.5
Arsenic (dissolved)	μg/L	2.8	<	1.0		1.1	٧	1.0		0.7		1.1		0.5		8.0
Barium (dissolved)	μg/L	107		102		110		91		74		115		109		112
Beryllium (dissolved)	μg/L	0.25	<	0.50	<	0.50	٧	0.50	<	0.01		0.034	<	0.007	<	0.021
Boron (dissolved)	μg/L	30		24		24		22		42		28		33		31
Bismuth (dissolved)	μg/L	0.5	<	1.0	<	1.0	٧	1.0	<	0.007	٧	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L	31000		28500		30500		30000		32400		31100		36900		34000
Cadmium (dissolved)	μg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.00	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L	1.00	<	0.50	<	0.50	<	0.50		0.10		0.24		0.13		0.19
Chromium (dissolved)	μg/L	2.6	<	5.0	<	5.0	٧	5.0		0.3		0.2		0.1		0.2
Copper (dissolved)	μg/L	0.3	<	1.0	<	1.0	٧	1.0		0.4		0.3	<	0.2		0.3
Iron (dissolved)	μg/L	3660		2600		2950		1765		341		3610		3140		3375
Potassium (dissolved)	μg/L	972		900		950		1025		836		924		857		891
Magnesium (dissolved)	μg/L	15950		15000		15500		15000		13850		15000		13400		14200
Manganese (dissolved)	μg/L	67		78		69		53		25		54		107		80
Molybdenum (dissolved)	μg/L	1.4		1.4		1.2		2.0		1.1		1.1		1.2		1.1
Sodium (dissolved)	μg/L	9620		8900	_	9350		9500		9550		9350		8760		9055
Nickel (dissolved)	μg/L	0.6	<	1.0	<	1.0	<	1.0		0.3		0.5		0.7		0.6
Phosphorus (dissolved)	μg/L	17		8		12		39	<	3	<	3	<	3	<	3
Lead (dissolved)	μg/L	0.40	<	0.50	<	0.50	<	0.50		0.02		0.30	<	0.09		0.20
Antimony (dissolved)	μg/L	0.40	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	<	2.0	<	2.0	<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	µg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.1		0.28		0.10		0.19
Strontium (dissolved)	µg/L	302	<	305	<	320	٧	315		468 0.4		342 0.07		387 0.21		365 0.14
Titanium (dissolved)	μg/L	2.5 0.028	<	5.0 0.050	<	5.0 0.050	٧	5.0 0.050	<	0.4	٧	0.07	<	0.21	<	0.14
Thallium (dissolved)	μg/L	1.12	<		<		`		<		_		_		-	
Uranium (dissolved) Vanadium (dissolved)	μg/L μg/L	0.26	<	0.10	<	0.10	٧	0.18		0.09		0.02		0.14		0.08
Zinc (dissolved)		4.5	<	5	<	5.0	٧	5.0		12.0		22.0		6.0		14.0
Lead-210	μg/L	< 0.02	<	0.02	<	0.10	٧	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L Bq/L	0.030	<	0.02	<	0.10	٧	0.10	<	0.02	/	0.02	<	0.02	<	0.02
Thorium-230	· ·	0.030	<	0.040	<		<i>'</i>		<		<i>'</i>	0.01	<	0.01	<	0.01
Thorium-232	Bq/L Bq/L	_1 _1	<	0.060	<	0.060	<i>'</i> '	0.070	<	0.020	<i>/</i>	0.02	<	0.02	<	0.02
Field Parameters	Dq/L	_	È	0.000	È	0.000	È	0.000	È	0.020	Ė	0.02	H	0.02	È	0.02
	0/	_2		_2		_2		_2		_2		25.2		64.0		
ODO % Sat	%											25.2		64.8		
ORP	mV	_2		_²		_2		_2		_2		-128.5		-90.7		
SPC	μs/cm	_2		_2		_2		- 2		- 2		311.1		322.7		
Temperature	°C	_2	L	- 2	L	_2		_2		_2		8.999		8.685	L	-
Turbidity	FNU	_2		_2		_2		_2		_2		67.67		61.57		
pH	Units	_2		_2		_2		_2		_2		7.91		7.74		
0000 0 4 4 4 4			_		_		۰.		_				_			

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Tableau 95: WC-OW5-79 et WC-OW5-19

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 100 de 159

			wc	-OW5-79			WC-OW5-19	9	
		2016	2017	2018	2019	2020		2021	
Parameter	Units	Ave	rage	WELL DECOMMISSIONED	Ave	rage	2021-05-13	2021-11-29	Average
pH	pН	7.95	7.85	Replaced by WC-OW5-19	7.44	7.20	7.26	7.29	7.28
Alkalinity	mg/L as CaCO ₃	253	260		280	327	351	379	365
Carbonate	mg/L as CaCO ₃	2.1	1.7		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	mg/L as CaCO ₃	253	255		280	327	351	379	365
Total Dissolved Solids	mg/L	458	412		1620	1557	1630	1510	1570
Fluoride	mg/L	0.13	0.15		< 0.10	0.07	< 0.06	< 0.06	< 0.06
Total Organic Carbon	mg/L	3	2		14	9	8.0	8.0	8.0
Dissolved Organic Carbon	mg/L	2	2		12	8	8.0	8.0	8.0
Ammonia+Ammonium (N)	as N mg/L	0.13	0.15		0.20	0.13	0.14	0.19	0.17
Chloride (dissolved)	mg/L	3.3	2.9		8.5	6.0	5.0	6.5	5.8
Sulphate (dissolved)	mg/L	108	99		885	780	660	810	735
Bromide (dissolved)	mg/L	0.7	< 1.0		< 1.0	< 0.3	< 0.3	< 0.3	< 0.3
Nitrite (as N)	as N mg/L	< 0.010	< 0.010		< 0.010	< 0.030	< 0.030	< 0.030	< 0.030
Nitrate (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	< 0.10		< 0.10	< 0.06	< 0.06	< 0.06	< 0.06
Mercury (dissolved)	μg/L	0.06	< 0.10		< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
Hardness	mg/L as CaCO ₃	286	290		1000	897	896	944	920
Silver (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Aluminum (dissolved)	μg/L	3.0	< 5.0		< 5.0	4.0	2.0	3.0	2.5
Arsenic (dissolved)	μg/L	1.8	1.5		2.8	3.4	0.8	4.3	2.6
Barium (dissolved)	μg/L	172	165		29	24	21	22	22
Beryllium (dissolved)	μg/L	0.25	< 0.50		< 0.50	< 0.01	< 0.007	0.015	0.011
Boron (dissolved)	μg/L	26	21		22	18	17	19	18
Bismuth (dissolved)	μg/L	0.5	< 1.0		< 1.0	< 0.007	0.090	< 0.010	0.050
Calcium (dissolved)	μg/L	77850	76000		335000	299500	270000	285000	277500
Cadmium (dissolved)	μg/L	0.05	< 0.10		< 0.10	< 0.00	< 0.003	< 0.003	< 0.003
Cobalt (dissolved)	μg/L	0.53	< 0.50		< 0.51	0.35	0.31	0.43	0.37
Chromium (dissolved)	μg/L	2.7	< 5.0		< 5.0	0.1	< 0.1	0.3	0.2
Copper (dissolved)	μg/L	0.3	< 1.0		< 1.0	< 0.2	< 0.2	< 0.2	< 0.2
Iron (dissolved)	μg/L	1050	695		5300	5340	< 7	5180	2594
Potassium (dissolved)	μg/L	1085	1150		1500	1320	1290	1340	1315
Magnesium (dissolved)	μg/L	21950	23000		48000	43300	39000	41500	40250
Manganese (dissolved)	μg/L	15	15		79	73	65	72	68
Molybdenum (dissolved)	μg/L	1.1	1.3		1.8	0.6	0.9	0.8	0.8
Sodium (dissolved)	μg/L	31350	33500		120000	112000	116000	133000	124500
Nickel (dissolved)	μg/L	0.6	< 1.0		< 1.0	0.8	0.7	0.8	8.0
Phosphorus (dissolved)	μg/L	20	9		20	10	11	9	10
Lead (dissolved)	μg/L	0.26	< 0.50		< 0.50	0.01	< 0.09	< 0.09	< 0.09
Antimony (dissolved)	μg/L	0.35	< 0.50		< 0.50	< 0.90	< 0.90	< 0.90	< 0.90
Selenium (dissolved)	μg/L	1.0	< 2.0		< 2.0	0.3	0.17	0.22	0.20
Tin (dissolved)	μg/L	0.5	< 1.0		< 1.0	0.1	0.11	< 0.06	0.09
Strontium (dissolved)	μg/L	501	475		460	471	510	492	501
Titanium (dissolved)	μg/L	2.5	< 5.0		< 5.0	0.5	0.17	0.60	0.39
Thallium (dissolved)	μg/L	0.028	< 0.050		< 0.050	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (dissolved)	μg/L	0.06	< 0.10		1.23	0.11	0.11	0.08	0.10
Vanadium (dissolved)	μg/L	0.27	< 0.50		< 0.50	0.20	0.09	0.21	0.15
Zinc (dissolved)	μg/L	3.5	10.0		< 5.0	< 2.0	< 2.0	< 2.0	< 2.0
Lead-210	Bq/L	< 0.02	< 0.02		< 0.10	< 0.02	0.04	< 0.02	0.03
Radium-226	Bq/L	0.025	< 0.040		< 0.040	< 0.010	< 0.01	< 0.01	< 0.01
Thorium-230	Bq/L	0.040	< 0.070		< 0.070	< 0.020	< 0.02	< 0.02	< 0.02
Thorium-232	Bq/L	_1	< 0.060		< 0.060	< 0.020	< 0.02	< 0.02	< 0.02
Field Parameters									
ODO % Sat	%	_2	_2		_2	_2	44.1	60.0	
ORP	mV	_2	_2		_2	_2	-95.3	-69.0	
SPC	µs/cm	_2	_2		_2	_2	953	1790.4	
Temperature	°C	_2	_2		_2	_2	12.797	8.486	
		_2	_2		_2	_2			
Turbidity	FNU						20.58	8.7	
pH	Units	_2	_2		_2	_2	7.55	7.52	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Tableau 96: WC-OW9-75 et WC-LTWMF-MW-06

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 101 de 159

		WC-OW9-75				W	C-L	TWMF-N	IW-	06				
		2016	2017	2018		2019		2020				2021		
Parameter	Units	WELL DAMAGED			ver	age	_		20	21-05-06	20	21-12-08	A	verage
pH	pН	Replaced by	8.15	8.1	_	8.25		7.96		8.17		8.25		8.21
Alkalinity	mg/L as CaCO ₃	WC-LTWMF-MW-06	145	140)	135	T	159		155		174		165
Carbonate	mg/L as CaCO ₃		1.9	1.8	$\overline{}$	2.3	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃		135	140	_	135	T	159		155		174		165
Total Dissolved Solids	mg/L		223	213	_	263	T	250		266		246		256
Fluoride	mg/L		0.79	0.7	-	0.68		0.76		0.73		0.74		0.74
Total Organic Carbon	mg/L		0.88	1.0	$\overline{}$	0.88	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L		0.6	0.6	_	0.6		1.0		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mg/L		0.184	0.06	_	0.073		0.050	<	0.04		0.09		0.07
Chloride (dissolved)	mg/L		22	20		26	H	35		40		38		39
Sulphate (dissolved)	mg/L		34	38	7	41	t	43		49		45		47
Bromide (dissolved)	mg/L		< 1.0	< 1.0		< 1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L		< 0.010	< 0.01	-	0.011	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L		< 0.10	< 0.1	_	< 0.10	Н	0.08	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L		< 0.10	< 0.1	_	< 0.10	H	0.08	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	µg/L		< 0.10	< 0.1	_	< 0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃		115	115	-	120	È	233	Ė	222	Ė	286	È	254
Silver (dissolved)	µg/L as cacc ₃		< 0.10	< 0.1	_	< 0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L		56.5	9.8		8.3	È	3.0	Ė	5.0	Ė	5.0	Ė	5.0
Arsenic (dissolved)	μg/L		1.6	2.1	_	1.9		1.3		1.1		1.9		1.5
Barium (dissolved)	μg/L		60	54	\dashv	59	H	35		81	H	65		73
Beryllium (dissolved)	µg/L		< 0.50	< 0.5	1	< 0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	µg/L		165	165	_	155	È	94	È	147	È	129	_	138
Bismuth (dissolved)	μg/L		< 1.0	< 1.0	-	< 1.0	<	0.0	<	0.010	<	0.010	<	0.010
Calcium (dissolved)	µg/L		22000	1700	-	17500	È	15050	_	26000	<u>`</u>	19500	`	22750
Cadmium (dissolved)	µg/L		< 0.10	< 0.1	$\overline{}$	< 0.10	┢	0.02		0.005	<	0.003		0.004
` '					_		H				<u>`</u>			0.004
Cobalt (dissolved) Chromium (dissolved)	μg/L		< 0.50 < 5.0	< 0.50 < 5.0	_		┢	0.01		0.004		0.02		0.01
Copper (dissolved)	μg/L μg/L		< 1.0	< 1.0		< 5.0 < 1.0	┢	0.1		0.3	<	0.1		0.2
Iron (dissolved)			115	< 100	_	< 1.0	<	7	<	7	<	7	<	7
	μg/L		3900	195	_	1800	È	1267	_		<u>`</u>	1800	`	2020
Potassium (dissolved)	μg/L		14000	1750	-	18500	⊢	10165		2240 20400		20800		20600
Magnesium (dissolved)	μg/L		13.4		_		┢	0.4		0.07		0.95		
Manganese (dissolved)	μg/L				_		┢							0.51
Molybdenum (dissolved)	μg/L		17.5	10.	_	8.8		3.2		9.2		7.4		8.3
Sodium (dissolved)	µg/L		42500 < 1.0	4250	_	43500		21660	_	48700	_	49500	_	49100
Nickel (dissolved)	μg/L		1.0	< 1.0	$\overline{}$	< 1.0	┝	12.4	<	0.1	<	0.1	<	0.1
Phosphorus (dissolved)	µg/L		76	75		103		5	_	6		5		6
Lead (dissolved)	μg/L		< 0.50	< 0.5	-	< 0.50		0.03	<	0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L		< 0.50	< 0.5	-	< 0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L		< 2.0	< 2.0	$\overline{}$	< 2.0		0.1		0.13	<	0.04	<	0.09
Tin (dissolved)	μg/L		< 1.0	< 1.0	_	< 1.0		0.2		0.14	<	0.06		0.10
Strontium (dissolved)	μg/L		490	625	-	695		374		861		776		819
Titanium (dissolved)	μg/L		5.6	< 5.0	-	< 5.0	<	0.1		0.17	<	0.05		0.11
Thallium (dissolved)	μg/L		< 0.050	< 0.05	$\overline{}$	< 0.050		800.0		0.009	<	0.005		0.007
Uranium (dissolved)	μg/L		1.40	0.9	_	0.79		0.33		1.26		0.62		0.94
Vanadium (dissolved)	μg/L		1.7	1.8	_	1.5	L	0.6		1.32		1.25		1.29
Zinc (dissolved)	μg/L		< 5.0	< 5.0	-	< 5.0	_	22.5	<	2.0	<	2.0	<	2.0
Lead-210	Bq/L		0.02	< 0.1	_	< 0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L		< 0.04	< 0.0	_	< 0.04	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-230	Bq/L		< 0.07	< 0.0		< 0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L		_1	< 0.0	ö	< 0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters														
ODO % Sat	%		_2	_2		_2		_2		80.7		74.8		
ORP	mV		_2	_2		_2		_2		153.8				
SPC	μs/cm		_2	_2		_2	П	_2		251		466.7		
Temperature	°C		_2	_2		_2		_2		9.298		10.711		
'	FNU		_2	_2		_2		_2						
Turbidity										99.44		96.1		
pH	Units		_2	_2		_2		_2		8.48				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

Tableau 97: WC-OW10-75

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 102 de 159

								WC-0	OW	/10-75						
		2016		2017		2018		2019		2020				2021		
Parameter	Units		_		_	verage			_		20	21-04-21	20	21-12-03	A	verage
pH	pH	8.04	П	8.08		8.05		8.05		8.01		8.09		7.91	Ė	8.00
Alkalinity	mg/L as CaCO ₃	174	H	170		180		170	H	165		247		181		214
Carbonate	mg/L as CaCO ₃	1.9	T	1.9		1.9		1.8	<		<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	169	Г	170		180		170	Г	165		247		181		214
Total Dissolved Solids	mg/L	242	T	183		555		230	Г	260		277		206		242
Fluoride	mg/L	0.19	T	0.19		0.15		0.13	Г	0.15		0.15		0.14		0.15
Total Organic Carbon	mg/L	1.50	T	1.15		1.09		0.84	<	1.00	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L	0.86	T	0.72		0.71		0.57	Г	1.00	٧	1.0	<	1.0	<	1.0
Ammonia+Ammonium (N)	as N mg/L	0.050	T	0.065		0.145		0.069		0.065		0.08		0.10		0.09
Chloride (dissolved)	mg/L	2.6	T	2.5		3.6		4.2	Г	4.2		4		6		5
Sulphate (dissolved)	mg/L	28	T	28		35		39	Г	39		40		40		40
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	<	0.010	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	0.06	<	0.10	<	0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	177		170		190		195	Г	207		655		237		446
Silver (dissolved)	μg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.0	<	5.0	<	5.0	<	5.0	<	1.0		3.0	<	1.0		2.0
Arsenic (dissolved)	μg/L	1.6		1.5		2.0		2.6	Г	2.8		2.8		2.8		2.8
Barium (dissolved)	μg/L	123		125		135		135	Г	154		150		158		154
Beryllium (dissolved)	μg/L	0.25	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	27		23		15		16	Г	12		13		13		13
Bismuth (dissolved)	μg/L	0.5	<	1.0	<	1.0	<	1.0	<	0.0	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L	33650		31000		35500		39500		43550		43100		47700		45400
Cadmium (dissolved)	μg/L	0.05	<	0.10	<	0.10	<	0.10	<	0.00		0.032	<	0.003		0.018
Cobalt (dissolved)	μg/L	0.53	<	0.50	<	0.50	<	0.50	Г	0.01	<	0.004		0.05		0.03
Chromium (dissolved)	μg/L	2.6	<	5.0	<	5.0	<	5.0		0.3		0.3		0.1		0.2
Copper (dissolved)	μg/L	0.3	<	1.0	<	1.0	<	1.0	<	0.2		0.2	<	0.2		0.2
Iron (dissolved)	μg/L	65	<	100		125		245		258		229		270		250
Potassium (dissolved)	μg/L	1310		1200		1250		1200		1255		1260		1570		1415
Magnesium (dissolved)	μg/L	23100		22500		24500		24500		23000		24900		21900		23400
Manganese (dissolved)	μg/L	12.8		12.5		11.5		10.4		9.2		8.5		12.2		10.4
Molybdenum (dissolved)	μg/L	1.05		1.15		0.99		0.85		0.75		1.2		0.7		1.0
Sodium (dissolved)	μg/L	9115		9200		7350		5950		5740		6410		7580		6995
Nickel (dissolved)	μg/L	0.6	<	1.0		1.7	<	1.0	<	0.1	<	0.1		2.8		1.5
Phosphorus (dissolved)	μg/L	24		34		5		18		3		8		60		34
Lead (dissolved)	μg/L	0.26	<	0.50	<	0.50	<	0.50		0.02		0.04	<	0.09		0.07
Antimony (dissolved)	μg/L	0.35	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	<	2.0	<	2.0	<		<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L	0.5	<	1.0	<	1.0	<	1.0	L	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L	399	L	380		390		360	L	350		343		376		360
Titanium (dissolved)	μg/L	2.5	<	5.0	<	5.0	<	5.0	L	0.1		0.27	<	0.05		0.16
Thallium (dissolved)	μg/L	0.028	<	0.050	<	0.050	<	0.050	<		٧	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	0.07	<	0.10	<	0.10	<	0.10		0.03		0.03		0.02		0.03
Vanadium (dissolved)	μg/L	0.29	<	0.50	<	0.50	<	0.50	<			0.02		0.11		0.07
Zinc (dissolved)	μg/L	5.0	<	5	<	5.0	<	5.0	<	2.0		3.0	<	2.0		2.5
Lead-210	Bq/L	0.03	<	0.02	<	0.10	<	0.10	<		<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.025	<	0.040	<	0.040	<	0.040		0.015	<	0.01		0.01		0.01
Thorium-230	Bq/L		<		_	0.070	_		<			0.02	<	0.02	<	0.02
Thorium-232	Bq/L	_1	<	0.060	<	0.060	<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters																
ODO % Sat	%	_2		- 2	L	_2		- 2		- 2		40.9		90.1		
ORP	mV	_2		_2		_2		_2		_2		120.4		54.5		
SPC	μs/cm	_2		_2		_2		_2		_2		373.4		396.7		
Temperature	°C	_2	Г	_2		_2		_2	Г	_2		6.977		5.914		
Turbidity	FNU	_2		_2		_2		_2	Н	_2		5.89		93.73		
		2		2		_2		_2	H	_2						
pH	Units	-		-		-				-		7.97		7.96		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

Tableau 98: WC-OW12-75

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

^{-- -} No data.

Page 103 de 159

			WC-	OW12-75
		2016	2017	2018
Parameter	Units		rage	WELL DECOMMISSIONED
pH	pH	8.00	7.84	
Alkalinity	mg/L as CaCO ₃	299	220	
Carbonate	mg/L as CaCO ₃	2.3	1.5	
Bicarbonate	mg/L as CaCO ₃	294	220	
Total Dissolved Solids	mg/L	536	309	
Fluoride	mg/L	0.08	< 0.10	
Total Organic Carbon	mg/L	1.20	1.00	
Dissolved Organic Carbon	mg/L	1.50	0.97	
Ammonia+Ammonium (N)	as N mg/L	< 0.050	< 0.050	
Chloride (dissolved)	mg/L	26.0	16.0	
Sulphate (dissolved)	mg/L	80	28	
Bromide (dissolved)	mg/L	0.7	< 1.0	
Nitrite (as N)	as N mg/L	< 0.010	< 0.010	
Nitrate (as N) Nitrate + Nitrite (as N)	as N mg/L	13.10 13.10	2.93 2.93	
Mercury (dissolved)	as N mg/L μg/L	0.06	< 0.10	
Hardness	mg/L as CaCO ₃	423	255	
Silver (dissolved)	µg/L as cacc ₃	0.06	< 0.10	
Aluminum (dissolved)	μg/L	3.0	< 5.0	
Arsenic (dissolved)	µg/L	0.6	< 1.0	
Barium (dissolved)	μg/L	44	26	
Beryllium (dissolved)	μg/L	0.25	< 0.50	
Boron (dissolved)	μg/L	23	11	
Bismuth (dissolved)	μg/L	0.5	< 1.0	
Calcium (dissolved)	μg/L	153500	93500	
Cadmium (dissolved)	μg/L	0.05	< 0.10	
Cobalt (dissolved)	μg/L	0.84	< 0.50	
Chromium (dissolved)	μg/L	2.8	< 5.0	
Copper (dissolved)	μg/L	0.3	< 1.0	
Iron (dissolved)	μg/L	67	< 100	
Potassium (dissolved)	μg/L	729	575	
Magnesium (dissolved)	μg/L	8405	5000	
Manganese (dissolved)	μg/L	1.0	< 2.0 < 0.50	
Molybdenum (dissolved) Sodium (dissolved)	μg/L	0.35 20250	< 0.50 7850	
Nickel (dissolved)	μg/L μg/L	0.6	< 1.0	
Phosphorus (dissolved)	µg/L	17	6	
Lead (dissolved)	µg/L	0.26	< 0.50	
Antimony (dissolved)	µg/L	0.40	< 0.50	
Selenium (dissolved)	µg/L	1.2	< 2.0	
Tin (dissolved)	μg/L	0.5	< 1.0	
Strontium (dissolved)	μg/L	281	170	
Titanium (dissolved)	μg/L	2.5	< 5.0	
Thallium (dissolved)	μg/L	0.028	< 0.050	
Uranium (dissolved)	μg/L	0.87	0.60	
Vanadium (dissolved)	μg/L	0.45	< 0.50	
Zinc (dissolved)	μg/L	3.5	< 5.0	
Lead-210	Bq/L	0.02	< 0.02	
Radium-226	Bq/L	0.030	< 0.040	
Thorium-230	Bq/L	0.040	< 0.070	
Thorium-232	Bq/L	_1	_1	
Field Parameters		,	2	
ODO % Sat	%	_2	_2	
ORP	mV	_2	_2	
SPC	μs/cm	_2	_2	
Temperature	°C	_2	_2	
Turbidity	FNU	_2	_2	
pН	Units	_2	_2	
0000 - 0				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

¹ Analysis not included in laboratory contract. ² Field parameters included for current sampling year only.

-- - No data.

Tableau 99: WC-OW18-76

Page 104 de 159

			WC-C	OW18-76
		2016	2017	2018
Parameter	Units	Aver		WELL DECOMMISSIONED
pH	pH	AVEI	7.97	WELL DECOMMINISSIONED
Alkalinity	mg/L as CaCO ₃		200	
Carbonate	mg/L as CaCO ₃		1.7	
Bicarbonate	mg/L as CaCO ₃		200	
Total Dissolved Solids	mg/L as cacc ₃		246	
Fluoride	mg/L		< 0.10	
Total Organic Carbon	mg/L		5.70	
Dissolved Organic Carbon	mg/L	_1	0.91	
Ammonia+Ammonium (N)	as N mg/L	_1	< 0.050	
Chloride (dissolved)	mg/L		19.0	
Sulphate (dissolved)	mg/L		12	
Bromide (dissolved)	mg/L		< 1.0	
Nitrite (as N)	as N mg/L		< 0.010	
Nitrate (as N)	as N mg/L	_1	< 0.10	
Nitrate + Nitrite (as N)	as N mg/L	_1	< 0.10	
Mercury (dissolved)	μg/L		< 0.10	
Hardness	mg/L as CaCO ₃	199	200	
Silver (dissolved)	μg/L	0.05	< 0.10	
Aluminum (dissolved)	μg/L	3.0	< 5.0	
Arsenic (dissolved)	μg/L	2.0	4.0	
Barium (dissolved)	μg/L	23	27	
Beryllium (dissolved)	μg/L	0.3	< 0.50	
Boron (dissolved)	μg/L	10	< 10	
Bismuth (dissolved)	μg/L	0.5	< 1.0	
Calcium (dissolved)	μg/L	58700	65000	
Cadmium (dissolved)	μg/L	0.06	< 0.10	
Cobalt (dissolved)	μg/L	0.72	< 0.50	
Chromium (dissolved)	μg/L	2.7	< 5.0	
Copper (dissolved)	μg/L	0.85	< 1.0	
Iron (dissolved)	μg/L	447	2100	
Potassium (dissolved)	μg/L	980	770	
Magnesium (dissolved)	μg/L	7405	8500	
Manganese (dissolved)	μg/L	147	55	
Molybdenum (dissolved)	μg/L	3.0	0.97	
Sodium (dissolved)	μg/L	19900	20000	
Nickel (dissolved)	μg/L	5.1	3.2	
Phosphorus (dissolved)	μg/L		850	
Lead (dissolved)	μg/L	0.3	< 0.50	
Antimony (dissolved)	μg/L	0.4	< 0.50	
Selenium (dissolved)	μg/L	1.1	< 2.0	
Tin (dissolved)	μg/L	0.5	< 1.0	
Strontium (dissolved)	μg/L	161	170	
Titanium (dissolved)	μg/L	2.5	< 5.0	
Thallium (dissolved)	μg/L	0.03	< 0.050	
Uranium (dissolved)	μg/L	99	120	
Vanadium (dissolved)	μg/L	0.3	< 0.50	
Zinc (dissolved)	μg/L	739	1200	
Lead-210	Bq/L	< 0.02	< 0.02	
Radium-226	Bq/L	0.035	< 0.040	
Thorium-230	Bq/L	0.040	< 0.070	
Thorium-232	Bq/L	-	< 0.060	
Field Parameters	0.4	,	,	
ODO % Sat	%	_2	_2	
ORP	mV	_2	_2	
SPC	μs/cm	_2	_2	
Temperature	°C	_2	_2	
Turbidity	FNU	_2	_2	
pH	Units	_2	_2	
COPC - Contaminants of				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions

derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria.

-- - No data.

Tableau 100: WC-OW25-76

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

Page 105 de 159

								WC-O	W2	5-76						
		2016		2017		2018		2019		2020				2021		
Parameter	Units		•		Αv	erage					20	21-04-15	20:	21-12-01	A	verage
pH	рН			7.77				8.19		7.75		-4		_4		
Alkalinity	mg/L as CaCO ₃		Т	160	Т			140		163		_4		_4		
Carbonate	mg/L as CaCO ₃		<	1.0	Т			2.1	<	1.0		_4		_4		
Bicarbonate	mg/L as CaCO ₃		Т		Т			140		163		_4		_4		
Total Dissolved Solids	mg/L		Т		Т					160		_4		_4		
Fluoride	mg/L		Т		Т					0.24		_4		_4		
Total Organic Carbon	mg/L		Т	2.3	Т				<	1.0		_4		_4		
Dissolved Organic Carbon	mg/L		Т	2.9	Т					1.0		_4		_4		
Ammonia+Ammonium (N)	as N mg/L		Т	1.7			T			0.07		_4		_4		
Chloride (dissolved)	mg/L		Т				T			1.9		_4		_4		
Sulphate (dissolved)	mg/L									14		-4		-4		
Bromide (dissolved)	mg/L								<	0.30		-4		-4		
Nitrite (as N)	as N mg/L								<	0.03		-4		-4		
Nitrate (as N)	as N mg/L								<	0.06		-4		-4		
Nitrate + Nitrite (as N)	as N mg/L								<	0.06		-4		_4		
Mercury (dissolved)	μg/L	0.06	<	0.10			<	0.10	<	0.01		-4		_4		
Hardness	mg/L as CaCO ₃	123				110		115		159		_4		-4		
Silver (dissolved)	μg/L	0.01	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05		_4	<	0.05
Aluminum (dissolved)	μg/L	2.0		8.0	<	5.0	<	5.0		2.0		1.0		_4		1.0
Arsenic (dissolved)	μg/L	1.6	<	1.0	<	1.0	<	1.0		0.8		0.7		_4		0.7
Barium (dissolved)	μg/L	27		30		25		35		69.50		35		_4		35
Beryllium (dissolved)	μg/L	< 0.01	<	0.50	<	0.50	<	0.50	<	0.007	<	0.007		_4	<	0.007
Boron (dissolved)	μg/L	71	T	70		62		63		41		61		_4		61
Bismuth (dissolved)	μg/L	< 0.0	<	1.0	<	1.0	<	1.0	<	0.007	<	0.007		_4	<	0.007
Calcium (dissolved)	μg/L	30000	T	28000	T	26500	Ī	25500		27700		33600		_4		33600
Cadmium (dissolved)	μg/L	0.01	<	0.10	<	0.10	<	0.10	<	0.003		0.005		_4		0.005
Cobalt (dissolved)	μg/L	0.20	<	0.50	<	0.50	<	0.50		0.097		0.04		_4		0.04
Chromium (dissolved)	μg/L	0.3	<	5.0	<	5.0	<	5.0		0.32		0.2		_4		0.2
Copper (dissolved)	μg/L	0.1	<	1.0	<	1.0	<	1.0		0.25	<	0.2		_4	<	0.2
Iron (dissolved)	μg/L	34	<	100	<	100	<	100		1289		29		_4		29
Potassium (dissolved)	μg/L	696	T	955	T	695	Ī	715		760		716		_4		716
Magnesium (dissolved)	μg/L	11700	T	11000	H	11500		11500		12600		14900		_4		14900
Manganese (dissolved)	μg/L	4	T	30	T	5	Ī	12		28		10.5		_4		10.5
Molybdenum (dissolved)	μg/L	1.7	T	1.6	T	1.5	Ī	1.7		1.35		1.2		-4		1.2
Sodium (dissolved)	μg/L	11200	T	11000	T	11000	Ī	10500		9385		11100		_4		11100
Nickel (dissolved)	μg/L	0.2	<	1.0	<	1.0	<	1.0		0.3	<	0.1		_4	<	0.1
Phosphorus (dissolved)	μg/L		T	410	T		Ī			6	<	3		_4	<	3
Lead (dissolved)	μg/L	0.01	<	0.50	<	0.50	<	0.50		0.07		0.01		_4		0.01
Antimony (dissolved)	µg/L	0.30	<	0.50	<	0.50	<	0.50	<	0.90	<	0.90		_4	<	0.90
Selenium (dissolved)	μg/L	0.1	<	2.0	<	2.0	<	2.0	<	0.04		0.05		_4		0.05
Tin (dissolved)	μg/L	0.1	<	1.0	<	1.0	<	1.0		0.08	<	0.06		_4	<	0.06
Strontium (dissolved)	μg/L	444	Т	420	H	430	t	425		402		676		_4		676
Titanium (dissolved)	µg/L	0.1	<	5.0	<	5.0	<	5.0		0.07	٧	0.05		_4	<	0.05
Thallium (dissolved)	µg/L	0.005	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005		_4	<	0.005
Uranium (dissolved)	µg/L	0.31		0.12		0.11	Т	0.14		0.142		0.13		_4		0.13
Vanadium (dissolved)	μg/L	1.6	Т	1.4	П	1.5	Н	3.2		0.88		1.47		_4		1.47
Zinc (dissolved)	µg/L	2.0	<	5.0	<	5.0	<	5.0		10		2.0		_4		2.0
Lead-210	Bq/L	0.02	<	0.02	<	0.10	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.035	<	0.040	<	0.040	<	0.040		0.01	·	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.010	<	0.070	<	0.070	<	0.070	<	0.02	` <	0.01	<	0.02	<	0.01
Thorium-232	Bq/L	_1 _1	<	0.060	<	0.060	<	0.060	<	0.02	` '	0.02	<	0.02	<	0.02
Field Parameters	-4/L		È	0.000	È	0.000	È	0.000	È	0.02		0.02		0.02	Ė	0.02
ODO % Sat	%	_2	\vdash	_2		_2	H	_2		_2		_3		_3		
		_				_2	H			_2						
ORP	mV	_2		_2				_2				_3		_3		
SPC	μs/cm	_2		-2		_2		- 2		_2		_3		_3		
Temperature	°C	_2	L	- 2	L	_2	L	- 2	L	_2		-3		_3	L	
Turbidity	FNU	_2		_2		_2		_2		_2		_3		_3		
Hq	Units	_2	П	_2	П	_2	Г	_2		_2		_3		_3		
			_		_		_		_				_		_	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

- ¹ Analysis not included in laboratory contract.
- ² Field parameters included for current sampling year only.
- ³ Insufficient volume of groundwater for field parameters
- ⁴ Insufficient volume of groundwater for full sample collection
- -- No data.

Tableau 101: WC-OW27-76

Page 106 de 159

							WC-0	ow:	27-76						
		2016		2017	2018		2019	<u> </u>	2020				2021		
Parameter	Units				Average	-		!		20:	21-04-15		21-12-01	Δ,	verage
pH	pH			8.00	7.88	Г	8.04		7.81		7.63		7.60	Ë	7.62
Alkalinity	mg/L as CaCO ₃	205		215	210	Н	210		255		217		214		216
Carbonate	mg/L as CaCO ₃	< 2.0		2.1	1.5		2.1	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃	205		210	210		205		255		217		214		216
Total Dissolved Solids	mg/L	292		338	680		390		353		343		409		376
Fluoride	mg/L	0.14		0.14	0.13		0.11		0.14		0.11		0.23		0.17
Total Organic Carbon	mg/L	< 1.0		1.4	9.4		1.6		1.0		1.0		1.0		1.0
Dissolved Organic Carbon	mg/L	_1		1.2	1.3		1.3		1.5		1.0		1.0		1.0
Ammonia+Ammonium (N)	as N mg/L	٠.		0.093	0.210		0.077		0.065		0.10		0.10		0.10
Chloride (dissolved)	mg/L	20		28	31		46		54		67		91		79
Sulphate (dissolved)	mg/L	31		29	26		31		32		33		32		33
Bromide (dissolved)	mg/L	< 0.3	<	1.0	< 1.0	<	1.0	<	0.3	<	0.3		0.7		0.5
Nitrite (as N)	as N mg/L	_1	<	0.010	0.022	L	0.023	<	0.030	<	0.030	<	0.030	<	0.030
Nitrate (as N)	as N mg/L		<	0.10	< 0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Nitrate + Nitrite (as N)	as N mg/L		<	0.10	< 0.10	<	0.10	<	0.06	<	0.06		0.07		0.07
Mercury (dissolved)	μg/L	0.06	<	0.10	< 0.10	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness	mg/L as CaCO ₃	255		270	250		305		417		351		351	H	351
Silver (dissolved)	μg/L	0.05	<	0.10	< 0.10	<	0.10	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.0	<	5.0	< 5.0	<	5.0		2.0 0.4		2.0		0.4		1.5 0.4
Arsenic (dissolved)	µg/L	0.9	<	1.0	< 1.0	<	1.0		-		0.3				_
Barium (dissolved)	μg/L	113	_	125	110	_	155	_	158	,	152	_	160	_	156
Beryllium (dissolved)	μg/L	0.25 51	<	0.50 45	< 0.50 46	<	0.50 40	<	0.01 39	<	0.007 39	<	0.007 50	<	0.007 45
Boron (dissolved) Bismuth (dissolved)	μg/L μg/L	0.5	<	1.0	< 1.0	<	1.0	<	0.0	<	0.007	<	0.010	Н	0.009
Calcium (dissolved)	μg/L μg/L	67000	`	70000	65500	`	82500	`	88300	_	96200	`	94900	Н	95550
Cadmium (dissolved)	μg/L	0.05	<	0.10	< 0.10	<	0.10		0.01	<	0.003		0.006		0.005
Cobalt (dissolved)	μg/L	0.61	<	0.50	< 0.50	<	0.50		0.05	<u>`</u>	0.003		0.000		0.003
Chromium (dissolved)	μg/L	2.6	<	5.0	< 5.0	<	5.0		0.03		0.07		0.00	Н	0.07
Copper (dissolved)	µg/L	0.3	<	1.0	< 1.0	<	1.0		0.3		0.3		0.2		0.3
Iron (dissolved)	μg/L	55	<	100	< 100	<			8	<	7		9		8
Potassium (dissolved)	μg/L	802		820	810		885		939		892		1020		956
Magnesium (dissolved)	μg/L	21500		22000	21500		23500		24700		26900		23600		25250
Manganese (dissolved)	μg/L	20		19	78		46		36		37.7		37.4		37.6
Molybdenum (dissolved)	μg/L	0.70		0.56	0.55		0.51		0.52		0.46		0.49		0.48
Sodium (dissolved)	μg/L	9320		9650	9700		11000		12450		14700		13700		14200
Nickel (dissolved)	μg/L	0.7	<	1.0	< 1.0		1.2		0.5		0.3		0.7		0.5
Phosphorus (dissolved)	μg/L	30		47	18	L	38	<	3	<	3	<	3	<	3
Lead (dissolved)	μg/L	0.26	<	0.50	< 0.50	<	0.50		0.02	<	0.01		0.17		0.09
Antimony (dissolved)	μg/L	0.35	<	0.50	< 0.50	<		<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	< 2.0	<		<	0.0	<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L	0.5	<	1.0	< 1.0	<		<	0.1	٧	0.06		0.09		0.08
Strontium (dissolved)	µg/L	688		695	715	L	765		928		993		836	H	915
Titanium (dissolved)	µg/L	2.5	<	5.0	< 5.0 < 0.050	<			0.1	<	0.08	<	0.12	<	0.10
Thallium (dissolved)	µg/L	0.028 0.16	`	0.050	< 0.050 0.15	<	0.050		0.006	`	0.005	`	0.005	È	0.005
Uranium (dissolved) Vanadium (dissolved)	μg/L	0.16		0.14	< 0.50	<			0.14		0.13		0.13		0.13
Zinc (dissolved)	μg/L μg/L	3.5	<	5.0	< 5.0	<			2.0		7.0		4.0		5.5
Lead-210	μg/L Bq/L	< 0.02	<	0.02	< 0.10	<		<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.040	<	0.02	< 0.040	<		È	0.02	/	0.02	<	0.02	<	0.02
Thorium-230	Bq/L	< 0.010	<	0.040	< 0.040	<	0.040	<	0.020	<i>'</i>	0.01	<	0.01	<	0.02
Thorium-232	Bq/L	_1 _1	<	0.060	< 0.060	<		<	0.020	` '	0.02	<	0.02	<	0.02
Field Parameters						Ħ									
ODO % Sat	%	_2		_2	_2		_2		_2		_3		_3	Н	
ORP	mV	_2		_2	_2		_2		_2		_3		_3		
SPC	μs/cm	_2		_2	_2	H	2		_2		_3		_3		
	°C	_2		_2	_2	H			_2		_3		_3		
Temperature	FNU	_2		_2	_2	H	_2		_2		_3		_3		
Turbidity		_2		2	_2	L	_2		2		_3		_3		
pH	Units	-		-	-		-		-		- "		-		-

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

³ Insufficient volume of groundw ater for field parameters

^{-- -} No data.

Page 107 de 159

Tableau 102: WC-OW28-76

									WC-O\	N28	-76						
			2016		2017		2018	Г	2019	1420	2020				2021		
Parameter	Units					_	verage			<u> </u>		20	21-04-15		21-12-01	Δ	verage
pH	pH					É			8.19		8.10	20.	4	20.	4	^	verage
Alkalinity	mg/L as CaCO ₃								140		132		_4		_4		
Carbonate	mg/L as CaCO ₃							Н	2.05	<	1		_4	Н	_4		
Bicarbonate	mg/L as CaCO ₃							Н	140	Ė	132		_4		_4		
Total Dissolved Solids	mg/L								205		166		_4		_4		
Fluoride	mg/L								0.22		0.24		_4		_4		
Total Organic Carbon	mg/L				1.2				1.3		1.0		_4		_4		
Dissolved Organic Carbon									1.0		1.0		_4		_4		
Ammonia+Ammonium (N)	as N mg/L				0.079				0.067	<	0.040		_4		-4		
Chloride (dissolved)	mg/L								16		18		_4		-4		
Sulphate (dissolved)	mg/L								13		12		_4		-4		
Bromide (dissolved)	mg/L								1	<	0		_4		-4		
Nitrite (as N)	as N mg/L								0	<	0		_4		-4		
Nitrate (as N)	as N mg/L							<	0	<	0		_4		_4		
Nitrate + Nitrite (as N)	as N mg/L								0	<	0		_4		_4		
Mercury (dissolved)	μg/L	<	0.01	<	0.10	<	0.10	<	0.10	<	0.01		-4		_4		
Hardness	mg/L as CaCO ₃		156				120		130		146		_4		-4		
Silver (dissolved)	μg/L	<	0.00	<	0.10	<	0.10	<	0.10	<	0.05	<	0.05		-4	<	0.05
Aluminum (dissolved)	μg/L	<	1.0	<	5.0		6.7	<	5.0		1.5		13.0	_	_4		13.0
Arsenic (dissolved)	μg/L		1.0	<	1.0	<	1.0	<	1.0		0.6		0.5		_4		0.5
Barium (dissolved)	μg/L		67		64		63		73		81		101		4		101
Beryllium (dissolved)	μg/L	<	0.01	<	0.50	<	0.50	<	0.50	<	0.01	<	0.007		4	<	0.007
Boron (dissolved)	µg/L	<	89		81	_	74	Ļ	80		93	_	80		_4	_	80
Bismuth (dissolved)	μg/L	<	0.0 36000	<	1.0 29500	<	1.0 28000	<	1.0 30000	<	0.0 34600	<	0.007 41900		_4	<	0.007 41900
Calcium (dissolved) Cadmium (dissolved)	μg/L	-	0.00	<	0.10	<	0.10	-	0.10		0.00	<	0.003		_4	<	0.003
Cobalt (dissolved)	μg/L μg/L	`	0.00	<	0.10	<	0.10	<	0.10		0.00	`	0.003		_4	_	0.003
Chromium (dissolved)	µg/L		0.23	<	5.0	<	5.0	<	5.0		0.03		0.034		_4		0.034
Copper (dissolved)	µg/L		0.1	<	1.0	<	1.0	<	1.0		0.5		1.20		_4		1.20
Iron (dissolved)	µg/L		14	<	100	<	100	<	100	<	7		14		_4		14
Potassium (dissolved)	µg/L		760		710		690	Ė	715		747		842		_4		842
Magnesium (dissolved)	µg/L		16000		13500		12500	Н	13500		14600		18800		_4		18800
Manganese (dissolved)	μg/L		9.4		6.5		3.0	<	2.4		3.0		2.2		_4		2.20
Molybdenum (dissolved)	μg/L		1.5		1.6		1.5		1.6		1.2		1.21		-4		1.21
Sodium (dissolved)	μg/L		12200		11000		11000		11000		11750		14500		-4		14500
Nickel (dissolved)	μg/L		0.4	<	1.0	<	1.0	<	1.0		0.4		1.00		-4		1.0
Phosphorus (dissolved)	μg/L				9				7		4	٧	3		-4	٧	3
Lead (dissolved)	μg/L		0.14	<	0.50	٧	0.50	<	0.50		0.05		0.04		_4		0.04
Antimony (dissolved)	μg/L		0.20	<	0.50	<	0.50	<	0.50	<	0.90	٧	0.90		_4	<	0.90
Selenium (dissolved)	μg/L	<	0.0	<	2.0	<	2.0	<	2.0	<	0.0	٧	0.04		_4	<	0.04
Tin (dissolved)	μg/L		0.1	<	1.0	<	1.0	<	1.0	<	0.1	<	0.06		-4	٧	0.06
Strontium (dissolved)	μg/L		653		500		520		525		686		892		_4		892
Titanium (dissolved)	μg/L	<	0.1	<	5.0	<	5.0	<	5.0		0.1		0.77		- ⁴		0.77
Thallium (dissolved)	µg/L	<	0.005	<	0.050	<	0.050	<	0.050	<	0.005	<	0.005		_4 _4	<	0.005
Uranium (dissolved)	μg/L		0.26	<	0.17		0.17		0.16		0.17		0.19		_4		0.19
Vanadium (dissolved) Zinc (dissolved)	μg/L μg/L		0.63 4.0	<	0.50 5.0	<	5.0	<	2.76 5.0		3.5	<	2.0		_4	<	2.0
Lead-210	μg/L Bq/L	<	0.02	<	0.02	<	0.10	<	0.10		0.02	<	0.02	<	0.02	< <	0.02
Radium-226	Bq/L Bq/L	`	0.02	<	0.02	<	0.10	<	0.10		0.02	<	0.02	<	0.02	< <	0.02
Thorium-230	Bq/L		0.030	<	0.040	<	0.040	<	0.040	<	0.010	<i>'</i>	0.01	<	0.01	<i>'</i>	0.01
Thorium-232	Bq/L		_1 _1	<	0.060	<	0.060	<	0.060	<	0.020	/	0.02	<	0.02	<i>'</i>	0.02
Field Parameters				Ė	3.000	Ė	3.000	Ė	3.000	Ė	3.020		0.02	Ė	5.02		3.02
ODO % Sat	%		_2		_2		_2		_2				_3		_3		
ORP Sat	mV		_2		_2		_2		2		-		_3		_3		
SPC	µs/cm		_2		_2		_2		2				_3		_3		
	μs/cm °C		_2		_2		_2		_2				_3		_3		
Temperature	_						2		_2				_3		_3		
Turbidity	FNU		_2		2		2		_2				_3		_3		
pН	Units												-"		-"		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

- ¹ Analysis not included in laboratory contract.
- Field parameters included for current sampling year only.
- ³ Insufficient volume of groundwater for field parameters
- Insufficient volume of groundwater for full sample collection
- -- No data.

Page 108 de 159

Tableau 103: WC-OW33-76

								WC-C	ΩM	V33-76						
		2016	Π	2017		2018		2019	Ť	2020				2021		
Parameter	Units		<u> </u>		_	verage	_		<u>. </u>		20	21-05-20		21-12-09	Δ	verage
pH	pH	7.62		7.82	É	7.85		7.63		7.36	20.	7.62	20.	7.58	_	7.60
Alkalinity	mg/L as CaCO ₃	390		380		385		370	H	380		1053		454		754
Carbonate	mg/L as CaCO ₃	1.8		2.4		2.7		1.5	<		<	1.0	<	1.0	٧	1.0
Bicarbonate	mg/L as CaCO ₃	385		380		385		370	Ė	380		1050		454	Ė	752
Total Dissolved Solids	mg/L	438		445		423		435	H	460		446		474		460
Fluoride	mg/L	0.10	<	0.10	<	0.10	٧	0.10	T	0.07	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L	2.5		2.9		2.6		2.5	Т	2.0		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L	2.40		2.2		2.2		2.0	T	2.5		3.0		2.0		2.5
Ammonia+Ammonium (N)	as N mg/L	< 0.050	<	0.050		0.058	<	0.050	T	0.040	<	0.04	<	0.04	٧	0.04
Chloride (dissolved)	mg/L	2.7		4.8		5.0		6.8	Г	23.5		30		12		21
Sulphate (dissolved)	mg/L	30		34		30		30		27		28		27		28
Bromide (dissolved)	mg/L	0.7	<	1.0	<	1.0	٧	1.0		0.4		0.4	<	0.3		0.4
Nitrite (as N)	as N mg/L	< 0.010	<	0.010	<	0.010	٧	0.010	<	0.030	٧	0.030	<	0.030	٧	0.030
Nitrate (as N)	as N mg/L	< 0.10	<	0.10	<	0.10	٧	0.10	<	0.06	٧	0.06	<	0.06	٧	0.06
Nitrate + Nitrite (as N)	as N mg/L	< 0.10	<	0.10	٧	0.10	٧	0.10	<	0.06	٧	0.06	٧	0.06	٧	0.06
Mercury (dissolved)	μg/L	0.06	<	0.10	<	0.10	٧	0.10	<		٧	0.01	<	0.01	٧	0.01
Hardness	mg/L as CaCO ₃	253		265		265		295	L	337		10100		493		5297
Silver (dissolved)	μg/L	0.05	<	0.10	<	0.10	<	0.10	<		<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L	3.5	<	5.0	<	5.0		5.7	L	93.5	<	1.0	<	1.0	<	1.0
Arsenic (dissolved)	μg/L	2.0		1.4	<	1.0	٧	1.0	L	1.2		0.5		0.7		0.6
Barium (dissolved)	μg/L	74		78		78		77	L	76		91		83		87
Beryllium (dissolved)	μg/L	0.25	<	0.50	<	0.50	<	0.50	L	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	46		38		38		43	L	92		39		37		38
Bismuth (dissolved)	μg/L	0.5	<	1.0	<	1.0	٧	1.0	<		<	0.010	<	0.010	<	0.010
Calcium (dissolved)	μg/L	87500	-	91000 0.10	<	92500 0.10	٧	99500	<	68450		119000	<	110000		114500
Cadmium (dissolved) Cobalt (dissolved)	μg/L	0.05 0.58	<	0.10	<	0.10	٧	0.10	^	0.00		0.003	<	0.003		0.003
Chromium (dissolved)	μg/L μg/L	2.7	<	5.0	<	5.0	<i>'</i>	5.0	H	0.12		0.13		0.36		0.24
Copper (dissolved)	µg/L	0.3	<	1.0	~	1.0	<i>'</i> '	1.0	H	0.7	·	0.2		0.6		0.1
Iron (dissolved)	μg/L	1335	È	910	ì	240	Ì	410	H	139	_	33		14		24
Potassium (dissolved)	µg/L	1145		1100		1100		1150	H	1545		1260		1370		1315
Magnesium (dissolved)	µg/L	8865		9050		9000		10000	H	14950		10900		10100		10500
Manganese (dissolved)	µg/L	63		64		65		87	H	58		84		157		121
Molybdenum (dissolved)	μg/L	3.1		2.9		2.8		3.0	Т	4.9		2.79		3.94		3.37
Sodium (dissolved)	μg/L	75300		69000		61000		61000	T	47250		54500		62900		58700
Nickel (dissolved)	μg/L	1.4		1.3	<	1.0	٧	1.0	Ī	0.3		0.3		0.9		0.6
Phosphorus (dissolved)	μg/L	31		264		45		52		17	٧	3	<	3	٧	3
Lead (dissolved)	μg/L	0.26	<	0.50	<	0.50	٧	0.50		0.16	٧	0.09	<	0.09	٧	0.09
Antimony (dissolved)	μg/L	0.35	<	0.50	<	0.50	٧	0.50	<	0.90	٧	0.90	<	0.90	٧	0.90
Selenium (dissolved)	μg/L	1.0	<	2.0	<	2.0	<	2.0		0.1	<	0.04	<	0.04	٧	0.04
Tin (dissolved)	μg/L	0.5	<	1.0	<	1.0	<	1.0		0.1	<	0.06		0.10		0.08
Strontium (dissolved)	μg/L	195		195		200		205		538		247		223		235
Titanium (dissolved)	μg/L	2.6	<	5.0	<	5.0	<	5.0	L	5.0	<	0.05	<	0.05	<	0.05
Thallium (dissolved)	μg/L	0.028	<	0.050	<	0.050	<	0.050	L	0.013	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	2.6		2.5		2.1		2.0	L	1.5		4.15		2.55		3.35
Vanadium (dissolved)	μg/L	0.28	<	0.50	<	0.50	٧	0.50	-	0.88		0.03	<	0.01		0.02
Zinc (dissolved)	µg/L	7.0	<	7.2	_	6.2	٧	5.0	<		< <	2.0	<	2.0	<	2.0
Lead-210	Bq/L	< 0.02	_	0.02	<	0.10	٧	0.10	<		٧	0.02	_	0.03	<	0.03
Radium-226 Thorium-230	Bq/L	0.025 0.040	<	0.040	<	0.040	٧ ٧	0.040	<	0.010	· ·	0.01	<	0.01	٧	0.01
Thorium-230 Thorium-232	Bq/L Bq/L	0.040	<	1	<	0.070	٧	0.070	<		<	0.02	<	0.02	٧	0.02
Field Parameters	Dq/L	•		-	<u>`</u>	0.000	_	0.000		0.020	<u> </u>	0.02	`	0.02	È	0.02
	%	_2		_2		_2		_2	⊢	_2		_3		66.4		
ODO % Sat		_2		_2		_2		_2	H	_2				66.4		
ORP	mV								L			_3				
SPC	μs/cm	_2		_2		_2		_2		_2		_3		757		
Temperature	°C	_2		_2		_2		-2		_2		_3		10.158		
Turbidity	FNU	_2		_2		- 2		- 2		- 2		_3		2332.6		
pH	Units	_2		- 2		- 2		- 2		-2		_3				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground W³ Insufficient volume of groundwater for field parameters Climate Change, 2011.

¹ Analysis not included in laboratory contract.

² Field parameters included for current sampling year only.

³ Insufficient volume of groundwater for field parameters

^{-- -} No data.

Page 109 de 159

Annexe C RÉSULTATS - EAUX SOUTERRAINES - PROMENADE HIGHLAND

Tableau 104: PH-02-01

		Crit	teria					DI	H-02-01				
		COPC	Table 3		2019	Н	2020	T	H-UZ-U1		2021		
Amelyaia	Units	COPC	(MECP)		Ave			20	21/03/25	20)21/11/12	_	
Analysis pH	pH	6505			7.46	rag	7.43	20	7.50	20	7.41	А	verage 7.46
Alkalinity		6.5-8.5	6.5-9.0		325	H	318		433	┢	434		434
Carbonate	mg/L as CaCO ₃ mg/L as CaCO ₃				1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate					325	`	318	`	433	_	434	`	434
	mg/L as CaCO ₃				423	H			433	┢	440		459
Total Dissolved Solids	mg/L			<		⊢	356	<		l.		<	
Fluoride	mg/L	1.5		<	0.10	H	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				3.4	<u> </u>	2.0		2.0	┝	2.0	-	2.0
Dissolved Organic Carbon	mg/L				2.3	_	2.0		2.0	┝	2.0		2.0
Total Ammonia-N	mg/l				0.10	<	0.04	<	0.04		0.04		0.04
Chloride	mg/L				15		8		24		12		18
Sulphate	mg/L				6.4		6.0		11		9.3		10.2
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010		0.73	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.81		0.61		1.63		3.21		2.42
Nitrate + Nitrite (N)	mg/L				0.81		1.29		1.63		3.21		2.42
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				350		390		435		683		559
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5		6	<	1		4		3
Arsenic (dissolved)	μg/L	25	1900	<	1.0		0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000		24		22		37		29		33
Beryllium (dissolved)	μg/L		67	٧	0.50	<	0.01	٧	0.007	<	0.007	٧	0.007
Boron (dissolved)	μg/L	5000	45000		27		25		20		30		25
Bismuth (dissolved)	μg/L			٧	1.0	<	0.007	٧	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				130000		122500		162000		171000		166500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.003	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	<	0.50		0.05		0.056		0.055		0.056
Chromium (dissolved)	μg/L		810	<	5.0		0.2		0.13		0.15		0.14
Copper (dissolved)	μg/L	1000	87		1.3		1.6		0.8		1.3		1.1
Iron (dissolved)	μg/L			<	100		10	<	7	<	7	<	7
Potassium (dissolved)	μg/L				2050		2295		3110		2920		3015
Magnesium (dissolved)	μg/L				7100		6485		7460		9210		8335
Manganese (dissolved)	μg/L			<	2.0		1.9		0.06		0.90		0.48
Molybdenum (dissolved)	μg/L		9200		0.50		0.44		0.44		0.35		0.40
Sodium (dissolved)	μg/L				3450		5380		5510		4930		5220
Nickel (dissolved)	μg/L		490	<	1.0		0.3	<	0.1	T	0.3		0.2
Phosphorus (total)	μg/L				215		8	<	3	T	7		5
Lead (dissolved)	μg/L	10	25	<	0.50		0.02	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.6		0.38	H	0.46		0.42
Tin (dissolved)	μg/L			<	1.0		0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L				200	H	210		299	Ħ	277		288
Titanium (dissolved)	μg/L			<	5.0	H	0.3		0.08	H	0.24		0.16
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	<	3.4	H	2.9	È	2.90	È	3.15	È	3.03
Vanadium (dissolved)	µg/L		250	<	0.50	H	0.31		0.25	H	0.45	-	0.35
Zinc (dissolved)	μg/L		1100	<	5.0	<	2.0		3	<	2		3
Lead-210	Bq/L	0.20	1100	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.10	È	0.02	<	0.02	È	0.02	ì	0.02
Thorium-230				<	0.04	<	0.02	<	0.01	<	0.01	<	0.01
Thorium-232	Bq/L Bg/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	Dq/L			<u>`</u>	0.00	<u> </u>	0.02	<u>`</u>	0.02	È	0.02	<u>`</u>	0.02
	/I				_1	H	_1		70.4		E0.0		
ODO % Sat	mg/L					H	'		72.1		59.6		
ORP	mV				1		1		146.7	\vdash	116.6		
SPC	us/cm				1	H	1		708.0	\vdash	763		
Temperature	°C								8.716		11.689		
Turbidity	FNU				_1	H	_1		16.61	-	130.84		
pH	Units		L		-'-	Ц.	-'	Ц.	7.20	_	7.17		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

-- - No data.

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document. Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 110 de 159

Tableau 105: PH-02-02

Page 111 de 159

		Crit	eria						PH-02-02				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	le .	20	21/03/25	20	21/11/12	Α	verage
pH	pH	6.5-8.5	6.5-9.0		7.47	Ī	7.37		7.60		7.39		7.50
Alkalinity	mg/L as CaCO₃				335		347		405		375		390
Carbonate	mg/L as CaCO₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO₃				335		347		405		375		390
Total Dissolved Solids	mg/L				415		375		423		391		407
Fluoride	mg/L	1.5		<	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2.6		2.0		2.0		1.0		1.5
Dissolved Organic Carbon	mg/L				2.0		2.5		2.0		2.0		2.0
Total Ammonia-N	mg/l				0.08		0.12		0.13		0.13		0.13
Chloride	mg/L				14		4		13		23		18
Sulphate	mg/L				5.6		5.5		7.7		6.4		7.1
Bromide	mg/L			<	1.0	<	0.3	٧	0.3		0.4		0.4
Nitrite (N)	mg/L				0.017		0.500		0.05	<	0.03		0.04
Nitrate (N)	mg/L				0.81		0.67		1.13		0.96		1.05
Nitrate + Nitrite (N)	mg/L				0.82		1.12		1.18		0.96		1.07
Mercury (dissolved)	μg/L	1	0.29	٧	0.10	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO₃				360		473		365		558		462
Silver (dissolved)	μg/L		1.5	٧	0.1	<	0.1	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L				5		21		54	<	1		28
Arsenic (dissolved)	μg/L	25	1900	٧	1.0		0.3	٧	0.2	<	0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000		37		33		48		48		48
Beryllium (dissolved)	μg/L		67	٧	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		34		32		29		30		30
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	٧	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				130000		131000		136000		153000		144500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.005	<	0.003		0.004		0.004
Cobalt (dissolved)	μg/L		66	<	0.50		0.13		0.123		0.068		0.096
Chromium (dissolved)	μg/L		810	<	5.0		0.1		0.15	<	0.08		0.12
Copper (dissolved)	μg/L	1000	87		1.6		1.8		1.4		1.3		1.4
Iron (dissolved)	μg/L			<	100		37	٧	7	<	7	<	7
Potassium (dissolved)	μg/L				2400		2810		3430		2940		3185
Magnesium (dissolved)	μg/L				7950		8160		6150		7520		6835
Manganese (dissolved)	μg/L				70		195		216		142		179
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.28		0.62		0.29		0.46
Sodium (dissolved)	μg/L				5700		4255		3540		5060		4300
Nickel (dissolved)	μg/L		490	<	1.0		0.8	<	0.1		0.4		0.3
Phosphorus (total)	μg/L				73	<	3	<	3	<	3	<	3
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.05	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	<u> </u>	0.3		0.25		0.39		0.32
Tin (dissolved)	μg/L			<	1.0	_	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L				205		206		248		246		247
Titanium (dissolved)	μg/L		_	<	5.0		1.1		0.07	<	0.05		0.06
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		2.2		2.1		3.5		2.38		2.94
Vanadium (dissolved)	μg/L		250	<	0.50		0.43		0.48		0.26		0.37
Zinc (dissolved)	μg/L	0.00	1100	<	5.0	<	2.0	< <	2	<	2	<	2
Lead-210	Bq/L	0.20		_	0.10	_	0.02		0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		٧	0.04	<	0.01	٧ ،	0.01		0.01	_	0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters	mar/I				_1	H	_1		E 1 1		42.2		
ODO % Sat	mg/L mV				1		: _1		54.4		42.3		
ORP SPC				H	_1	H	_1		135.4		123.6 657		
	us/cm °C				1	H	_1		615.0				
Temperature	FNU				' _1		_1		9.449 211.43		11.356		
Turbidity pH					_1		_1		7.22		180.41 7.15		
	Units		. D. (- 1 - 0		_·	Ļ		-	1.22	Ц.	7.15	<u> </u>	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 106: PH-02-03

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 112 de 159

		Crit	eria						PH-02-03				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	je	20	21/03/25	20	21/11/12	Α	verage
pН	pН	6.5-8.5	6.5-9.0		7.65		7.43		7.54		7.52		7.53
Alkalinity	mg/L as CaCO₃				300		285		300		249		275
Carbonate	mg/L as CaCO₃				1.3	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				295		285		300		249		275
Total Dissolved Solids	mg/L				403		323		451		483		467
Fluoride	mg/L	1.5		٧	0.10		0.07	٧	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2.5		2.0		2.0		2.0		2.0
Dissolved Organic Carbon	mg/L				2.1		2.0		2.0		2.0		2.0
Total Ammonia-N	mg/l				0.13		0.10		0.16		0.15		0.16
Chloride	mg/L				11		7		50		100		75
Sulphate	mg/L				6.9		3.3		6.6		9.6		8.1
Bromide	mg/L			٧	1.0	<	0.3	٧	0.3		1.7		1.0
Nitrite (N)	mg/L			٧	0.010		0.330	٧	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.24		0.18		0.25		0.31		0.28
Nitrate + Nitrite (N)	mg/L				0.24		0.47		0.25		0.31		0.28
Mercury (dissolved)	μg/L	1	0.29	٧	0.10	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				325		345		373		440		407
Silver (dissolved)	μg/L		1.5	٧	0.1	<	0.1	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			٧	5	<	1		14	<	1		8
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000		23		20		27		29		28
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		30		22		28		18		23
Bismuth (dissolved)	μg/L			٧	1.0	<	0.007	٧	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				120000		114500		143000		172000		157500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.003	<	0.003		0.003		0.003
Cobalt (dissolved)	μg/L		66	<	0.50		0.13		0.139		0.285		0.212
Chromium (dissolved)	μg/L		810	<	5.0		0.1		0.09	<	0.08		0.09
Copper (dissolved)	μg/L	1000	87		1.7		1.5		1.4		1.8		1.6
Iron (dissolved)	μg/L			<	100	<	7	<	7	<	7	<	7
Potassium (dissolved)	μg/L				1850		2080		3310		3480		3395
Magnesium (dissolved)	μg/L				5700		5330		4200		5900		5050
Manganese (dissolved)	μg/L				475		194		195		668		432
Molybdenum (dissolved)	μg/L		9200	٧	0.50		0.23		0.36		0.23		0.30
Sodium (dissolved)	μg/L				5450		3425		7020		4870		5945
Nickel (dissolved)	μg/L		490	٧	1.0		0.7		0.2		0.7		0.5
Phosphorus (total)	μg/L				11	<	3	٧	3		3		3
Lead (dissolved)	μg/L	10	25	٧	0.50	<	0.01	٧	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	٧	0.50	<	0.90	٧	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	٧	2.0		0.1		0.11		0.09		0.10
Tin (dissolved)	μg/L			٧	1.0		0.1		0.17	<	0.06		0.12
Strontium (dissolved)	μg/L				185		198		271		260		266
Titanium (dissolved)	μg/L			<	5.0		0.1		0.05		0.05		0.05
Thallium (dissolved)	μg/L		510	٧	0.05	<	0.01	٧	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		13.5		10.5		14.1		14.0		14.1
Vanadium (dissolved)	μg/L		250	٧	0.50		0.16		0.23		0.19		0.21
Zinc (dissolved)	μg/L		1100	٧	5.0	<	2.0	٧	2	<	2	<	2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.03		0.03
Radium-226	Bq/L	0.49		٧	0.04		0.01	٧	0.01	<	0.01	<	0.01
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		54.7		33.1		
ORP	mV				_1		_1		135.9		127.1		
SPC	us/cm				_1		_1		593.0		854		
Temperature	°C				_1		_1		9.847		11.049		
Turbidity	FNU				_1		_1		19.36		41.02		
pН	Units				<u>-</u> 1		<u>-</u> 1		7.34		7.07		
CORC - Contominante of	Detential Company	auitania fa	Detable O			^			adfusion D		Inna Cara		a. Damant

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 107: PH-90-3-I

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 113 de 159

		Crit	eria						PH-90-3-				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	je	20	21/03/29	20	21/10/27	Α	verage
pН	pН	6.5-8.5	6.5-9.0		8.02		7.88		7.88		7.72		7.80
Alkalinity	mg/L as CaCO₃				210		260		225		208		217
Carbonate	mg/L as CaCO ₃				2.1	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				205		260		225		208		217
Total Dissolved Solids	mg/L				465		579		606		437		522
Fluoride	mg/L	1.5		<	0.10		0.07	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				1.0	<	1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.5	<	1.0		1.0	٧	1.0	٧	1.0
Total Ammonia-N	mg/l				0.09	<	0.04		0.04		0.08		0.06
Chloride	mg/L				104		140		160		140		150
Sulphate	mg/L				38		40		36		40		38
Bromide	mg/L			٧	1.0	<	0.3	<	0.3	<	0.3	٧	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				1.56		1.94		2.29		1.72		2.01
Nitrate + Nitrite (N)	mg/L				1.56		1.94		2.29		1.72		2.01
Mercury (dissolved)	μg/L	1	0.29	٧	0.10	<	0.01		0.01	<	0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃				330		807		1070		377		724
Silver (dissolved)	μg/L		1.5	٧	0.1	<	0.1	<	0.05	<	0.05	٧	0.05
Aluminum (dissolved)	μg/L			<	5		5	<	1		1		1
Arsenic (dissolved)	μg/L	25	1900	٧	1.0	<	0.2	<	0.2	<	0.2	<	0.2
Barium (dissolved)	μg/L	1000	29000		275		287		328		289		309
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		15		13		11		14		13
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				84500		98750		125000		100000		112500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.003	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	<	0.50		0.17		0.110		0.076		0.093
Chromium (dissolved)	μg/L		810	<	5.0		0.2		0.36		0.33		0.35
Copper (dissolved)	μg/L	1000	87	<	1.0		0.4	<	0.2	<	0.2	<	0.2
Iron (dissolved)	μg/L				170		151		203		256		230
Potassium (dissolved)	μg/L				1800		1780		2040		1970		2005
Magnesium (dissolved)	μg/L				28000		31000		36200		30800		33500
Manganese (dissolved)	μg/L				15.0	_	13.8		11.5		12.7		12.1
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.41		0.33		0.37		0.35
Sodium (dissolved)	μg/L				35000		29500		28400		23700		26050
Nickel (dissolved)	μg/L		490	<	1.0	<	0.1		0.1	<	0.1		0.1
Phosphorus (total)	μg/L				4150	<	3	<	3	<	3	<	3
Lead (dissolved)	μg/L	10	25	<	0.50		0.04	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.3	-	0.31		0.27		0.29
Tin (dissolved)	µg/L			<	1.0	-	0.1	<	0.06	<	0.06	<	0.06
Strontium (dissolved)	μg/L			_	395		429		545		465		505
Titanium (dissolved)	μg/L		F40	<	5.0	_	0.2		0.10		0.13		0.12
Thallium (dissolved)	μg/L	20	510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved) Vanadium (dissolved)	μg/L	20	420 250	<	1.7 0.50		2.0 0.21		2.1 0.27		1.65 0.16		1.88 0.22
	μg/L			<i>'</i>				<		<		<	
Zinc (dissolved) Lead-210	μg/L Rg/l	0.20	1100	÷	5.0 0.10	_	4.0 0.02	È	0.02	_	0.02	`	0.02
Radium-226	Bq/L Bq/L	0.20		<	0.10	<	0.02	<	0.02	`	0.02	`	0.02
Thorium-230	Bq/L	0.49		<i>'</i>	0.04	<	0.01	<	0.01	<	0.01	<	0.01
Thorium-232	Bq/L	0.03		<i>'</i>	0.07	<	0.02	<	0.02	<	0.02	<i>'</i>	0.02
Field Parameters	D4/L			È	0.00	È	0.02	È	0.02	Ì	0.02	Ė	0.02
ODO % Sat	mg/L				_1		_1		47.9		58		
ORP Sat	mV				_1		_1		47.1		-81.7		
SPC	us/cm				_1		_1		860.0		732		
Temperature	°C				1		1		9.230		10.339		
Turbidity	FNU			H	_1		_1		250.66		293.72		
pH	Units						_1		7.72		7.65		
CODO - Contominante et l		.,	5			_				٠.,		-	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 108: PH-90-4-III

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 114 de 159

		Crit	teria					PH	I-90-4-III				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	ge	20	21/03/29	20	21/10/27	Α	verage
pН	pН	6.5-8.5	6.5-9.0		6.81	Г	6.76		6.66		6.56		6.61
Alkalinity	mg/L as CaCO ₃				740	T	669		664		694		679
Carbonate	mg/L as CaCO ₃			<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				740		669		664		694		679
Total Dissolved Solids	mg/L				2735		3920		4394		3920		4157
Fluoride	mg/L	1.5		<	0.10		0.52	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				3.8		2.5		4.0		6.0		5.0
Dissolved Organic Carbon	mg/L				3.2		3.5		5.0		6.0		5.5
Total Ammonia-N	mg/l				0.48		0.44		0.36		0.28		0.32
Chloride	mg/L				1215	T	1800		2200		1800		2000
Sulphate	mg/L				19		28		27		28		28
Bromide	mg/L				7.5		0.4	<	3.0		0.5		1.8
Nitrite (N)	mg/L				0.023	<	0.30	<	0.30	<	0.30	<	0.30
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.60		0.16		0.38
Nitrate + Nitrite (N)	mg/L			<	0.10		0.45	<	0.60	<	0.30		0.45
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				1300	T	1614		2440		1540		1990
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5	T	2	<	1		1		1
Arsenic (dissolved)	μg/L	25	1900		7.3	T	8.1		12.0		11.9		12.0
Barium (dissolved)	μg/L	1000	29000		305	T	352		591		469		530
Beryllium (dissolved)	μg/L		67	<	0.50	T	0.012		0.008		0.007		0.008
Boron (dissolved)	μg/L	5000	45000		300	T	501		1360		2810		2085
Bismuth (dissolved)	μg/L			<	1.0	T	0.024		0.018	<	0.010		0.014
Calcium (dissolved)	μg/L				450000	T	544500		770000		549000		659500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	T	0.007		0.006		0.011		0.009
Cobalt (dissolved)	μg/L		66		15	T	16.7		32.1		25.1		28.6
Chromium (dissolved)	μg/L		810	<	5.0	T	0.33		0.63		0.48		0.56
Copper (dissolved)	μg/L	1000	87	<	1.0	T	1.7		0.3		0.3		0.3
Iron (dissolved)	μg/L				48500	T	47150		76400		61500		68950
Potassium (dissolved)	μg/L				2050		2365		2880		2280		2580
Magnesium (dissolved)	μg/L				41500		38150		55900		42000		48950
Manganese (dissolved)	μg/L				4150		4900		6890		4390		5640
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.36		0.32		0.38		0.35
Sodium (dissolved)	μg/L				525000		715500		878000		699000		788500
Nickel (dissolved)	μg/L		490		4.3		5.8		10.3		8.1		9.2
Phosphorus (total)	μg/L				23		7		3		11		7
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.01		0.02	<	0.09	<	0.06
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.21		0.12		0.14		0.13
Tin (dissolved)	μg/L			<	1.0		0.13		0.14		0.19		0.17
Strontium (dissolved)	μg/L				1010		1355		2000		1440		1720
Titanium (dissolved)	μg/L			<	5.0		0.34		0.34		0.33		0.34
Thallium (dissolved)	μg/L		510	<	0.05	<	0.005	٧	0.005		0.005		0.005
Uranium (dissolved)	μg/L	20	420		30		40		80		54		67
Vanadium (dissolved)	μg/L		250	<	0.50		0.39		0.42		0.42		0.42
Zinc (dissolved)	μg/L		1100	<	5.0		3		2	<	2		2
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.04		0.03
Radium-226	Bq/L	0.49		<	0.04		0.03		0.05		0.04		0.05
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	٧	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	٧	0.02	<	0.02	<	0.02
Field Parameters						Ĺ							
ODO % Sat	mg/L				_1	Ĺ	- 1		31.9		38.8		
ORP	mV				_1		- 1		-61.9		-49.2		
SPC	us/cm				_1	Ĺ	- 1		63.8		6477		
Temperature	℃				_1		- 1		10.918		12.123		
Turbidity	FNU				<u>-</u> 1		- 1		26.34		14.42		
рН	Units				_1		- 1		6.52		6.50		
0000 0 1 1 1 11			D-4-1-1- C		, , ,		distance desire	-	. 5 .		_		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 109: PH-90-6-I

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 115 de 159

		Crit	eria						PH-90-6-	ı			
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	ie .	20	021/03/31	20	21/12/03	1	verage
Hq	pH	6.5-8.5	6.5-9.0		7.69	Ė	7.65		7.39		7.53		7.46
Alkalinity	mg/L as CaCO ₃				155		165		160		166		163
Carbonate	mg/L as CaCO ₃				1.1	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				150		165		160		166		163
Total Dissolved Solids	mg/L				2960		3105		3240		3270		3255
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				0.7		1.0	<	1.0	<	1.0	<	1.0
Dissolved Organic Carbon	mg/L				0.6		1.0	<	1.0	<	1.0	<	1.0
Total Ammonia-N	mg/l				0.10		0.07		0.05		0.10		0.08
Chloride	mg/L				1750		1800		1900		2100		2000
Sulphate	mg/L				36		38		38		40		39
Bromide	mg/L				3		2	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.300	<	0.30	<	0.30	<	0.30
Nitrate (N)	mg/L			<	0.10	Ė	0.33	<	0.06	Ė	0.10	_	0.08
Nitrate + Nitrite (N)	mg/L			` <	0.10	Н	0.33	<u>`</u>	0.30	<	0.30	<	0.30
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	· <	0.01
Hardness (dissolved)	mg/L as CaCO ₃	-	0.23	È	1200	È	1185	È	1510	È	1160	Ė	1335
Silver (dissolved)	µg/L as CaCO₃ µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	µg/L µg/L		1.5	<u> </u>	5	<	1	<u>`</u>	1	Ì	2	È	2
Arsenic (dissolved)	μg/L μg/L	25	1900	· ·	1.0	Ì	0.8	Ì	0.6		0.4		0.5
Barium (dissolved)				`		-		-					
	μg/L	1000	29000	_	575	ŀ.	551	-	631		507	_	569
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		17	_	20		64		20		42
Bismuth (dissolved)	μg/L			<			0.011		0.019	<	0.010		0.015
Calcium (dissolved)	μg/L				300000	-	319500		397000		319000		358000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<		<	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	<	1		0.255		0.610		0.243		0.427
Chromium (dissolved)	μg/L		810	<	5.0	<u> </u>	1.0		0.68		0.20		0.44
Copper (dissolved)	μg/L	1000	87	<	1.0		0.2	<	0.2	<	0.2	<	0.2
Iron (dissolved)	μg/L				1500		1510		2220		1390		1805
Potassium (dissolved)	μg/L				4150		4555		5810		4180		4995
Magnesium (dissolved)	μg/L				105000		96800		118000		100000		109000
Manganese (dissolved)	μg/L				46.5		46.3		54.3		44.9		49.6
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.32		0.44		0.46		0.45
Sodium (dissolved)	μg/L				620000		635000		816000		715000		765500
Nickel (dissolved)	μg/L		490	<	1.0		0.3		0.2		0.2		0.2
Phosphorus (total)	μg/L				16		7		8	<	3		6
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	٧	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	٧	2.0		0.1	<	0.04	<	0.04	٧	0.04
Tin (dissolved)	μg/L			<	1.0		0.4	<	0.06		0.19		0.13
Strontium (dissolved)	μg/L				1700		1770		2150		1760		1955
Titanium (dissolved)	μg/L			٧	5.0		0.1	<	0.05	<	0.05	٧	0.05
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		1		1		1.3		1.55		1.45
Vanadium (dissolved)	μg/L		250	٧	0.50		0.25		0.10		0.30		0.20
Zinc (dissolved)	μg/L		1100	<	5.0	<	2.0		3		9		6
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.02		0.02
Radium-226	Bq/L	0.49		<			0.03		0.01		0.02		0.02
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			٧	0.06	<	0.02	<	0.02	<	0.02	٧	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		87.0		52.8		
ORP	mV				_1		_1		-26.0		-1.8		
SPC	us/cm				_1		_1		5382.0		5796.4		
Temperature	°C				_1		_1		9.417		9.299		
Turbidity	FNU			H	_1		_1		33.64		43.26		
pH	Units				_1		_1		7.50		7.41		
PII	OI III O					-			7.00	_	1.71		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 110: PH-90-6-II

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 116 de 159

		Crit	eria						PH-90-6-II				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag	je	20	21/03/31	20	21/12/03	Α	verage
pН	pН	6.5-8.5	6.5-9.0		7.55		7.41		7.24		7.60		7.42
Alkalinity	mg/L as CaCO ₃				765		456		341		314		328
Carbonate	mg/L as CaCO ₃				3.5	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				765		456		341		314		328
Total Dissolved Solids	mg/L				880		667		560		514		537
Fluoride	mg/L	1.5			0.11		0.13		0.11		0.11		0.11
Total Organic Carbon	mg/L				20		8		2		2		2
Dissolved Organic Carbon	mg/L				20		7		2		2		2
Total Ammonia-N	mg/l				44		20		9.5		2.7		6.1
Chloride	mg/L				133		115		160		130		145
Sulphate	mg/L				14		28		41		41		41
Bromide	mg/L			٧	1.0	<	0.3	٧	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			٧	0.010	<	0.030	٧	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L			٧	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L			٧	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	٧	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				540		431		492		401		447
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.1	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5.0	<	1.0	<	1		1		1
Arsenic (dissolved)	μg/L	25	1900		9.9		10.4		15.1		11.2		13.2
Barium (dissolved)	μg/L	1000	29000		910		477		382		230		306
Beryllium (dissolved)	μg/L		67	٧	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		605		140		75		125		100
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				140000		125000		137000		112000		124500
Cadmium (dissolved)	μg/L	5	2.7	٧	0.1	<	0.003	٧	0.003		0.003		0.003
Cobalt (dissolved)	μg/L		66		1.22		0.38		0.230		0.093		0.162
Chromium (dissolved)	μg/L		810	<	5.0		0.3		0.36		0.24		0.30
Copper (dissolved)	μg/L	1000	87	<	1.0	<	0.2		1.1	<	0.2		0.7
Iron (dissolved)	μg/L				13700		10320		7240		6150		6695
Potassium (dissolved)	μg/L				35500		16250		9590		3420		6505
Magnesium (dissolved)	μg/L				49000		40150		36300		30500		33400
Manganese (dissolved)	μg/L				235		219		169		171		170
Molybdenum (dissolved)	μg/L		9200		0.50		0.47		0.91		0.84		0.88
Sodium (dissolved)	μg/L				109000		53150		58300		53400		55850
Nickel (dissolved)	μg/L		490		12.6	_	3.7		0.9		0.6		8.0
Phosphorus (total)	μg/L				255		18		11	<	3		7
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.01		0.04	<	0.09		0.07
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	_	0.1	<	0.04	<	0.04	<	0.04
Tin (dissolved)	μg/L			<	1.0	_	0.5		0.08	<	0.06		0.07
Strontium (dissolved)	μg/L				745		544		435		355		395
Titanium (dissolved)	μg/L			<	5.0		0.1		0.11		0.19		0.15
Thallium (dissolved)	µg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	µg/L	20	420	<	0.1		0.1		0.1		0.04		0.05
Vanadium (dissolved)	µg/L		250	<	0.61		0.24		0.12		0.23		0.18
Zinc (dissolved)	µg/L	0.77	1100	<	5.0	<	2.0	<	2		3		3
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		٧	0.04		0.05		0.03	<	0.01		0.02
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	٧.	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters					_1		1		F0.0		E0 E		
ODO % Sat	mg/L				' _1		_1		53.3		58.5		
ORP	mV								-95.0		-72		
SPC	us/cm				_1		_1		1046.0		490.3		
Temperature	°C				_1		_1		9.641		9.265		
Turbidity	FNU				_1		_1		919.33		10.39		
pH	Units				_1		_1		7.25		7.19		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

-- - No data.

Tableau 111: PH-90-6-III

Page 117 de 159

		Crit	eria						PH-90-6-II	I			
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac		20	21/03/31	20	21/12/03	Α	verage
pH	pH	6.5-8.5	6.5-9.0		6.99		7.16		6.74		6.97		6.86
Alkalinity	mg/L as CaCO ₃				485		498		768		594		681
Carbonate	mg/L as CaCO ₃			<	1.0	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				485		498		768		594		681
Total Dissolved Solids	mg/L				535		586		840		585		713
Fluoride	mg/L	1.5			0.52		0.63		0.53		0.50		0.52
Total Organic Carbon	mg/L				13		6		11		6		9
Dissolved Organic Carbon	mg/L				5		6		11		6		9
Total Ammonia-N	mg/l				13.5		10.5		27.4		13.2		20.3
Chloride	mg/L				48		56		84		57		71
Sulphate	mg/L				1.2		0.9		1.3		0.5		0.9
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.12	<	0.06		0.09	<	0.06		0.08
Nitrate + Nitrite (N)	mg/L				0.12	<	0.06		0.09	<	0.06		0.08
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO₃				440		494		797		517		657
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L				9.2		5.0	<	1		5		3
Arsenic (dissolved)	μg/L	25	1900		6.6		7.8		7.5		6.3		6.9
Barium (dissolved)	μg/L	1000	29000		660		583		1580		941		1261
Beryllium (dissolved)	μg/L		67	<	0.50		0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		545		506		1200		669		935
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				155000		180000		270000		193000		231500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.003	<	0.003		0.008		0.006
Cobalt (dissolved)	μg/L		66		0.80		0.89		2.10		1.12		1.61
Chromium (dissolved)	μg/L		810	<	5.0		1.2		2.10		1.24		1.67
Copper (dissolved)	μg/L	1000	87	<	1.0		0.2		0.5	<	0.2		0.4
Iron (dissolved)	μg/L		-		29500		29250		45500		39300		42400
Potassium (dissolved)	μg/L				9850		10175		17700		12500		15100
Magnesium (dissolved)	μg/L				10950		11750		22700		15300		19000
Manganese (dissolved)	μg/L				515		552		847		650		749
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.13		0.18		0.16		0.17
Sodium (dissolved)	μg/L				31500		32800		56100		51300		53700
Nickel (dissolved)	μg/L		490	<	1.0		1.0		2.3		1.0		1.7
Phosphorus (total)	μg/L				285		218		145		233		189
Lead (dissolved)	μg/L	10	25	<	0.50		0.03		0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.1		0.13		0.09		0.11
Tin (dissolved)	μg/L			<	1.0		0.3		0.68		0.33		0.51
Strontium (dissolved)	μg/L				340		421		690		516		603
Titanium (dissolved)	μg/L			<	5.0		0.6		0.54		0.36		0.45
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		0.5		0.8		1.9		1.7		1.8
Vanadium (dissolved)	μg/L		250		0.70		0.86		1.4		1.2		1.3
Zinc (dissolved)	μg/L		1100	<	5.0		3.0		2		2		2
Lead-210	Bq/L	0.20		<	0.10		0.02	<	0.02		0.02		0.02
Radium-226	Bq/L	0.49			0.08		0.07		0.04		0.14		0.09
Thorium-230	Bq/L	0.65		<	0.07	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.06	<	0.02	<	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		39.1		66		
ORP	mV				_1		_1		-86.7		-48.6		
SPC	us/cm				_1		_1		949.0		644.8		
Temperature	°C				_1		_1		10.308		9.147		
Turbidity	FNU				_1		_1		79.87		35.7		
pH	Units				_1		_1		6.88		6.95		
·									2.30			_	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 118 de 159

Tableau 112: PH-90-7-III

		Crit	eria						PH-90-7-III				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac		20	21/03/22	20	21/11/11	Α	verage
pH	pH	6.5-8.5	6.5-9.0		7.41	<u> </u>	7.17		7.14		7.25		7.20
Alkalinity	mg/L as CaCO ₃				505		683		513		631		572
Carbonate	mg/L as CaCO ₃				1.3	<	1.0	٧	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				505		683		513		631		572
Total Dissolved Solids	mg/L				1195		830		849		945		897
Fluoride	mg/L	1.5		<	0.10		0.09	٧	0.06		0.07		0.07
Total Organic Carbon	mg/L				8		6		5		5		5
Dissolved Organic Carbon	mg/L				4		6		4		5		5
Total Ammonia-N	mg/l				0.08		0.04		0.04		0.07		0.06
Chloride	mg/L				395		185		200		270		235
Sulphate	mg/L				18		21		33		200		117
Bromide	mg/L				3.0	<	0.3	٧	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.15	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L				0.15	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃		0.25		755		4080		512		465		489
Silver (dissolved)	μg/L		1.5	<		<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5.0		10.5	<	1.0		4		3
Arsenic (dissolved)	μg/L	25	1900	Ė	32		51	Ė	31		24		28
Barium (dissolved)	μg/L	1000	29000		135		109		81.9		135		108
Beryllium (dissolved)	μg/L	1000	67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	Ė	19	Ì	17	Ì	13	_	58	È	36
Bismuth (dissolved)	µg/L	3000	43000	<		<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L			Ť	255000	Ė	199000	Ť	176000	Ì	163000	-	169500
Cadmium (dissolved)	µg/L	5	2.7	<	0.1	Н	0.004		0.013		0.016		0.015
Cobalt (dissolved)	μg/L		66	Ė	1.60		1.57		2.80		3.64		3.22
Chromium (dissolved)	μg/L		810	<	5.0	Н	0.5		0.19		0.33		0.26
Copper (dissolved)	μg/L	1000	87	<u>`</u>			0.5		0.19		0.55		0.20
Iron (dissolved)	µg/L	1000	- 07	Ė	1700		1311		433		113		273
Potassium (dissolved)	µg/L				1055		1195		989		1420		1205
Magnesium (dissolved)	µg/L				28000		20050		17500		16200		16850
Manganese (dissolved)	µg/L				465		458		348		372.00		360
Molybdenum (dissolved)	μg/L		9200	<	0.50	Н	0.19		0.18		0.12		0.15
Sodium (dissolved)	μg/L		3200	Ė	165000	Н	139000		146000		161000	<u> </u>	153500
Nickel (dissolved)	μg/L		490		1.2		0.9		1.0		1.5		1.3
Phosphorus (total)	μg/L		750		8300		6		4	<	3		4
Lead (dissolved)	μg/L	10	25	<	0.50		0.02		0.09	<	0.09	<	0.09
Antimony (dissolved)	μg/L	6	20000	Ì	1.45		0.02	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	Н	0.93	ŕ	0.90	_	0.90	È	0.90
Tin (dissolved)	μg/L	10	03	<u>`</u>			0.1	<	0.06	<	0.06	<	0.07
Strontium (dissolved)	μg/L			ì	435		342	ŕ	323	_	328	È	326
Titanium (dissolved)	μg/L			<	5.0		0.5	<	0.05		2.48		1.27
Thallium (dissolved)	μg/L μg/L		510	<u> </u>		H	0.01	/ \	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L μg/L	20	420	È	15	H	24	È	16	È	14	È	15
Vanadium (dissolved)	μg/L μg/L	20	250		1.34	H	0.90		0.22		0.41		0.32
				<		H	3.0		2	<	2		2
Zinc (dissolved) Lead-210	μg/L Bg/L	0.20	1100	\ \	5.0 0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.20		Ì	0.10	È	0.02	È	0.02	È	0.02	È	0.02
Thorium-230	Bq/L Bq/L	0.49		<	0.04		0.05	<	0.02	<	0.03	<	0.04
Thorium-232	Bq/L Bq/L	0.05		· ·	0.07	<	0.05	· ·	0.02	<	0.02	<	0.02
Field Parameters	Dq/L			È	0.00	È	0.02	È	0.02	_	0.02	È	0.02
ODO % Sat	mg/l				_1		_1		71.4		81.3		
ORP Sat	mg/L mV				1		_1		46.8		103.5		
SPC	us/cm				1	H	_ _1		662.0		1597		
	°C			H	1	H	_ _1		10.679				
Temperature	FNU				_1	H	_1				11.072		
Turbidity				H	_1	H	_ _1		589.15		719.8		
pH	Units				-		-		7.39		7.15		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 119 de 159

Tableau 113: PH-90-8-I

		Crit	eria						PH-90-8-I				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac		20	21/03/25	20	021/11/15	Α	verage
pH	pH	6.5-8.5	6.5-9.0		7.64	Ľ,	7.50		7.71		7.43		7.57
Alkalinity	mg/L as CaCO ₃				220		431		741		515		628
Carbonate	mg/L as CaCO ₃			<	1.0	<	1.0	٧	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				220		431		741		515		628
Total Dissolved Solids	mg/L				1700		1730		1646		1580		1613
Fluoride	mg/L	1.5		<	0.10	<	0.06	٧	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				2		1		1		1		1
Dissolved Organic Carbon	mg/L				1		1		1		1		1
Total Ammonia-N	mg/l				0.09		0.04	<	0.04		0.06		0.05
Chloride	mg/L				840		860		880		870		875
Sulphate	mg/L				48		49		52		47		50
Bromide	mg/L				5.5	<	0.3	٧	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L				0.050	<	0.300	<	0.30	<	0.30	<	0.30
Nitrate (N)	mg/L				0.55		0.58		0.44		0.60		0.52
Nitrate + Nitrite (N)	mg/L				0.60		0.58		0.44		0.60		0.52
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃				725		1460		724		795		760
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	٧	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5.0		3.5		98.0	<	1	<	50
Arsenic (dissolved)	μg/L	25	1900	<	1.0		2.7		0.5		0.4		0.5
Barium (dissolved)	μg/L	1000	29000		520		451		484		431		458
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.01	٧	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000		27		29		47		32		40
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	٧	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				205000		209500		213000		193000		203000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.0	٧	0.003	<	0.003	<	0.003
Cobalt (dissolved)	μg/L		66	<	0.5		0.2		0.291		0.270		0.281
Chromium (dissolved)	μg/L		810	<	5.0		0.6		0.23		0.11		0.17
Copper (dissolved)	μg/L	1000	87	<	1.0		0.4	٧	0.2	<	0.2	<	0.2
Iron (dissolved)	µg/L		0.		575		418		307		238		273
Potassium (dissolved)	μg/L				3350		3685		4050		3320		3685
Magnesium (dissolved)	μg/L				54500		54050		46900		48400		47650
Manganese (dissolved)	μg/L				36		35		40		40.00		40
Molybdenum (dissolved)	μg/L		9200		0.57		0.51		1.27		0.51		0.89
Sodium (dissolved)	μg/L				280000		326500		320000		349000		334500
Nickel (dissolved)	μg/L		490	<	1.0		0.4	<	0.1		0.7		0.4
Phosphorus (total)	μg/L		.50		2100		10	<	3	<	3	<	3
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000	<	0.5	<	0.9	٧	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	<	0.0		0.05	<	0.04		0.05
Tin (dissolved)	μg/L			<	1.0		0.1		0.07	<	0.06		0.07
Strontium (dissolved)	μg/L				835		848		837		692		765
Titanium (dissolved)	μg/L			<	5.0		0.2		0.06		0.27		0.17
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01		0.005	<	0.005		0.005
Uranium (dissolved)	μg/L	20	420		27		36		41		34		38
Vanadium (dissolved)	μg/L		250	<	0.50		0.12		0.49		0.04		0.27
Zinc (dissolved)	μg/L		1100	<	5.0		3.0	٧	2	<	2	<	2
Lead-210	Ba/L	0.20		<		<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.040		0.020		0.01		0.02		0.02
Thorium-230	Bq/L	0.65		<		<	0.020	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<		<	0.020	٧	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_1		_1		47.1		34		
ORP	mV				_1		_1		68.9		71.4		-
SPC	us/cm				_1		_1		2516.0		2997		
Temperature	°C				_1		_1		10.672		10.05		
Turbidity	FNU				_1		_1		2257.30		789.1		
pH	Units				_1		_1		7.32		7.06		
						_				_			

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

 $^{^{}m 1}$ Field parameters included for current sampling year only.

^{-- -} No data.

Page 120 de 159

Tableau 114: PH-90-8-II

		Crit	eria						PH-90-8-II				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag		20	21/03/25	20	21/11/15	_ A	verage
pH	рН	6.5-8.5	6.5-9.0		7.40	Ī	7.25		7.58		7.22		7.40
Alkalinity	mg/L as CaCO ₃				390		379		368		429		399
Carbonate	mg/L as CaCO ₃				1.1	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				390		379		368		429		399
Total Dissolved Solids	mg/L				543		587		546		549		548
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				3	T	2		1		3		2
Dissolved Organic Carbon	mg/L				1	Т	2		2		3		3
Total Ammonia-N	mg/l				0.066	T	0.040	<	0.04	<	0.04	<	0.04
Chloride	mg/L				43		66		76		43		60
Sulphate	mg/L				14		23		9		29		19
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.30		0.17
Nitrate (N)	mg/L				4.58	Н	6.91		2.57		2.35		2.46
Nitrate + Nitrite (N)	mg/L				4.58		6.91		2.57		2.35		2.46
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01		0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃	_	0.23	Ė	475	Ė	526	Ė	472		482		477
Silver (dissolved)	µg/L		1.5	٧	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L		1.5	` '	5.0	È	3.5	Ì	114	È	5	È	60
Arsenic (dissolved)	μg/L	25	1900	` <	1.0	<	0.2		0.2	<	0.2		0.2
Barium (dissolved)	μg/L	1000	29000	÷	63	È	70		75	È	73		74
Beryllium (dissolved)	μg/L	1000	67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	ŕ	44	È	44	<u>`</u>	37	È	39	È	38
Bismuth (dissolved)	μg/L	3000	45000	<	1.0		0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L			_	165000	Н	183500	÷	168000	È	165000		166500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.0	<	0.003	<	0.003	<	0.003
Cobalt (dissolved)		3	66	<i>'</i>	0.50	È	0.16	<u> </u>	0.062	<u> </u>	0.003	È	0.107
Chromium (dissolved)	μg/L μg/L		810	<i>'</i>	5.0		0.16		0.002		0.132		0.107
Copper (dissolved)		1000	87	<i>'</i>	1.0	Н	0.8	<	0.34		0.55		0.34
Iron (dissolved)	μg/L μg/L	1000	87	<i>'</i>	100	Н	15	<u> </u>	8	-	9		9
				_	5950	Н	6630		6600		6860		6730
Potassium (dissolved) Magnesium (dissolved)	μg/L μg/L			-	15000	Н	16450		12600		15000		13800
_ ` ` ′				_	2.0	Н	7.9		2.71		8.61		5.7
Manganese (dissolved) Molybdenum (dissolved)	μg/L μg/L		9200	<	0.50	Н	0.07		0.54		0.05		0.30
Sodium (dissolved)			9200	_	7250	H	10250		15800		25800		20800
	μg/L		400	<	1.0	H	0.3	<	0.10			-	0.2
Nickel (dissolved)	μg/L		490	_	51	H	7	/			0.30		5
Phosphorus (total)	μg/L	10	25	<		<		· ·	3	<			
Lead (dissolved)	μg/L	10	25	/	0.50	<	0.01	/	0.01	<	0.09	<	0.05
Antimony (dissolved)	μg/L	6	20000	-	0.50	`	0.90	`	0.90	_	0.90	`	0.90
Selenium (dissolved)	μg/L	10	63	٧	2.0	<	0.5	<		<	0.53	<	0.53
Tin (dissolved)	μg/L			`	1.0	`	0.1	`	0.06	`	0.06	`	0.06
Strontium (dissolved)	μg/L			<	290 5.0		352 0.3	<	325 0.05		318 0.25		322 0.15
Titanium (dissolved)	μg/L		F10	· ·		<		· ·		<		<	
Thallium (dissolved)	μg/L	20	510	-	0.05	È	0.01 5	<u> </u>	0.005	È	0.005	È	0.005
Uranium (dissolved) Vanadium (dissolved)	μg/L	20	420	<	5	┢			21				17
	μg/L		250	<i>'</i>	0.50	┢	0.18	<	0.70	_	0.07	<	0.39
Zinc (dissolved)	μg/L	0.20	1100	`	5.0	_	3.0	<u> </u>	2	<	2	<u>`</u>	2
Lead-210	Bq/L	0.20		<i>'</i>	0.10	-	0.02	_	0.02	-	0.02	<u> </u>	0.02
Radium-226 Thorium-230	Bq/L	0.49		_	0.040	<		< <	0.01	<	0.01	<	0.01
	Bq/L	0.65		< <		<	0.020	< <	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			÷	0.060	Ĺ	0.020	Ì	0.02	È	0.02	`	0.02
Field Parameters	ma/l				_1		_1		60.0		61.0		
ODO % Sat	mg/L				1	H	_1		68.6		61.2		
ORP	mV								42.8		103.9		
SPC	us/cm				_1 _1		_1 _1		979.0		927.0		
Temperature	°C				_1		' _1		10.150		10.8		
Turbidity	FNU				' _1	H	_1		68.79		22.4		
pH	Units		. D-4-54- 0		-'		-'	Ļ	7.33	Ц.	6.94	Ļ	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 121 de 159

Tableau 2: PH-90-9-III

		Crit	eria						PH-90-9-II	ı			
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	raq		20	21/03/29	20	21/11/19	Α	verage
pH	pH	6.5-8.5	6.5-9.0		7.60	Ī	7.70		7.58		7.35		7.47
Alkalinity	mg/L as CaCO ₃				305		1337		767		1250		1009
Carbonate	mg/L as CaCO ₃				1.2		95.5	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				305		1242		767		1250		1009
Total Dissolved Solids	mg/L				343		619		349		334		342
Fluoride	mg/L	1.5		<	0.10		0.11	<	0.06		0.08		0.07
Total Organic Carbon	mg/L				4.3		1.0		1		1		1
Dissolved Organic Carbon	mg/L				1.4		1.0	<	1		1		1
Total Ammonia-N	mg/l			<	0.050		0.055	<	0.04		0.04		0.04
Chloride	mg/L				3.6		4.7		5		4		4
Sulphate	mg/L				17		17		16		17		17
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	٧	0.3
Nitrite (N)	mg/L				0.013	<	0.030	<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃	-			320		2935		9580		277		4929
Silver (dissolved)	µg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L		,		6.1		17.5		6	Ė	2		4
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	0.2	<	0.2		0.5		0.4
Barium (dissolved)	μg/L	1000	29000		60		58		67		57		62
Beryllium (dissolved)	µg/L	1000	67	<	0.50	<	0.01	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	Ė	20	È	18	Ì	25	È	20	Ì	23
Bismuth (dissolved)	μg/L	3000	43000	<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L			Ė	96500	Ė	96200		116000	Ė	88500		102250
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	Н	0.0		0.003	<	0.003		0.003
Cobalt (dissolved)	µg/L		66	` <	0.50	Н	0.04		0.042	Ì	0.291		0.167
Chromium (dissolved)	µg/L		810	` <	5.0	Н	0.8		0.99		0.24		0.62
Copper (dissolved)	µg/L	1000	87	` <	1.0	\vdash	0.5		0.8		0.2		0.5
Iron (dissolved)	μg/L	1000	- 0,	<	100	Н	23		21	<	7		14
Potassium (dissolved)	μg/L			Ė	710	Н	693		814	Ė	700		757
Magnesium (dissolved)	μg/L				19500	Н	19300		21100		19200		20150
Manganese (dissolved)	μg/L				9.1	Н	1.6		1.6		10.3		6.0
Molybdenum (dissolved)	μg/L		9200	<	0.50	Н	0.14		0.18		0.23		0.21
Sodium (dissolved)	μg/L		3200	Ť	5450	Н	5115		6170		6510		6340
Nickel (dissolved)	μg/L		490	<	1.0	<	0.1		0.20		0.30		0.25
Phosphorus (total)	μg/L		430	È	9250	È	4	<	3		8		6
Lead (dissolved)	μg/L	10	25	<	0.50	Н	0.05		0.02	<	0.09		0.06
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90
Selenium (dissolved)	μg/L	10	63	<	2.0	Ė	0.2		0.20	Ė	0.18	Ė	0.19
Tin (dissolved)	μg/L		- 03	· <	1.0	Н	0.1		0.08	<	0.06		0.07
Strontium (dissolved)	µg/L			È	215	Н	219		246	È	225		236
Titanium (dissolved)	μg/L			<	5.0		0.9		0.44	<	0.05		0.25
Thallium (dissolved)	μg/L		510	` <	0.05		0.01	<	0.005	<	0.005	<	0.25
Uranium (dissolved)	μg/L	20	420		2.8		2.9		3	Ė	3		3
Vanadium (dissolved)	μg/L		250	<	0.50	Н	0.36		0.36		0.46		0.41
Zinc (dissolved)	μg/L		1100	` <	5.0	Н	4.0		2	<	2		2
Lead-210	Bq/L	0.20	1100	· <	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		· <	0.040	<	0.010	· <	0.02	<	0.02	<i>'</i>	0.02
Thorium-230	Bq/L	0.65		` <	0.070	<	0.020	<	0.01	<	0.02	, _	0.02
Thorium-232	Bq/L	5.05		` '	0.060	` <	0.020	<u>`</u>	0.02	<	0.02	<	0.02
Field Parameters	-4/L			Ė	0.000	Ė	0.020	Ė	0.02	Ė	0.02	Ė	0.02
ODO % Sat	mg/L				_1		_1		71.5		77.7		
ORP Sat	mV				_1		_1		141.7		131.0		
SPC	us/cm			H	1	H	_1		597.0		579.0		
	°C				_1		_1		8.308		9.3		
Temperature Turbidity	FNU				1		_1		4116.00		1473.4		
	Units				1	H	_1		7.49		7.23		
pH	Oillo					_		<u> </u>	7.49	Ц.	1.23	<u> </u>	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

- - No data.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 122 de 159

Tableau 3: PH-93-3-III

Page 123 de 159

		Crit	eria					PH-93-3-III		
		COPC	Table 3		2019		2020		2021	
Analysis	Units		(MECP)		Ave	rag		2021/03/24	2021/11/19	Average
pH	pН	6.5-8.5	6.5-9.0		7.70		7.35	No Sample ²	_3	_3
Alkalinity	mg/L as CaCO ₃				370		352		_3	_3
Carbonate	mg/L as CaCO ₃				1.7	<	1.0		_3	_3
Bicarbonate	mg/L as CaCO ₃				370		352		_3	_3
Total Dissolved Solids	mg/L				440		374		_3	_3
Fluoride	mg/L	1.5		<	0.10	<	0.06		_3	_3
Total Organic Carbon	mg/L				1.3		1.0		_3	_3
Dissolved Organic Carbon	mg/L				1.2		1.0		_3	_3
Total Ammonia-N	mg/l				0.54		2.90		_3	_3
Chloride	mg/L				12		29		_3	_3
Sulphate	mg/L				3.7		3.9		_3	_3
Bromide	mg/L			<	1.0	<	0.3		_3	_3
Nitrite (N)	mg/L				0.166		0.080		_3	_3
Nitrate (N)	mg/L				2.22		1.61		_3	_3
Nitrate + Nitrite (N)	mg/L				2.39		1.69		_3	_3
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		< 0.01	< 0.01
Hardness (dissolved)	mg/L as CaCO ₃				360		425		_3	_3
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.1		< 0.05	< 0.05
Aluminum (dissolved)	μg/L			<	5		6		4	4
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	0.2		< 0.2	< 0.2
Barium (dissolved)	μg/L	1000	29000		45		52		48.6	48.6
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.01		< 0.007	< 0.007
Boron (dissolved)	μg/L	5000	45000		250		243		71	71
Bismuth (dissolved)	µg/L		.5000	<	1.0	<	0.0		< 0.010	< 0.010
Calcium (dissolved)	μg/L				130000		129000		89500	89500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.0		< 0.003	< 0.003
Cobalt (dissolved)	μg/L		66	<	0.50		0.18		0.099	0.099
Chromium (dissolved)	μg/L		810	<	5.0	t	0.3		0.22	0.22
Copper (dissolved)	μg/L	1000	87	<	1.0	t	0.5		0.6	0.6
Iron (dissolved)	μg/L			<	100		12		< 7	< 7
Potassium (dissolved)	μg/L				3800		5420		4960	4960
Magnesium (dissolved)	μg/L				10000		10400		9020	9020
Manganese (dissolved)	μg/L			<	2	t	4		0.28	0.28
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.06		0.14	0.14
Sodium (dissolved)	μg/L		5200		12000		10800		4910	4910
Nickel (dissolved)	μg/L		490	<	1.0		0.1		0.30	0.30
Phosphorus (total)	μg/L		.50		33	t	8		6	6
Lead (dissolved)	μg/L	10	25	<	0.50	<	0.01		< 0.09	< 0.09
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90		< 0.90	< 0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.4		0.33	0.33
Tin (dissolved)	μg/L			<	1.0		0.1		< 0.06	< 0.06
Strontium (dissolved)	μg/L				230		226		178	178
Titanium (dissolved)	µg/L			<	5.0	t	0.6		0.09	0.09
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01		< 0.005	< 0.005
Uranium (dissolved)	μg/L	20	420		9		9		37	37
Vanadium (dissolved)	μg/L		250		0.56	t	0.53		0.73	0.73
Zinc (dissolved)	μg/L		1100	<	5.0	<	2.0		< 2	< 2
Lead-210	Bq/L	0.20	1100	<	0.10	<	0.02		< 0.06	< 0.06
Radium-226	Bq/L	0.49		<	0.040	<	0.010		< 0.00	< 0.00
Thorium-230	Bq/L	0.65		<	0.070	<	0.020		< 0.01	< 0.01
Thorium-232	Bq/L	0.03		<	0.060	<	0.020		< 0.02	< 0.02
Field Parameters	- 4 -				0.000	Ė	0.020		3.02	3.02
ODO % Sat	mg/L				_1		_1		67.7	
ORP Sat	mV				_1		_1		89.9	
SPC	us/cm						_1		568	
Temperature	°C				<u>-</u> _1		_1		10.664	
Turbidity	FNU				_1		_1		27.87	
pH	Units						_1		7.23	
	Onits			_			-		1.23	 Danast

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

Tableau 4: PH-93-6-I

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for sample collection

³ Insufficient volume of groundwater for full sample collection

^{-- -} No data.

Page 124 de 159

		Criteria						PH-93-6-I							
		COPC	Table 3		2019		2020				2021				
Analysis	Units		(MECP)		Ave	rac	ae	20	21/03/25	20	21/11/12	Α	verage		
pH	pH	6.5-8.5	6.5-9.0	t	7.89	Ī	7.61		7.78		7.49		7.64		
Alkalinity	mg/L as CaCO ₃			t	290	T	286		260		582		421		
Carbonate	mg/L as CaCO ₃				2.6	<		<	1.0	<	1.0	<	1.0		
Bicarbonate	mg/L as CaCO ₃				290	T	286		260		582		421		
Total Dissolved Solids	mg/L				1635	H	1457		1720		1351		1536		
Fluoride	mg/L	1.5		<	0.10	<		<	0.06	<	0.06	<	0.06		
Total Organic Carbon	mg/L				6	Н	2		2		2		2		
Dissolved Organic Carbon	mg/L				6	H	2		2		2		2		
Total Ammonia-N	mg/L			H	23.6	H	0.57		0.16		0.19		0.18		
Chloride	mg/L				795	H	800		840		570		705		
Sulphate	mg/L				37.5	H	34.0		38		29		34		
Bromide	mg/L			<	5.5	<		<	0.3		0.3		0.3		
Nitrite (N)	mg/L			È	0.041	Ĥ	0.530	<u>'</u>	0.30	<	0.03		0.17		
Nitrate (N)	mg/L				1.46	H	0.330	<u> </u>	1.19	`	1.42		1.31		
Nitrate + Nitrite (N)	mg/L				1.50	H	1.21		1.19		1.42		1.31		
Mercury (dissolved)	µg/L		0.20	<	0.10	<		~	0.01	<	0.01	<	0.01		
Hardness (dissolved)	μg/L mg/L as CaCO ₃	1	0.29	<u> </u>	520	È	668	<u> </u>	609	_	1830	È	1220		
			1.5	<		<		<u> </u>		<		<			
Silver (dissolved)	μg/L		1.5	_	0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		< <	0.05	`	0.05	`	0.05		
Aluminum (dissolved)	μg/L	25	1000		5.1	H	2.0	È	1		32		17		
Arsenic (dissolved)	μg/L	25	1900		1.4		0.7		0.4		0.5		0.5		
Barium (dissolved)	μg/L	1000	29000	-	320	H	334		413		348		381		
Beryllium (dissolved)	μg/L		67	<	0.50	L	0.01	<	0.007	<	0.007	<	0.007		
Boron (dissolved)	μg/L	5000	45000		47	H	87		38		104		71		
Bismuth (dissolved)	μg/L			<	1.0	<		<	0.007	<	0.010		0.009		
Calcium (dissolved)	μg/L			_	145000	L	175000		183000		198000		190500		
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	L	0.0		0.081		0.068		0.075		
Cobalt (dissolved)	μg/L		66		0.71	L	1.10		0.868		0.871		0.870		
Chromium (dissolved)	μg/L		810	<	5.0	L	0.4		0.22		0.45		0.34		
Copper (dissolved)	μg/L	1000	87	<	1.0		8.0		0.4		1.1		8.0		
Iron (dissolved)	μg/L				225	L	120		11		71		41		
Potassium (dissolved)	μg/L				36500	L	4805		4530		4750		4640		
Magnesium (dissolved)	μg/L				39500	L	37700		36800		43800		40300		
Manganese (dissolved)	μg/L				400	L	665		506		532		519		
Molybdenum (dissolved)	μg/L		9200		0.67	L	0.45		0.59		0.40		0.50		
Sodium (dissolved)	μg/L				335000	L	298500		335000		266000		300500		
Nickel (dissolved)	μg/L		490		2.0	L	2.1		8.0		2.6		1.7		
Phosphorus (total)	μg/L				605		32		20		45		33		
Lead (dissolved)	μg/L	10	25	<	0.50		0.02		0.01	<	0.09		0.05		
Antimony (dissolved)	μg/L	6	20000	<	0.50	<		٧	0.90	<	0.90	<	0.90		
Selenium (dissolved)	μg/L	10	63	<	2.0		0.4		0.38		0.40		0.39		
Tin (dissolved)	μg/L			<	1.0		0.1	٧	0.06	<	0.06	<	0.06		
Strontium (dissolved)	μg/L				535	L	612		705		874		790		
Titanium (dissolved)	μg/L			<	5.0		0.1		0.06		2.16		1.11		
Thallium (dissolved)	μg/L		510	<	0.05		0.01		0.008		0.022		0.015		
Uranium (dissolved)	μg/L	20	420		2		2		2		2		2		
Vanadium (dissolved)	μg/L		250		0.73	Ĺ	0.53		0.50		0.66		0.58		
Zinc (dissolved)	μg/L		1100		74		43		26		11		19		
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	٧	0.02	<	0.02		
Radium-226	Bq/L	0.49		<	0.040		0.020	٧	0.01	<	0.01	٧	0.01		
Thorium-230	Bq/L	0.65		<	0.070	<	0.020	٧	0.02	<	0.02	٧	0.02		
Thorium-232	Bq/L			<	0.060	<	0.020	٧	0.02	<	0.02	<	0.02		
Field Parameters															
ODO % Sat	mg/L				- ¹		_1		43.4		39.5				
ORP	mV				_1		_1		79.5		105.7				
SPC	us/cm				_1		- 1		2549.0		2353.0				
Temperature	°C				<u>-</u> 1		- 1		12.208		10.6				
Turbidity	FNU				_1		_1		14.34		2264.4				
pH	Units				_1	Г	_1		7.73		7.08				
COPC - Contaminants of L		aritaria fa	r Dotoblo C		nduntor C		ditiona dari	10 d		Цог			Donort		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

Tableau 5: PH-93-6-II

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 125 de 159

		Crit	eria	PH-93-6-II									
		COPC	Table 3		2019		2020						
Analysis	Units		(MECP)		Ave	rag	ge	20	21/03/25	20	21/11/12	Α	verage
pH	pH	6.5-8.5	6.5-9.0		7.37	Ė	7.30		7.51		7.22		7.37
Alkalinity	mg/L as CaCO ₃				525		428		369		581		475
Carbonate	mg/L as CaCO ₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				520		428		369		581		475
Total Dissolved Solids	mg/L				598		472		680		694		687
Fluoride	mg/L	1.5		<	0.10	<		<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				13	T	3		4		4		4
Dissolved Organic Carbon	mg/L				4		3		4		4		4
Total Ammonia-N	mg/l				1.53	t	0.07	<	0.04		0.05		0.05
Chloride	mg/L				10	t	8		30		25		28
Sulphate	mg/L				20.5	ı	15.0		19		32		26
Bromide	mg/L			<	1.0	<			0.5	<	0.3		0.4
Nitrite (N)	mg/L				0.053	<		<	0.03	<	0.03	<	0.03
Nitrate (N)	mg/L				0.41	Ė	1.34	Ė	0.45	Ė	5.58	Ė	3.02
Nitrate + Nitrite (N)	mg/L				0.46	H	1.34		0.45		5.58		3.02
Mercury (dissolved)	μg/L	1	0.29	<	0.10	H	0.02	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO ₃	_	0.23		570	H	516	Ė	676	Ė	658	Ė	667
Silver (dissolved)	µg/L do cace;		1.5	<	0.1	<		<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L		1.5		8.0	Ė	3.0	<	1	<	1	<	1
Arsenic (dissolved)	μg/L	25	1900	<	1.0	H	0.4	Ť	0.2	È	0.2	È	0.2
Barium (dissolved)	μg/L	1000	29000	Ì	58	H	50		75		90		82
Beryllium (dissolved)	μg/L	1000	67	<	0.50	H	0.01	<u> </u>	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	È	26	H	45	ŕ	26	È	71	È	49
Bismuth (dissolved)	μg/L	3000	45000	<	1.0	<		<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L			`	200000	_	181000	_	254000	<u> </u>	256000		255000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.0	<	0.003		0.004		0.004
Cobalt (dissolved)	μg/L		66	_	1.00	H	0.0	_	0.519		0.675		0.597
Chromium (dissolved)	μg/L		810	<	5.0	H	0.36	<u> </u>	0.08		0.073		0.397
Copper (dissolved)	μg/L	1000	87	Ì	2.6	H	1.0	_	0.8		1.2		1.0
Iron (dissolved)	μg/L	1000	87		1500	H	202		74		92		83
Potassium (dissolved)	μg/L				3350		2935		4030		3470		3750
Magnesium (dissolved)	μg/L				16000		12265		10100		13900		12000
Manganese (dissolved)	μg/L				211		213		398		329		364
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.13		0.18		0.10		0.14
Sodium (dissolved)	μg/L		9200	_	5850	H	6380	_	4560		10800		7680
Nickel (dissolved)	μg/L		490		1.2	H	0.8	_	0.8		1.5		1.2
			490		1028	H	38	_	20		1.5		1.2
Phosphorus (total)	μg/L	10	25	<		┢		~		<			
Lead (dissolved)	μg/L	10	25	·	0.50	<	0.02	<i>'</i>	0.01	<	0.09	<	0.05
Antimony (dissolved) Selenium (dissolved)	μg/L	6 10	20000	·	2.0	<u>`</u>	0.90	_	0.90	È	0.90	`	0.90
Tin (dissolved)	μg/L	10	63	· <		┢	0.2	<		<		<	0.13
	μg/L			`	1.0 350	┢	297	_	0.06 360	È	0.06 469	`	415
Strontium (dissolved)	μg/L			<			0.2				0.20		
Titanium (dissolved)	μg/L			_	5.0			_	0.15				0.18
Thallium (dissolved)	μg/L	20	510	<	0.05	<		<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420		13	H	36		81		38		59
Vanadium (dissolved)	μg/L		250	<	0.50	H	0.27		0.11		0.64		0.38
Zinc (dissolved)	μg/L Pa/I	0.00	1100	_	5	-	3		4		3		4
Lead-210	Bq/L	0.20		<	0.10	<		<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.040	<	0.010		0.01		0.02		0.02
Thorium-230	Bq/L	0.65		<	0.070	<		٧.	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			<	0.060	<	0.020	<	0.02	<	0.02	<	0.02
Field Parameters					1		1		44.1		00.0		
ODO % Sat	mg/L				_1	L	_1		44.4		68.6		
ORP	mV .				-'	L	_1		71.2		92.5		
SPC	us/cm				1	L	_1		653.0		1156.0		
Temperature	℃				1		_1		10.806		11.0		
Turbidity	FNU				1	L	_1		4.56		12.7		
pH	Units				_1		_1		6.97	Ļ	7.04		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{- -} No data

Page 126 de 159

Tableau 6: PH-93-9-I

		Crit	teria	PH-93-9-I										
		COPC	Table 3		2019		2020	2021						
Analysis	Units		(MECP)		Ave	rac		20	21/03/30	20	21/10/28	Α	verage	
pH	pH	6.5-8.5	6.5-9.0		7.26	Ī	7.08		7.26		6.92		7.09	
Alkalinity	mg/L as CaCO ₃				600		604		614		718		666	
Carbonate	mg/L as CaCO ₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0	
Bicarbonate	mg/L as CaCO ₃				600		604		614		718		666	
Total Dissolved Solids	mg/L				905		863		966		997		982	
Fluoride	mg/L	1.5		<	0.10	<	0.06	٧	0.06	<	0.06	<	0.06	
Total Organic Carbon	mg/L				6		6		5		7		6	
Dissolved Organic Carbon	mg/L				6		6		5		7		6	
Total Ammonia-N	mg/l				11.0		11.5		13.8		16.4		15.1	
Chloride	mg/L				175		160		190		140		165	
Sulphate	mg/L				34.5		34		42		67		55	
Bromide	mg/L				1.2		0.30		0.3		0.4		0.4	
Nitrite (N)	mg/L			<	0.010	<	0.03	٧	0.03	<	0.03	<	0.03	
Nitrate (N)	mg/L				0.43	<	0.09	<	0.06	<	0.06	<	0.06	
Nitrate + Nitrite (N)	mg/L				0.43	<	0.09		0.06	<	0.06		0.06	
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01	
Hardness (dissolved)	mg/L as CaCO ₃				645		799		799		689		744	
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	
Aluminum (dissolved)	μg/L				12.5		1.0		22	<	1		12	
Arsenic (dissolved)	μg/L	25	1900		1.4		0.6		0.5		0.6		0.6	
Barium (dissolved)	μg/L	1000	29000		180		166		203		241		222	
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.007		0.008	<	0.007		0.008	
Boron (dissolved)	μg/L	5000	45000		1100		949		1030		1540		1285	
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	٧	0.007	<	0.010		0.009	
Calcium (dissolved)	μg/L				185000		192000		189000		206000		197500	
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.005		0.007	<	0.003		0.005	
Cobalt (dissolved)	μg/L		66		2.35		2.7		3.000		2.880		2.940	
Chromium (dissolved)	μg/L		810	<	5.0		0.38		0.50		0.55		0.53	
Copper (dissolved)	μg/L	1000	87		3.6		4.3		4.3		2.9		3.6	
Iron (dissolved)	μg/L				115	H	69		172		65		119	
Potassium (dissolved)	μg/L				21000		22250		24000		37600		30800	
Magnesium (dissolved)	μg/L				43000		41450		49300		42100		45700	
Manganese (dissolved)	μg/L				390		479		465		607		536	
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.24		0.27		0.23		0.25	
Sodium (dissolved)	μg/L				87000		80300		91600		73000		82300	
Nickel (dissolved)	μg/L		490		7.7		8.9		9.4		7.6		8.5	
Phosphorus (total)	μg/L				102		14		7		12		10	
Lead (dissolved)	μg/L	10	25	<	0.50		0.03		0.41	<	0.09		0.25	
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	
Selenium (dissolved)	μg/L	10	63	<	2.0		0.2		0.17		0.34		0.26	
Tin (dissolved)	μg/L			<	1.0		0.3		0.21		0.57		0.39	
Strontium (dissolved)	μg/L				745		830		918		954		936	
Titanium (dissolved)	μg/L			<	5.0		0.1		0.22		0.12		0.17	
Thallium (dissolved)	μg/L		510	<	0.05	<	0.005	<	0.005	<	0.005	<	0.005	
Uranium (dissolved)	μg/L	20	420		2200		2075		3600		10700		7150	
Vanadium (dissolved)	μg/L		250	<	0.50		0.33		0.63		0.33		0.48	
Zinc (dissolved)	μg/L		1100	<	17.0		5		3	<	2		3	
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02		0.74		0.38	
Radium-226	Bq/L	0.49		<	0.040		0.02		0.02		0.02		0.02	
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02	
Thorium-232	Bq/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02	
Field Parameters														
ODO % Sat	mg/L				_1		_1		34.4		23.0			
ORP	mV				_1		_1		134.2		140.8			
SPC	us/cm				_1		_1		786.0		1752.0			
Temperature	°C				_1		_1		10.230		11.1			
Turbidity	FNU				_1		_1		99.52		1.7			
pH	Units				_1		_1		6.92		6.73			
-	Determinal Common un	.,	Datable O			_	litiana dani		f		0			

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 127 de 159

Tableau 7: PH-93-9-II

		Crit	eria		PH-93-9-II									
		COPC	Table 3		2019	2020	2021							
Analysis	Units		(MECP)		Ave	rag		20	21/03/30	20	21/10/28	Α	verage	
pH	pH	6.5-8.5	6.5-9.0	1	7.51	Ī	7.33		7.67		7.28		7.48	
Alkalinity	mg/L as CaCO ₃				390		413		368		346		357	
Carbonate	mg/L as CaCO ₃				1.2	<	1.0	<	1.0	<	1.0	<	1.0	
Bicarbonate	mg/L as CaCO ₃				390		413		368		346		357	
Total Dissolved Solids	mg/L				448		542		471		609		540	
Fluoride	mg/L	1.5		<	0.10		0.09	<	0.06		0.10		0.08	
Total Organic Carbon	mg/L				3		1		2	<	1		2	
Dissolved Organic Carbon	mg/L				2		2		1		1		1	
Total Ammonia-N	mg/l				0.63	<	0.04	<	0.04	<	0.04	<	0.04	
Chloride	mg/L				25		82		200		200		200	
Sulphate	mg/L				6.4		12.3		11		12		12	
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3	
Nitrite (N)	mg/L			<	0.010	<	0.030	<	0.03	<	0.03	<	0.03	
Nitrate (N)	mg/L				0.54		3.75		2.32		4.82		3.57	
Nitrate + Nitrite (N)	mg/L				0.54		3.75		2.32		4.82		3.57	
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		0.03	<	0.01		0.02	
Hardness (dissolved)	mg/L as CaCO₃				410		488		492		289		391	
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05	
Aluminum (dissolved)	μg/L			<	5.0		25.0	<	1	<	1	<	1	
Arsenic (dissolved)	μg/L	25	1900	<	1.0		0.2	<	0.2	<	0.2	<	0.2	
Barium (dissolved)	μg/L	1000	29000		29		46		47		59		53	
Beryllium (dissolved)	μg/L		67	<	0.50		0.01	<	0.007	<	0.007	<	0.007	
Boron (dissolved)	μg/L	5000	45000		12		35		1460		34		747	
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009	
Calcium (dissolved)	μg/L				155000		174500		168000		138000		153000	
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.0		0.007		0.014		0.011	
Cobalt (dissolved)	μg/L		66	<	0.50		0.15		0.083		0.157		0.120	
Chromium (dissolved)	μg/L		810	<	5.0		0.8		0.45		1.45		0.95	
Copper (dissolved)	μg/L	1000	87	<	1.0		0.6		0.6		0.4		0.5	
Iron (dissolved)	μg/L			<	100		43		10	<	7		9	
Potassium (dissolved)	μg/L				580		879		1720		962		1341	
Magnesium (dissolved)	μg/L				5300		7200		6000		5690		5845	
Manganese (dissolved)	μg/L				12		2.4		0.08		0.07		0.08	
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.76		0.30		0.92		0.61	
Sodium (dissolved)	μg/L				8050		49350		41900		104000		72950	
Nickel (dissolved)	μg/L		490	<	1.0	<	0.1		0.3		0.3		0.3	
Phosphorus (total)	μg/L				320		12	<	3		3		3	
Lead (dissolved)	μg/L	10	25	<	0.50		0.02		0.01	<	0.09		0.05	
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	
Selenium (dissolved)	μg/L	10	63	<	2.0		0.8		0.81		0.65		0.73	
Tin (dissolved)	μg/L			<	1.0	<	0.1	<	0.06		0.08		0.07	
Strontium (dissolved)	μg/L				255		326		303		292		298	
Titanium (dissolved)	μg/L			<	5.0		2.1		0.45	<	0.05		0.25	
Thallium (dissolved)	μg/L		510	<	0.05	<	0.01	<	0.005	<	0.005	<	0.005	
Uranium (dissolved)	μg/L	20	420		3		8		11		6		8	
Vanadium (dissolved)	μg/L		250	<	0.50		0.35		0.28		0.26		0.27	
Zinc (dissolved)	μg/L		1100		8.5		3.5		4		2		3	
Lead-210	Bq/L	0.20		<	0.10	<	0.02	<	0.02	<	0.02	<	0.02	
Radium-226	Bq/L	0.49		<	0.040	<	0.010	<	0.01		0.02		0.02	
Thorium-230	Bq/L	0.65		<	0.070	<	0.020	<	0.02	<	0.02	<	0.02	
Thorium-232	Bq/L			<	0.060	<	0.020	٧	0.02	<	0.02	٧	0.02	
Field Parameters														
ODO % Sat	mg/L				_1		_1		81.1		66.1			
ORP	mV				_1		_1		114.0		141.4			
SPC	us/cm				<u>-</u> 1		_1		833.0		1136.0			
Temperature	°C				<u>-</u> 1		_1		5.846		13.5			
Turbidity	FNU				_1		_1		77.13		118.3			
pН	Units				_1		_1		7.56		7.09			
				_		_		_		_		_		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 128 de 159

Tableau 8: PH-93-10-I

Page 129 de 159

		Crit	eria	PH-93-10-I										
		COPC	Table 3		2019		2020	2021						
Analysis	Units		(MECP)		Ave	rag		20	21/03/22		21/11/18	Α	verage	
pH	pH	6.5-8.5	6.5-9.0		7.22	Ī	7.11		7.00		6.96		6.98	
Alkalinity	mg/L as CaCO ₃				620		588		548		491		520	
Carbonate	mg/L as CaCO ₃			<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	
Bicarbonate	mg/L as CaCO ₃				620		588		548		491		520	
Total Dissolved Solids	mg/L				898		842		900		845		873	
Fluoride	mg/L	1.5		<	0.10		0.07	<	0.06	<	0.06	<	0.06	
Total Organic Carbon	mg/L				13		11		11		7		9	
Dissolved Organic Carbon	mg/L				12		11		10		7		9	
Total Ammonia-N	mg/l				8.8		12.9		11.30		8.65		9.98	
Chloride	mg/L				150		155		210		240		225	
Sulphate	mg/L				15.0		25		21		21		21	
Bromide	mg/L			<	1.0		0.30	<	0.3	<	0.3	<	0.3	
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03	<	0.03	<	0.03	
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06	
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06	<	0.06	<	0.06	
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01	
Hardness (dissolved)	mg/L as CaCO ₃				575		689		615		605		610	
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	
Aluminum (dissolved)	μg/L			<	5.0		447	<	1		2		2	
Arsenic (dissolved)	μg/L	25	1900		17.5		24.3		21.9		19.1		20.5	
Barium (dissolved)	μg/L	1000	29000		500		623		511		477		494	
Beryllium (dissolved)	μg/L		67	<	0.50		0.019	<	0.007	<	0.007	<	0.007	
Boron (dissolved)	μg/L	5000	45000		560		683		410		346		378	
Bismuth (dissolved)	μg/L			<	1.0		0.010	<	0.007	<	0.010		0.009	
Calcium (dissolved)	μg/L				150000		171000		172000		158000		165000	
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.008	<	0.003	<	0.003	<	0.003	
Cobalt (dissolved)	μg/L		66		6.50		8.245		6.900		5.840		6.370	
Chromium (dissolved)	μg/L		810	<	5.0		1.40		0.43		0.28		0.36	
Copper (dissolved)	μg/L	1000	87	<	1.0		2.2		0.6		0.4		0.5	
Iron (dissolved)	μg/L				13000		14750		10900		8730		9815	
Potassium (dissolved)	μg/L				15000		18300		15800		12300		14050	
Magnesium (dissolved)	μg/L				46000		49150		45100		41000		43050	
Manganese (dissolved)	μg/L				615		745.0		768.00		774.00		771.00	
Molybdenum (dissolved)	μg/L		9200		0.64		0.73		0.67		0.72		0.70	
Sodium (dissolved)	μg/L				89500		82000		103000		92100		97550	
Nickel (dissolved)	μg/L		490		10.1		11.4		10.5		7.7		9.1	
Phosphorus (total)	μg/L				350		47		27		17		22	
Lead (dissolved)	μg/L	10	25	<	0.50		0.31		0.02	<	0.09		0.06	
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	
Selenium (dissolved)	μg/L	10	63	<	2.0		0.1		0.08		0.11		0.10	
Tin (dissolved)	μg/L			<	1.0		0.51		0.27		0.20		0.24	
Strontium (dissolved)	μg/L				645		787		735		677		706	
Titanium (dissolved)	μg/L			٧	5.0		34.17		0.27		0.14		0.21	
Thallium (dissolved)	μg/L		510	٧	0.05		0.027	٧	0.005		0.011		0.008	
Uranium (dissolved)	μg/L	20	420		7		5		4		3		3	
Vanadium (dissolved)	μg/L		250	<	0.50		1.49		0.47		0.39		0.43	
Zinc (dissolved)	μg/L		1100	٧	5.0		5		2		2		2	
Lead-210	Bq/L	0.20		٧	0.10	٧	0.02		0.03		0.04		0.04	
Radium-226	Bq/L	0.49		٧	0.040		0.03		0.01		0.02		0.02	
Thorium-230	Bq/L	0.65		٧	0.070	<	0.02	٧	0.02	<	0.02	٧	0.02	
Thorium-232	Bq/L			٧	0.060	<	0.02	٧	0.02	<	0.02	<	0.02	
Field Parameters														
ODO % Sat	mg/L				_1		_1		35.6		43.2			
ORP	mV				_1		_1		-84.3		-58.5			
SPC	us/cm				_1		- ¹		1469.0		1612.0			
Temperature	°C				_1		- ¹		10.370		10.1			
Turbidity	FNU				_1		_1		31.45		78.6			
pH	Units				_1		_1		7.01		6.83			
								_	-					

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 130 de 159

Tableau 9: PH-93-10-II

		Crit	eria		PH-93-10-II									
		COPC	Table 3		2019		2020			2021				
Analysis	Units		(MECP)		Ave	rac		20	21/03/22		21/11/18	Α	verage	
pH	На	6.5-8.5	6.5-9.0		7.17	T	6.99		6.89		6.86		6.88	
Alkalinity	mg/L as CaCO ₃				805	T	709		819		814		817	
Carbonate	mg/L as CaCO ₃				1.1	<	1.0	<	1.0	<	1.0	<	1.0	
Bicarbonate	mg/L as CaCO ₃				805	T	709		819		814		817	
Total Dissolved Solids	mg/L				1008	Н	893		1180		1010		1095	
Fluoride	mg/L	1.5		<	0.10	<	0.06	٧	0.06	<	0.06	<	0.06	
Total Organic Carbon	mg/L				7	H	6		8		7		8	
Dissolved Organic Carbon	mg/L				6	T	6		8		6		7	
Total Ammonia-N	mg/l				17.0	H	17.9		22.2		19.9		21.1	
Chloride	mg/L				71	H	70		100		100		100	
Sulphate	mg/L				66	H	62		70		72		71	
Bromide	mg/L			<	1.0	H	0.5		0.5		0.5		0.5	
Nitrite (N)	mg/L				0.018	Н	0.09	٧	0.03		0.03		0.03	
Nitrate (N)	mg/L				1.58	H	2.30		1.86		2.63		2.25	
Nitrate + Nitrite (N)	mg/L				1.59	H	2.39		1.86		2.66		2.26	
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		0.01	<	0.01		0.01	
Hardness (dissolved)	mg/L as CaCO ₃	-	0.23		705	Ė	830		777		795		786	
Silver (dissolved)	µg/L as cacc ₃		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05	
Aluminum (dissolved)	μg/L		1.5	· <	5	H	2	·	1	ì	2	_	2	
Arsenic (dissolved)	μg/L	25	1900	` <	1.0	H	0.6	ŕ	0.6		0.5		0.6	
Barium (dissolved)	μg/L	1000	29000	÷	175	H	168		205		209		207	
Beryllium (dissolved)	μg/L	1000	67	<	0.50	<	0.007	<	0.007	<	0.007	<	0.007	
Boron (dissolved)		5000	45000	_	2850	F	3290	_	3770	_	4190	`	3980	
Bismuth (dissolved)	μg/L	5000	45000	<	1.0	<	0.007	<	0.007	<	0.010	<	0.009	
Calcium (dissolved)	μg/L			_	210000	È	212500	_	238000	_	204000	`	221000	
Cadmium (dissolved)	μg/L	-	2.7	<		H				<	0.003		0.004	
Cobalt (dissolved)	μg/L	5	2.7	<	0.1	H	0.005		0.005	`				
Chromium (dissolved)	μg/L μg/L		66	<	3.15 5.0	H	2.71 0.90		3.40 0.69		2.86 0.52		3.13 0.61	
		1000	810	_		H							7.7	
Copper (dissolved)	μg/L μg/L	1000	87	<	4.5 100	H	7.5 18		8.5 7	<	6.8 7	<	7.7	
Iron (dissolved)				_	40000	H	39250		54400	_	42100	`	48250	
Potassium (dissolved) Magnesium (dissolved)	μg/L				44500	H	39550		44700		41500		43100	
	μg/L				485	H	424		620		546		583	
Manganese (dissolved)	μg/L		0200	<		H								
Molybdenum (dissolved)	μg/L		9200	_	0.50	H	0.17	_	0.20		0.22		0.21	
Sodium (dissolved)	μg/L		400		72000	H	75600	_	99600		86200		92900	
Nickel (dissolved)	μg/L		490		6.6	H	7.0		9.3		8.1		8.7	
Phosphorus (total)	μg/L	40		<	415	H	13		21	_	13		17	
Lead (dissolved)	μg/L	10	25	_	0.50	-	0.02	_	0.02	<	0.09	_	0.06	
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90	
Selenium (dissolved)	μg/L	10	63	<	2.0	H	0.5	_	0.26		0.32		0.29	
Tin (dissolved)	μg/L			<	1.0	H	0.30		0.34		0.29		0.32	
Strontium (dissolved)	μg/L				815	H	801		1050		901		976	
Titanium (dissolved)	μg/L			<	5.0	H	0.27	_	0.22		0.18		0.20	
Thallium (dissolved)	μg/L		510	<	0.05	H	0.020		0.019		0.020		0.020	
Uranium (dissolved)	μg/L	20	420		5450	H	4970		7170		6130		6650	
Vanadium (dissolved)	μg/L		250		0.72	H	0.87		0.76		0.71		0.74	
Zinc (dissolved)	μg/L		1100	۷	5	<	2	<	2	<	2	٧	2	
Lead-210	Bq/L	0.20		<	0.10	_	0.03	_	0.04	<	0.02	<	0.03	
Radium-226	Bq/L	0.49		<	0.040	_	0.02		0.02	<	0.01	<	0.02	
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02	
Thorium-232	Bq/L			<	0.060	<	0.02	<	0.02	<	0.02	<	0.02	
Field Parameters					1		1		40 -					
ODO % Sat	mg/L				_1		_1		42.8		30.7			
ORP	mV				_1		-1		7.2		-19.5			
SPC	us/cm				_1	L	_1		1647.0	_	1788.0			
Temperature	°C				_1		_1		10.391		10.3			
Turbidity	FNU				_1		_1		8.33		12.9			
pН	Units				_1		_1		6.86		6.65			

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 131 de 159

Tableau 10: PH-93-12-II

Page 132 de 159

		Criteria							PH-93-12-II						
		COPC	Table 3		2019		2020				2021				
Analysis	Units		(MECP)		Ave	rag		20	021/03/30	20	21/11/04	Α	verage		
pH	рН	6.5-8.5	6.5-9.0		7.39	Γ	7.07		7.05		7.05		7.05		
Alkalinity	mg/L as CaCO ₃				540		3210		3900		478		2189		
Carbonate	mg/L as CaCO ₃				1.3	<	1.0	<	1.0	<	1.0	<	1.0		
Bicarbonate	mg/L as CaCO ₃				540		3210		3900		478		2189		
Total Dissolved Solids	mg/L				655		633		694		655		675		
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06		
Total Organic Carbon	mg/L				6		3		3		3		3		
Dissolved Organic Carbon	mg/L				3		3		4		3		4		
Total Ammonia-N	mg/l				7.8		8.5		5.4		7.3		6.3		
Chloride	mg/L				57		52		63		57		60		
Sulphate	mg/L				33		31		34		33		34		
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	<	0.3		
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03	<	0.03	<	0.03		
Nitrate (N)	mg/L				1.18		1.12		1.91		1.78		1.85		
Nitrate + Nitrite (N)	mg/L				1.18		1.12		1.91		1.78		1.85		
Mercury (dissolved)	μq/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	<	0.01		
Hardness (dissolved)	mg/L as CaCO ₃				535		6795		12600		7770		10185		
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	٧	0.05	<	0.50		0.28		
Aluminum (dissolved)	μg/L				6	Н	70	<	1	<	10		6		
Arsenic (dissolved)	μg/L	25	1900	<	1.0	Н	0.3		0.2	<	2.0		1.1		
Barium (dissolved)	μg/L	1000	29000		165	Н	193		206		222		214		
Beryllium (dissolved)	μg/L		67	<	0.50	Н	0.008	<	0.007	<	0.007	<	0.007		
Boron (dissolved)	μg/L	5000	45000		785	Н	779		657		800		729		
Bismuth (dissolved)	μg/L	3000	.5000	<	1.0	<	0.007	<	0.007	<	0.100		0.054		
Calcium (dissolved)	μg/L			Ť	175000	Ė	194500	Ė	216000		189000		202500		
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	Н	0.012		0.004	<	0.030		0.017		
Cobalt (dissolved)	μg/L		66	Ė	0.65	Н	0.77		0.66	Ė	0.93		0.80		
Chromium (dissolved)	μg/L		810	<	5.0	Н	0.40		0.42	<	0.80		0.61		
Copper (dissolved)	μg/L	1000	87	Ė	1.5	Н	3.4		1.4	<	2.0		1.7		
Iron (dissolved)	μg/L	1000	0,	<	100	Н	81		10	<	70		40		
Potassium (dissolved)	μg/L			Ė	23500	Н	26900		22900	Ė	30700		26800		
Magnesium (dissolved)	μg/L				23500	H	23000		23100		25900		24500		
Manganese (dissolved)	μg/L				75	Н	69		74		123		99		
Molybdenum (dissolved)	μg/L		9200	<	0.50	Н	0.15		0.13	<	0.40		0.27		
Sodium (dissolved)	μg/L		3200	Ť	33500	Н	33250		33600		40500		37050		
Nickel (dissolved)	μg/L		490		2.2	Н	2.4		2.2		3.0		2.6		
Phosphorus (total)	μg/L		430		15500	Н	15	<	3	<	30		17		
Lead (dissolved)	μg/L	10	25	<	0.50	Н	0.09	<	0.01	<	0.90		0.46		
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90	<	0.90	<	0.90		
Selenium (dissolved)	μg/L	10	63	` <	2.0	È	0.2	_	0.25	<	0.40	_	0.33		
Tin (dissolved)	μg/L	10	03	` <	1.0	Н	0.25		0.15	<	0.60		0.38		
Strontium (dissolved)	μg/L			Ť	520	Н	612		624	È	628		626		
Titanium (dissolved)	μg/L			<	5.0	Н	4.13		0.30		2.20		1.25		
Thallium (dissolved)	μg/L		510	` '	0.05	Н	0.008	<	0.005	<	0.050		0.028		
Uranium (dissolved)	μg/L	20	420	Ť	3450	Н	3330	Ė	3210	È	4150		3680		
Vanadium (dissolved)	μg/L	20	250	<	0.50	Н	0.61		0.43		0.50		0.47		
Zinc (dissolved)	μg/L		1100	` '	12.0	Н	8		6	<	20		13		
Lead-210	Bq/L	0.20	1100	` ~	0.10	Н	0.02	<	0.02	È	0.13		0.08		
Radium-226	Bq/L	0.49		-	0.040	Н	0.02	÷	0.02		0.02		0.02		
Thorium-230	Bq/L	0.49		<i>'</i>	0.040	<	0.01	٧	0.02	<	0.02	<	0.02		
Thorium-232	Bq/L	0.03		<u>'</u>	0.070	<	0.02	/ \	0.02	<	0.02	<i>'</i>	0.02		
Field Parameters	D4/L			È	0.000	È	0.02	È	0.02	È	0.02	È	0.02		
ODO % Sat	mg/L				_1		_1		45.1		27.7				
ORP Sat	mg/L mV				1		_1		154.6		159.3				
SPC	us/cm				_1		_1		1034.0		1210.0				
	°C				1		_1		9.098		10.7				
Temperature Turbidity	FNU				_1		_1		4366.30						
					1	H	_1				2316.5				
pН	Units						- "		7.22		6.75				

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 133 de 159

Tableau 11: PH-95-I

		Crit	eria						PH-95-I		
		COPC	Table 3	H	2019		2020			2021	
Analysis	Units		(MECP)		Ave	rag		20	21/04/14	2021/07/12	Average
pH	pH	6.5-8.5	6.5-9.0		7.64	Ī	7.62		7.20	Decommissioned	7.20
Alkalinity	mg/L as CaCO ₃				335		290		339		339
Carbonate	mg/L as CaCO ₃				1.5	<	1.0	<	1.0		< 1.0
Bicarbonate	mg/L as CaCO ₃				330		290		339		339
Total Dissolved Solids	mg/L				360		315		343		343
Fluoride	mg/L	1.5		<	0.10		0.08	<	0.06		< 0.06
Total Organic Carbon	mg/L				5		2		2		2
Dissolved Organic Carbon	mg/L				2		2		2		2
Total Ammonia-N	mg/l				0.13	<	0.04	<	0.04		< 0.04
Chloride	mg/L				4		2		3		3
Sulphate	mg/L				6		4		9		9
Bromide	mg/L			<	1.0	<	0.3	<	0.3		< 0.3
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03		< 0.03
Nitrate (N)	mg/L			<	0.10	<	0.06	<	0.06		< 0.06
Nitrate + Nitrite (N)	mg/L			<	0.10	<	0.06	<	0.06		< 0.06
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01		0.01		0.01
Hardness (dissolved)	mg/L as CaCO ₃	_			345		363		1120		1120
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	<	0.05		< 0.05
Aluminum (dissolved)	μg/L			<	5	<	1		4		4
Arsenic (dissolved)	μg/L	25	1900	<	1.0	<	0.2	<	0.2		< 0.2
Barium (dissolved)	μg/L	1000	29000		16		13		17		17
Beryllium (dissolved)	μg/L		67	<	0.50	<	0.007	<	0.007		< 0.007
Boron (dissolved)	μg/L	5000	45000	Ė	19	Ė	21		29		29
Bismuth (dissolved)	μg/L			<	1.0	<	0.007		0.007		0.007
Calcium (dissolved)	µg/L				125000	H	109500		155000		155000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	<	0.003	<	0.003		< 0.003
Cobalt (dissolved)	μg/L		66	<	0.50		0.05		0.03		0.03
Chromium (dissolved)	μg/L		810	<	5.0		0.21		0.17		0.17
Copper (dissolved)	μg/L	1000	87		1.9	H	0.4		0.4		0.4
Iron (dissolved)	μg/L			<	100	<	7	<	7		< 7
Potassium (dissolved)	μg/L				725		694		882		882
Magnesium (dissolved)	μg/L				6100	H	4845		6780		6780
Manganese (dissolved)	μg/L				4		26		1		1
Molybdenum (dissolved)	μg/L		9200	<	0.50	H	0.24		0.96		0.96
Sodium (dissolved)	μg/L		3200		2200		1855		2500		2500
Nickel (dissolved)	μg/L		490	<	1.0	<	0.1		0.2		0.2
Phosphorus (total)	μg/L				2595		7		3		3
Lead (dissolved)	μg/L	10	25	<	0.50	H	0.03		0.01		0.01
Antimony (dissolved)	μg/L	6	20000	<	0.50	<	0.90	<	0.90		< 0.90
Selenium (dissolved)	μg/L	10	63	<	2.0		0.2		0.42		0.42
Tin (dissolved)	μg/L			<	1.0		0.09	<	0.06		< 0.06
Strontium (dissolved)	μg/L				185		167		220		220
Titanium (dissolved)	μg/L			<	5.0	<	0.05		0.45		0.45
Thallium (dissolved)	μg/L		510	<	0.05	<	0.005	<	0.005		< 0.005
Uranium (dissolved)	μg/L	20	420	Ė	9	Ė	8		8		8
Vanadium (dissolved)	μg/L		250	<	0.50		0.28		0.31		0.31
Zinc (dissolved)	μg/L		1100	` <	5.0		2	<	2		< 2
Lead-210	Bq/L	0.20	1100	· <	0.10	<	0.02	<u>'</u>	0.02		< 0.02
Radium-226	Bq/L	0.49		<	0.040	<	0.02	<	0.02		< 0.02
Thorium-230	Bq/L	0.65		` <	0.070	<	0.02	<u>`</u>	0.01		< 0.01
Thorium-232	Bq/L	0.03		<	0.060	<	0.02	<u>'</u>	0.02		< 0.02
Field Parameters				Ė	0.000	Ė	0.02	H	0.0L		3.02
ODO % Sat	mg/L				_1		_1		37.6		
ORP Sat	mV				_1				147.6		
SPC	us/cm				1		1		583.0		
Temperature	°C						<u>-</u> 1		5.753		
Turbidity	FNU				1		1		74.85		-
pH	Units				_1		_1		7.04		
ριι	Office						-		7.04		-

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the
Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 134 de 159

Tableau 12: PH-95-17-I

		Crit	Criteria					PH-95-17-I					
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	raç	ge	20	21/03/24	20	21/11/02	Α	verage
pН	pН	6.5-8.5	6.5-9.0		7.35		7.15		7.15		6.92		7.04
Alkalinity	mg/L as CaCO₃				805		947		878		816		847
Carbonate	mg/L as CaCO ₃				1.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				800		947		878		816		847
Total Dissolved Solids	mg/L				1023		842		963		1020		992
Fluoride	mg/L	1.5		٧	0.10	<	0.06	٧	0.06	<	0.06	٧	0.06
Total Organic Carbon	mg/L				7		6		6		7		7
Dissolved Organic Carbon	mg/L				6		6		6		6		6
Total Ammonia-N	mg/l				12.8		10.4		14.6		14.7		14.7
Chloride	mg/L				52		49		70		51		61
Sulphate	mg/L				104		45		44		42		43
Bromide	mg/L				1.1		0.4		0.6		0.4		0.5
Nitrite (N)	mg/L			٧	0.010	<	0.03	٧	0.03	<	0.03	٧	0.03
Nitrate (N)	mg/L			٧	0.10		0.15		0.14		0.17		0.16
Nitrate + Nitrite (N)	mg/L			<	0.10		0.15		0.14		0.17		0.16
Mercury (dissolved)	μg/L	1	0.29	٧	0.10	<	0.01	٧	0.01	<	0.01	٧	0.01
Hardness (dissolved)	mg/L as CaCO ₃				790		1585		766		1180		973
Silver (dissolved)	μg/L		1.5	٧	0.1	<	0.05	٧	0.05	<	0.05	٧	0.05
Aluminum (dissolved)	μg/L			<	5		4		4		3		4
Arsenic (dissolved)	μg/L	25	1900	٧	1.0		0.4		0.5		0.6		0.6
Barium (dissolved)	μg/L	1000	29000		240		191		238		228		233
Beryllium (dissolved)	μg/L		67	<	0.50		0.011		0.012		0.027		0.020
Boron (dissolved)	μg/L	5000	45000		1500		1340		1500		1760		1630
Bismuth (dissolved)	μg/L			<	1.0	<	0.007		0.008	<	0.010		0.009
Calcium (dissolved)	μg/L				260000		238000		244000		220000		232000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.009		0.013		0.057		0.035
Cobalt (dissolved)	μg/L		66		4.55		3.95		4.77		4.18		4.48
Chromium (dissolved)	μg/L		810	<	5.0		0.25		0.43		0.58		0.51
Copper (dissolved)	μg/L	1000	87		2.2		2.5		2.2		3.3		2.8
Iron (dissolved)	μg/L			<	100		33		65		14		40
Potassium (dissolved)	μg/L				32500		31650		34500		35600		35050
Magnesium (dissolved)	μg/L				33500		33150		38300		33500		35900
Manganese (dissolved)	μg/L				7550		6615		8190		7590		7890
Molybdenum (dissolved)	μg/L		9200		0.65		0.51		0.67		0.60		0.64
Sodium (dissolved)	μg/L				43500		40000		42800		46000		44400
Nickel (dissolved)	μg/L		490		5.3		4.7		5.7		5.0		5.4
Phosphorus (total)	μg/L				840		11		17		17		17
Lead (dissolved)	μg/L	10	25	٧	0.50	<	0.01		0.02	<	0.09	٧	0.06
Antimony (dissolved)	μg/L	6	20000	٧	0.50	<	0.90	٧	0.90	٧	0.90	٧	0.90
Selenium (dissolved)	μg/L	10	63	٧	2.0		0.2		0.24		0.51		0.38
Tin (dissolved)	μg/L			٧	1.0		0.27		0.24		0.33		0.29
Strontium (dissolved)	μg/L				930		935		1060		879		970
Titanium (dissolved)	μg/L			٧	5.0		0.43		0.37	<	0.05		0.21
Thallium (dissolved)	μg/L		510	٧	0.05		0.034		0.027		0.145		0.086
Uranium (dissolved)	μg/L	20	420		6150		9735		14200		10800		12500
Vanadium (dissolved)	μg/L		250	٧	0.50		0.50		0.53		0.71		0.62
Zinc (dissolved)	μg/L		1100	٧	5.0		5		2		10		6
Lead-210	Bq/L	0.20		<	0.10		0.05		0.06		0.64		0.35
Radium-226	Bq/L	0.49		٧	0.040		0.03		0.02		0.03		0.03
Thorium-230	Bq/L	0.65		٧	0.070	<	0.02	٧	0.02	<	0.02	٧	0.02
Thorium-232	Bq/L			٧	0.060	<	0.02	٧	0.02	<	0.02	<	0.02
Field Parameters													
ODO % Sat	mg/L				_ ¹		- 1		38.5		32.0		
ORP	mV				- ¹		- 1		-6.1		101.5		
SPC	us/cm				_ ¹		- 1		14.9		1565.0		
Temperature	°C				- ¹		_1		10.286		10.7		
Turbidity	FNU				_1		_1		589.53		229.6		
pH	Units				_1		_1		6.72		6.58		
CODO - Contominante ef l	Data atial Casa assu		Detekle C						Common Donat		_		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Page 135 de 159

Tableau 13: PH-95-17-II

		Crit	eria					PH	-95-17-II				
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rac	ie	20	21/03/24		21/11/02	Α	verage
pH	На	6.5-8.5	6.5-9.0		7.42		7.19		7.4		7.34		7.37
Alkalinity	mg/L as CaCO ₃				530		1015		655		519		587
Carbonate	mg/L as CaCO ₃				1.4	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				530		1015		655		519		587
Total Dissolved Solids	mg/L				558		546		529		517		523
Fluoride	mg/L	1.5		<	0.10	<	0.06	<	0.06	<	0.06	<	0.06
Total Organic Carbon	mg/L				7	t	5		4		4		4
Dissolved Organic Carbon	mg/L				5		6		4		4		4
Total Ammonia-N	mg/l				21.0		22.2		17.6		10.8		14.2
Chloride	mg/L				30		35		44		22		33
Sulphate	mg/L				7		6		6		4		5
Bromide	mg/L			<	1.0	<	0.3		0.3	<	0.3	<	0.3
Nitrite (N)	mg/L				0.011		0.11	<	0.03		0.12		0.08
Nitrate (N)	mg/L				0.77	t	1.12		1.22		1.25		1.24
Nitrate + Nitrite (N)	mg/L				0.77		1.22		1.22		1.37		1.30
Mercury (dissolved)	μg/L	1	0.29	<	0.10		0.01	<	0.01	<	0.01	<	0.01
Hardness (dissolved)	mg/L as CaCO₃	-	0.23		400	t	3996		404	Ė	547	Ė	476
Silver (dissolved)	µg/L as cacc ₃		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L		1.5	<	5	Ė	4		86	Ė	3	Ė	45
Arsenic (dissolved)	μg/L	25	1900		1.9	t	2.4		1.5		1.6		1.6
Barium (dissolved)	µg/L	1000	29000		225		192		170		104		137
Beryllium (dissolved)	μg/L	1000	67	<	0.50	H	0.009	<	0.007	<	0.007	<	0.007
Boron (dissolved)	μg/L	5000	45000	÷	1350	H	1150	÷	487	È	809	÷	648
Bismuth (dissolved)	μg/L	3000	43000	<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	µg/L			_	120000	È	131000	_	133000	È	114000		123500
Cadmium (dissolved)	μg/L	5	2.7	<	0.1		0.008	<	0.003		0.010		0.007
Cobalt (dissolved)	μg/L	3	66	_	4.10		4.90	_	3.08		3.66		3.37
Chromium (dissolved)	µg/L		810	<	5.0		0.53		0.27		0.35		0.31
Copper (dissolved)	μg/L	1000	87	<u>'</u>	1.0	┢	1.3		0.27	H	1.2		1.1
Iron (dissolved)	μg/L	1000	67	_	4000		3770		2120		1720		1920
Potassium (dissolved)	μg/L				36000		35850		27400		15800		21600
Magnesium (dissolved)	µg/L				22500	\vdash	21750		17800		15700		16750
Manganese (dissolved)	µg/L				735		706		825		584		705
Molybdenum (dissolved)	μg/L		9200	<	0.50		0.18		1.04		0.12		0.58
Sodium (dissolved)	μg/L		3200	÷	35500		36100		20300		24200		22250
Nickel (dissolved)	μg/L		490		4.8		4.9		1.5		2.2		1.9
Phosphorus (total)	μg/L		490		20850		22		9		14		1.9
Lead (dissolved)	µg/L	10	25	<	0.50	<	0.01	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L μg/L	6	20000	<i>'</i>	0.50	<	0.90	<i>'</i>	0.90	<	0.09	<	0.03
Selenium (dissolved)	μg/L	10	63	<i>'</i>	2.0	-	0.90	`	0.90	<u> </u>	0.90	`	0.90
Tin (dissolved)	μg/L	10	03	<i>'</i>	1.0		0.26		0.21		0.20		0.21
Strontium (dissolved)	μg/L			_	490		506		496		335		416
Titanium (dissolved)	µg/L			<	5.0	┢	0.39		0.09	<	0.05		0.07
Thallium (dissolved)	µg/L		510	<i>'</i>	0.05		0.078		0.09	È	0.03		0.07
Uranium (dissolved)	μg/L	20	420	_	31		99		5		4		5
` /		20			0.79								1.00
Vanadium (dissolved) Zinc (dissolved)	μg/L		250 1100	<	5.0	<	1.09	<	1.16	<	0.83	<	2
Lead-210	μg/L	0.20	1100	<u> </u>	0.10	<	0.02	<u> </u>	0.02	<	0.02	<u> </u>	0.02
	Bq/L			<i>/</i>		È		<i>'</i>		È		_	
Radium-226	Bq/L	0.49		-	0.040	_	0.02	_	0.01		0.03	_	0.02
Thorium-230	Bq/L	0.65		<	0.070	<	0.02	<	0.02	<	0.02	<	0.02
Thorium-232	Bq/L			È	0.060	<	0.02	È	0.02	`	0.02	È	0.02
Field Parameters	ma/l				_1		_1		28.1		65.2		
ODO % Sat	mg/L				_1	H							
ORP	mV						1		-33.5		21.2		
SPC	us/cm				_1		_1		1050.0		740.0		
Temperature	°C						1		9.821		10.8		
Turbidity	FNU								815.79		861.3		
pH	Units						_·	Ц.	6.87		6.95		

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

^{-- -} No data.

Error! No text of specified style in document.

UTILISATION NON RESTREINTE

Error! No text of specified style in document.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 136 de 159

Tableau 14: PH-95-18

Page 137 de 159

		Crit	eria		PH-95-18	
		COPC	Table 3	2019	2020	2021
Analysis	Units		(MECP)	Average	Well Da	maged
pH	pН	6.5-8.5	6.5-9.0	7.14		
Alkalinity	mg/L as CaCO ₃			870		
Carbonate	mg/L as CaCO ₃			1.1		
Bicarbonate	mg/L as CaCO ₃			860		
Total Dissolved Solids	mg/L			1080		
Fluoride	mg/L	1.5		< 0.10		
Total Organic Carbon	mg/L			11.0		
Dissolved Organic Carbon	mg/L			8.8		
Total Ammonia-N	mg/l			40.00		
Chloride	mg/L			46		
Sulphate	mg/L			120.0		
Bromide	mg/L			< 1.0		
Nitrite (N)	mg/L			< 0.010		
Nitrate (N)	mg/L			0.59		
Nitrate + Nitrite (N)	mg/L			0.59		
Mercury (dissolved)	μg/L	1	0.29	< 0.10		
Hardness (dissolved)	mg/L as CaCO₃			710		
Silver (dissolved)	μg/L		1.5	< 0.1		
Aluminum (dissolved)	μg/L			250.0		
Arsenic (dissolved)	μg/L	25	1900	< 1.0		
Barium (dissolved)	μg/L	1000	29000	160		
Beryllium (dissolved)	μg/L		67	< 0.50		
Boron (dissolved)	μg/L	5000	45000	2000		
Bismuth (dissolved)	μg/L			< 1.0		
Calcium (dissolved)	μg/L			220000		
Cadmium (dissolved)	μg/L	5	2.7	< 0.1		
Cobalt (dissolved)	μg/L		66	18.00		
Chromium (dissolved)	μg/L		810	< 5.0		
Copper (dissolved)	μg/L	1000	87	18.0		
Iron (dissolved)	μg/L			430		
Potassium (dissolved)	μg/L			61000		
Magnesium (dissolved)	μg/L			42000		
Manganese (dissolved)	μg/L			5700		
Molybdenum (dissolved)	μg/L		9200	0.57		
Sodium (dissolved)	μg/L			48000		
Nickel (dissolved)	μg/L		490	15.0		
Phosphorus (total)	μg/L			1800		
Lead (dissolved)	μg/L	10	25	0.51		
Antimony (dissolved)	μg/L	6	20000	< 0.50		
Selenium (dissolved)	μg/L	10	63	< 2.0		
Tin (dissolved)	μg/L			< 1.0		
Strontium (dissolved)	μg/L			1100		
Titanium (dissolved)	μg/L			11.0		
Thallium (dissolved)	μg/L		510	0.27		
Uranium (dissolved)	μg/L	20	420	5000		
Vanadium (dissolved)	μg/L		250	1.40		
Zinc (dissolved)	μg/L		1100	5.2		
Lead-210	Bq/L	0.20		< 0.10		
Radium-226	Bq/L	0.49		< 0.040		
Thorium-230	Bq/L	0.65		< 0.070		
Thorium-232	Bq/L			< 0.060		
Field Parameters						
ODO % Sat	mg/L			_1		
ORP	mV			_1		
SPC	us/cm			_1		
Temperature	°C			_1		
Turbidity	FNU			_1		
pH	Units			_1		
CODC - Contominante of I	Potential Consorr		. Dotoblo C			

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the Environment and Climate Change, 2011.

Bold values indicate an exceedance of the COPC or Table 3 criteria

¹ Field parameters included for current sampling year only.

-- - No data.

Tableau 15: PH-M-19

Page 138 de 159

		Criteria			PH-M-19								
		COPC	Table 3		2019		2020				2021		
Analysis	Units		(MECP)		Ave	rag		20	21/03/31	20	21/11/25	Α	verage
pH	pН	6.5-8.5	6.5-9.0		7.85	Γ	7.57		7.55	Г	7.4		7.48
Alkalinity	mg/L as CaCO ₃				370		363		361		587		474
Carbonate	mg/L as CaCO ₃				2.8	<	1.0	<	1.0	<	1.0	<	1.0
Bicarbonate	mg/L as CaCO ₃				365		363		361		587		474
Total Dissolved Solids	mg/L				820		737		911		760		836
Fluoride	mg/L	1.5		<	0.10		0.06	<	0.06	<	0.06	٧	0.06
Total Organic Carbon	mg/L				3		2		1		1		1
Dissolved Organic Carbon	mg/L				2		2		2		2		2
Total Ammonia-N	mg/l				0.1	<	0.04		0.05	<	0.04		0.05
Chloride	mg/L				250		235		380		290		335
Sulphate	mg/L				11		9		10		10		10
Bromide	mg/L			<	1.0	<	0.3	<	0.3	<	0.3	٧	0.3
Nitrite (N)	mg/L			<	0.010	<	0.03	<	0.03	<	0.03	٧	0.03
Nitrate (N)	mg/L				1.11		0.93		1.02		0.64		0.83
Nitrate + Nitrite (N)	mg/L				1.11		0.93		1.02		0.64		0.83
Mercury (dissolved)	μg/L	1	0.29	<	0.10	<	0.01	<	0.01	<	0.01	٧	0.01
Hardness (dissolved)	mg/L as CaCO₃				365		676		491		347		419
Silver (dissolved)	μg/L		1.5	<	0.1	<	0.05	<	0.05	<	0.05	<	0.05
Aluminum (dissolved)	μg/L			<	5		6	<	1	<	1	<	1
Arsenic (dissolved)	μg/L	25	1900		310		379		370		339		355
Barium (dissolved)	μg/L	1000	29000		50		48		63		50		56
Beryllium (dissolved)	μg/L		67	<	0.50		0.017	<	0.007	<	0.007	٧	0.007
Boron (dissolved)	μg/L	5000	45000		31		33		29		24		27
Bismuth (dissolved)	μg/L			<	1.0	<	0.007	<	0.007	<	0.010		0.009
Calcium (dissolved)	μg/L				115000	m	110000		154000	Т	116000		135000
Cadmium (dissolved)	μg/L	5	2.7	<	0.1	H	0.004		0.006	Н	0.008		0.007
Cobalt (dissolved)	µg/L		66	<	0.50	Н	0.11		0.10	Н	0.14		0.12
Chromium (dissolved)	µg/L		810	<	5.0	Н	0.65		0.74	Н	0.32		0.53
Copper (dissolved)	μg/L	1000	87	<	1.0	H	0.6		0.4	H	0.5		0.5
Iron (dissolved)	μg/L	1000		<	100	Н	10		22	<	7		15
Potassium (dissolved)	μg/L				935	H	1055		1150		913		1032
Magnesium (dissolved)	μg/L				16000	H	12550		18000	Н	16300		17150
Manganese (dissolved)	μg/L				2	Н	5		1	Н	5		3
Molybdenum (dissolved)	μg/L		9200		0.73	H	0.91		0.82	Н	0.89		0.86
Sodium (dissolved)	μg/L				170000	H	164000		218000	Н	197000		207500
Nickel (dissolved)	μg/L		490	<	1.0	H	0.3		0.1		0.2		0.2
Phosphorus (total)	μg/L				330		28		7		13		10
Lead (dissolved)	μg/L	10	25	<	0.50		0.03	<	0.01	<	0.09		0.05
Antimony (dissolved)	μg/L	6	20000		3.20		2.70		3.80		3.60		3.70
Selenium (dissolved)	µg/L	10	63	<	2.0		1.5		1.70		1.10		1.40
Tin (dissolved)	µg/L			<	1.0	<	0.06	<	0.06	<	0.06	٧	0.06
Strontium (dissolved)	µg/L			Ė	375	Ė	334	Ė	456	Ė	371	Ť	414
Titanium (dissolved)	μg/L			<	5.0	Н	0.49		0.15		0.11		0.13
Thallium (dissolved)	μg/L		510	<	0.05	<	0.005	<	0.005	<	0.005	<	0.005
Uranium (dissolved)	μg/L	20	420	Ė	225	Ė	187		229	Ė	178	Ė	204
Vanadium (dissolved)	μg/L		250		4.10	Н	5.19		6.60	Н	4.16		5.38
Zinc (dissolved)	µg/L		1100	<	5.0	<	2	<	2	<	2	<	2
Lead-210	Bg/L	0.20	1100	<	0.10	<	0.02	<	0.02	<	0.02	<	0.02
Radium-226	Bq/L	0.49		<	0.040	<	0.02	<	0.02	<	0.02	` '	0.02
Thorium-230	Bq/L	0.65		` <	0.070	<	0.02	` '	0.01	<	0.02	· ·	0.02
Thorium-232	Bq/L	0.03		` <	0.060	<	0.02	` '	0.02	<	0.02	· <	0.02
Field Parameters	- 4' -			Ħ	0.000	Ė	0.02		0.02	Ė	0.02	H	0.02
ODO % Sat	mg/L			H	_1		_1		_2		_2	H	
ORP	mV			H	_1		_1		_2		_2	H	
SPC	us/cm					Н	1		_2		_2		
Temperature	°C					Н	_1		_2		_2		
Turbidity	FNU					Н	1		_2		_2		
pH	Units						_1		_2		_2		
Pri	Oi IIIO			_		_				_		_	

COPC = Contaminants of Potential Concern criteria for Potable Groundwater Conditions derived from Port Hope Screening Report.

Table 3 = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Ontario Ministry of the

Environment and Climate Change, 2011.

¹ Field parameters included for current sampling year only.

² Insufficient volume of groundwater for field parameters

^{-- -} No data.

TABLEAU RÉCAPITULATIF DU PROGRAMME DE SUIVI DE L'EE Annexe D

Tableau 16 : Portée des effets biophysiques - plan de surveillance et de suivi de l'EE, 2021

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Environnement atmosphériqu	ie					
Environnement atmosphériqu Qualité de l'air La moyenne sur 24 heures des critères de qualité de l'air ambiant (CQAA) sera dépassée pour l'arsenic et le cobalt à l'occasion dans des endroits hors site, y compris dans des endroits où se trouvent des récepteurs publics. Les particules totales en suspension (PM10, PM2,5 et NO2) dépasseront les critères de qualité de l'air ambiant sur 24 heures dans certains endroits hors site.	À l'intérieur de l'IGLTD, réduire de 200 m à 50 m les distances de déplacement des équipements distribuant les contaminants déchargés. Installer une barrière de type clôture ou une autre barrière mobile à certains endroits ciblés. Conformité de l'équipement de construction au Règlement sur les émissions des moteurs hors route à allumage par compression pour une utilisation dans les zones d'urbanisation plus dense, lorsque cela est possible.	Aucun effet négatif résiduel.	Conformité de l'équipement de construction au Règlement sur les émissions des moteurs hors route à allumage par compression dans le cadre des activités de l'IGLTD-PH.	Vérifier la mise en œuvre des mesures d'atténuation. Surveiller l'arsenic et le cobalt aux endroits hors site, y compris là où se trouvent les récepteurs publics. Comparer les mesures de concentrations aux prévisions. Surveiller les niveaux de PM _{2,5} dans les endroits hors site. Comparez les niveaux mesurés de PM _{2,5} pour mettre en corrélation les relations prévues en matière de qualité de l'air entre les PM ₁₀ et les PM _{2,5} , et les relations entre les NO ₂ et les PM _{2,5} .	En 2021, on n'a enregistré aucun dépassement des critères de qualité de l'air ambiant (AAQC) [1] pour l'arsenic ou le cobalt. Le Conseil canadien des ministres de l'Environnement (CCME) a adopté le système de gestion de la qualité de l'air [2]. Les Normes canadiennes de qualité de l'air ambiant (CAAQS) relatives aux particules fines (PM _{2,5}) sont incluses et remplacent les normes pancanadiennes élaborées en 2000. Une valeur de 27 μg/m3 est utilisée pour les PM _{2,5} en 2020 (moyenne du 98 ^e percentile sur trois ans) et n'a pas été dépassée en 2021. Comme décrit dans le plan de surveillance environnementale et biophysique de Port Hope [3], le respect de ce critère permettra également de protéger les effets potentiels des PM ₁₀ et du NO ₂ .	La surveillance de la qualité de l'air a été effectuée tout au long de l'année 2021 sur le site de l'installation de gestion à long terme des déchets de Port Hope (IGLTD-PH). L'IGLTD-PH a été fermée pendant les Fêtes, du 24 décembre 2021au 4 janvier 2022. La limite supérieure de 120 μg/m³ pour le total des particules en suspension, comme défini dans les exigences et le plan de gestion de la poussière [4] n'a pas été dépassée en 2021. Les CQAA (PM _{2,5} de 27 μg/m³) (98e percentile faisant l'objet d'une moyenne sur 3 ans) n'ont pas été dépassés en 2021. L'échantillon contenant le poids net le plus élevé de PTS recueilli chaque semaine à chacun des postes de surveillance a fait l'objet d'une analyse supplémentaire afin de déterminer la concentration de métaux et de

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
						radionucléides dans la poussière en suspension. Les concentrations d'arsenic et de cobalt n'ont pas dépassé les AAQC [1] sur 24 heures en 2021. Les résultats de l'analyse des radionucléides sont discutés dans la section Effets radiologiques - Radioactivité particulaire.
Codeurs Les lignes directrices du MEO en matière d'odeurs peuvent être dépassées sur les propriétés situées près de la décharge de la promenade Highland et du port de Port Hope.	On peut ajouter de la chaux aux déchets pour neutraliser les odeurs liées au soufre; des agents moussants peuvent minimiser les odeurs de surface; des vaporisateurs neutralisant les mauvaises odeurs peuvent être utilisés.	Aucun effet négatif résiduel.	Les travaux de dragage ont commencé en juillet 2021 dans le port de Port Hope. Pendant les travaux de dragage, deux fois par jour, un consultant indépendant chargé de la surveillance des odeurs a effectué des mesures d'odeurs hors site, dans le sens du vent et dans le sens contraire. Selon les relevés des récepteurs installés hors site par rapport au port de Port Hope, le seuil de 5 D / T n'a jamais été atteint pendant les activités de dragage. L'assainissement de la décharge de la promenade Highland doit commencer en 2022.	Pendant les phases de préconstruction et de construction, effectuer une analyse des odeurs sur les sites de la décharge de la promenade Highland et du port de Port Hope. Mettre en œuvre des mesures d'atténuation si l'analyse des odeurs indique que c'est nécessaire.	En 2021, une entreprise tierce chargée de la surveillance des odeurs a effectué une surveillance des odeurs avant et pendant la phase de construction pour soutenir les activités de dragage dans le port de Port Hope. La surveillance des odeurs avant la construction a été réalisée en juin 2021 avant le début du dragage en juillet 2021. La surveillance des odeurs pendant la phase de construction a été effectuée deux fois par jour à l'extérieur du site, en amont et en aval du vent, pendant les travaux de dragage en 2021.	Une entreprise tierce chargée de la surveillance des odeurs a été recrutée en 2020 pour assurer la surveillance pendant les travaux de dragage dans le port de Port Hope. La surveillance des odeurs a commencé en juin 2021. L'assainissement de la décharge de la promenade Highland doit commencer en 2022.

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Les niveaux de bruit augmenteront de 12 dBA, pour atteindre 63 dBA, pour les résidents habitant à côté de l'IGLTD, pendant la construction et le développement; de 13 dBA, pour atteindre 67 dBA, pour les résidents habitant à côté du ravin Alexander; et de 12 dBA, pour atteindre 61 dBA, pour les résidents habitant le long de l'itinéraire de transport de la rue Strachan.	Les heures de travail seront conformes au règlement municipal n° 30/2002 de Port Hope, qui interdit la construction entre 23 h et 7 h du matin. Sur les sites d'assainissement de petite et moyenne envergure situés dans des zones résidentielles, les activités seront limitées aux heures de clarté et se termineront à 19 h 00. L'équipement de construction sera conforme aux normes d'émission décrites dans le document NPC-115 du règlement municipal type de l'Ontario sur le contrôle du bruit. Les camions et autres équipements seront équipés de silencieux. Les bruits de hayon seront évités. Les camions vides devront réduire leur vitesse sur les chantiers de construction et sur les routes locales pour éviter le bruit excessif des caisses et des plateaux de chargement.	La pollution sonore a une incidence sur les récepteurs locaux.	Conforme au règlement no 30/2002 de Port Hope et à la norme de l'Organisation mondiale de la santé de 70 dBA sur une période de 24 heures [5]. Les camions et autres équipements seront équipés de silencieux. Le claquement des hayons a été évité. Des éléments physiques et opérationnels ont été intégrés dans la conception de la nouvelle route d'accès : construction d'une berme et installation de feux de circulation.	Vérifier la mise en œuvre des mesures d'atténuation. Mesurer les niveaux de bruit à l'IGLTD, y compris à l'intersection de la route d'accès proposée [maintenant construite] et du chemin Toronto pendant la construction; au ravin Alexander pendant la remise en état; et le long de l'itinéraire de transport de la rue Strachan, afin de vérifier l'exactitude des prévisions et l'efficacité des mesures d'atténuation. Surveiller les niveaux de bruit pour s'assurer qu'ils sont conformes aux lois et règlements appropriés régissant les heures de travail et les niveaux de bruit.	La surveillance du bruit a été effectuée autour de l'IGLTD en 2021. Si l'on compare les résultats de 2021 à ceux de 2015, avant le début de la construction de l'EW3a (lorsque les niveaux d'activité autour du site étaient comparativement faibles), on constate que les résultats de 2021 sont similaires à ceux de 2020, sans augmentation notable des résultats. Toutes les valeurs sont inférieures à la fourchette prévue de 12 dBA et à la directive de l'Organisation mondiale de la santé sur le niveau de bruit communautaire, établi à 70 dBA sur une période de 24 heures [5]. Les itinéraires de transport du nord, du sud et du centre ont également fait l'objet d'une surveillance en 2021. La surveillance le long des itinéraires de transport a montré une augmentation faible ou nulle par rapport à la surveillance de base qui a eu lieu avant les activités d'assainissement.	La mise en œuvre des mesures d'atténuation est vérifiée lors des inspections de conformité. Les travaux ont été programmés en conformité avec les règlements municipaux. En 2021, quatre grandes campagnes de surveillance (janvier, avril, août et novembre) ont été réalisées pour la surveillance du bruit à l'IGLTD-PH. En 2021, les résultats sont similaires à ceux de 2020, sans augmentation marquée. Les itinéraires de transport du nord, du sud et du centre ont également fait l'objet d'une surveillance en 2021. Veuillez noter que la surveillance de l'itinéraire de transport central comprend le site de consolidation de la rue Strachan. Les travaux d'assainissement ont commencé sur le site de regroupement de la rue Strachan en 2021, le 28 octobre. La surveillance le long des itinéraires de transport a montré une augmentation faible ou nulle par rapport à la surveillance de base qui a

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
	Des palissades de chantier seront installées là où c'est possible. Élaborer et mettre en œuvre un plan d'atténuation du bruit à l'intersection de la nouvelle route d'accès et du chemin Toronto, comprenant des éléments physiques (p. ex., des bermes) et opérationnels (p. ex., des protocoles de transport).					eu lieu avant les activités d'assainissement.
Radiologique - radon Les concentrations moyennes annuelles de radon, sous le vent de l'installation de gestion à long terme des déchets radioactifs pendant la construction et l'aménagement, devraient être de 25,3 Bq/m³. La voie d'exposition au radon sera éliminée.	Couvrir les piles de stockage et les zones exposées pendant la nuit et les fins de semaine. Appliquer des dépoussiérants. Restreindre ou cesser le travail en cas de vent fort. Réduire au minimum la surface de travail exposée. Revégétalisation des cellules et des zones d'excavation dès que les travaux sont terminés. Modifier les évents de sortie de la tuyauterie de méthane pour atténuer le radon	Aucun effet négatif résiduel.	Des dépoussiérants approuvés par les LNC sont utilisés. Les travaux ont été limités ou interrompus si les vents étaient forts. Les zones de travail devraient être revégétalisées d'ici la fin du projet de l'IGLTD-PH. Les travaux d'assainissement ont débuté en décembre 2017 et comprenaient la pile d'arsenic et le sol marginalement contaminé.	À la fin de chaque journée de travail, les stocks et les zones exposées faisaient l'objet d'une pulvérisation. Des dépoussiérants approuvés par les LNC sont utilisés. Les travaux ont été limités ou interrompus si les vents étaient forts. Les zones de travail devraient être revégétalisées d'ici la fin du projet de l'IGLTD-PH.	Les mesures de radon sont prises mensuellement à la ligne de clôture, ce qui permet d'obtenir des résultats représentatifs de l'exposition au radon pour une personne qui se trouve à proximité du monticule. Les mesures effectuées se situent à la limite de la clôture autour du périmètre. À la limite de la clôture, les mesures moyennes du radon varient entre 22 Bq/m³ et 118 Bq/m³.	Le gaz radon et les produits de filiation du radon ont fait l'objet d'une surveillance mensuelle de routine à l'IGLTD pendant l'année civile 2021.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
	émanant de la cellule 3 de l'IGLTD.					
Radiologie - radioactivité particulaire Les niveaux prévus pour les radionucléides suivants sont inférieurs aux niveaux de référence de Santé Canada : ²²⁶ Ra (0,000049 Bq/m³, comparativement à 0,05 Bq/m³); 230Th (0,00042 Bq/m³, comparativement à 0,01 Bq/m³), 232Th (0,000057 μg/m³, comparativement à 0,006 Bq/m³); et uranium (0,0018 μg/m³, comparativement à 4,07 μg/m³).	Mettre en place un système d'arrosage, pour contrôler la poussière sur les routes non pavées et les zones d'excavation. Mettre en place un système de balayage par aspiration et de rinçage à l'eau sur les routes pavées.	Aucun effet négatif résiduel.	Utilisation de camions d'arrosage et de techniques de pulvérisation dans les zones d'excavation.	Vérifier la mise en œuvre des mesures d'atténuation. Mesurer les niveaux de ²²⁶ Ra, ²³⁰ Th, ²³² Th et d'uranium sur les sites de travail et le long des routes de transport, afin de vérifier les prédictions de modélisation.	En 2021, les filtres PTS des échantillonneurs d'air à haut volume ont été envoyés au laboratoire afin de procéder à une analyse plus poussée. En 2021, le radium-226 et le thorium-232 ont dépassé les valeurs prévues dans certains filtres; toutefois, ils sont restés bien en deçà des valeurs de référence de Santé Canada. Il convient de noter que les dépassements des valeurs prédites semblent être liés aux limites de détection des laboratoires (les résultats non calculés des laboratoires étaient inférieurs à la limite de détection pour le radium 226 et le thorium 232). Les valeurs prédites étaient basées sur la modélisation des concentrations de PM10. En comparant la radioactivité particulaire sur les filtres PTS aux prédictions modélisées, on adopte une approche conservatrice.	Parmi les échantillons recueillis chaque semaine à chacun des postes de surveillance, celui qui contenait le poids net le plus élevé de PTS a fait l'objet d'une analyse supplémentaire afin d'évaluer la concentration de contaminants potentiellement préoccupants qui se trouvait dans la poussière en suspension.
Milieu aquatique	l					
Qualité des sédiments	Effectuer des tests de	Aucun effet négatif résiduel.	La restauration est toujours	L'assainissement du marais	La restauration est toujours	La restauration est toujours
(marais de Sculthorpe)	toxicité des sédiments pour	_	en cours de discussion avec	de Sculthorpe n'est pas	en cours de discussion avec	en cours de discussion avec
Si des travaux	confirmer la nécessité d'une		la municipalité de Port Hope.	nécessaire pour le moment.	la municipalité de Port Hope.	la municipalité de Port Hope.
d'assainissement sont	restauration ou cerner plus		Une évaluation des risques	Les mesures de suivi ci-après	Une évaluation des risques	Une évaluation des risques

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
effectués dans le marais de Sculthorpe, des sédiments vont être enlevés, ce qui devrait réduire temporairement la productivité des invertébrés. (Voir aussi la section sur les composantes du milieu terrestre)	précisément la zone, l'étendue ou la portée du travail à faire concernant l'élimination de sédiments. Élaborer un plan de protection et de restauration du marais, qui pourrait comprendre le remplacement de la matière organique grossière et restaurer la végétation des berges.		propres au site sera effectuée avant toute activité d'assainissement.	concernant le marais de Sculthorpe ne sont pas intégrées à ce plan : surveiller le rétablissement des invertébrés benthiques et des communautés aquatiques par rapport aux échéances prévues.	propres au site sera effectuée avant toute activité d'assainissement.	propres au site sera effectuée avant toute activité d'assainissement.
Qualité des eaux de surface, radiologique Les concentrations d'arsenic et d'uranium diminueront de 78 à 88 % dans le ruisseau de la promenade Highland Sud, et le ruisseau Brewery. Les concentrations d'uranium et de ²²⁶ Ra diminueront de façon similaire dans le ruisseau Alexander. On s'attend à ce que les concentrations de ⁻²²⁶ Ra et d'uranium augmentent dans la zone située entre le port et la rivière Ganaraska, pendant le dragage du port, mais qu'elles restent inférieures aux lignes directrices provinciales sur la qualité de l'eau (OPQE).	Les mesures d'atténuation comprennent les caractéristiques de conception (p. ex., la couverture à faible perméabilité de l'IGLTD et les barrières réactives perméables installées dans le ravin de la promenade Highland Sud), d'exploitation et de gestion (p. ex., la gestion des eaux pluviales) de la proposition de projet. La conception détaillée (PHP-PHH-N-031) comprend un atténuateur de vagues temporaire et l'utilisation d'un rideau de turbidité pour la construction de l'atténuateur de vagues. Un plan d'intervention d'urgence sera mis en place		Un rideau temporaire d'atténuation des vagues sera installé pendant les travaux de construction. Un plan d'urgence en cas de déversement a été élaboré pour faire face aux déversements inattendus de carburants et de lubrifiants. Des équipements de contrôle et de nettoyage des déversements sont fournis sur tous les lieux de travail. Des structures de contrôle de l'érosion et des sédiments sont en place et font l'objet d'une surveillance et d'un entretien.	Mesurer les concentrations d'arsenic et d'uranium dans le ruisseau de la promenade Highland Sud et le ruisseau Brewery; les concentrations d'uranium et de ²²⁶ Ra dans le ruisseau Alexander; les concentrations de ²²⁶ Ra et d'uranium dans la zone située entre le port et la rivière Ganaraska pendant le dragage du port; et les concentrations d'uranium dans les eaux souterraines et les eaux de surface en aval dans la zone de l'IGLTD, afin de vérifier l'exactitude des prévisions. Examiner le plan d'intervention d'urgence et le plan d'urgence en cas de déversement et exiger des révisions au besoin , jusqu'à	Aucun effet négatif résiduel sur les eaux de surface. Il n'y a pas eu de diminution observable des concentrations d'uranium dans le ruisseau Brand (en aval de l'IGLTD). Cela ne devrait pas se produire tant que le projet n'aura pas évolué et que les déchets n'auront pas été assainis. Dans le port de Port Hope, on a observé que les concentrations d'uranium dépassaient les PWQO [15] pendant les travaux de dragage. Les prévisions de l'EE reposent sur des données théoriques prévues dans le modèle. Les conditions réelles ont changé pendant les travaux de dragage, car il y a des apports quotidiens d'eau	En 2013, avant les travaux de construction, on a réalisé une surveillance des eaux de surface du ruisseau du ravin de la promenade Highland Sud, du ruisseau Brewery et du ruisseau Alexander. Un échantillonnage de référence supplémentaire a eu lieu en 2021, en prévision du début de la construction sur divers sites d'assainissement. Des échantillons d'eau de surface ont été prélevés lors des activités de dragage du port de Port Hope. En juin et en novembre 2021, les concentrations d'uranium étaient supérieures aux PWQO [6] et aux CWQG [7] à PHH-2. La surveillance des eaux de surface en aval de l'IGLTD (y

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Dans le secteur qui est en aval de l'IGLTD, les concentrations d'uranium dans les eaux souterraines et les eaux de surface devraient diminuer de 63 %.	pour parer aux événements imprévus. Un plan d'urgence en cas de déversement sera élaboré pour faire face aux déversements imprévus de carburants et de lubrifiants. Des équipements de contrôle et de nettoyage des déversements seront fournis sur tous les lieux de travail. Des structures de contrôle de l'érosion et des sédiments sont en place et font l'objet d'une surveillance et d'un entretien réguliers.			ce que les plans soient jugés acceptables. Vérifier la présence d'équipement de contrôle et de nettoyage des déversements sur tous les chantiers. Vérifier la présence de structures de contrôle de l'érosion et des sédiments, et examiner le protocole d'inspection et d'entretien.	dans l'arrière-port. Les conditions étant différentes, il a fallu modifier les mesures d'atténuation proposées dans l'EE. Les LNC ont mobilisé les autorités responsables pour assurer la protection du lac Ontario et de la rivière Ganaraska. Cette démarche a débouché sur la création d'un solide programme de surveillance visant à assurer la protection de l'environnement aquatique pendant la poursuite des activités de dragage dans le port de Port Hope.	compris le lac Ontario) est effectuée chaque trimestre. (Section 10.3.4.1) Le personnel des LNC utilise la surveillance pour confirmer la pertinence, la mise en œuvre et l'efficacité de processus appliqués aux activités du projet de l'IRPH afin de se conformer aux obligations contractuelles, aux exigences en matière de permis, aux lois et règlements fédéraux et provinciaux, aux plans de gestion et de protection de l'environnement, aux plans de conformité et aux spécifications techniques. La surveillance est appliquée par les LNC en tenant compte de l'importance et de la complexité des activités et de l'organisme ou des organismes impliqués dans la gestion de ces activités. Les activités réalisées par les consultants, les entrepreneurs et les prestataires de services de l'IRPH sont soumises à une surveillance.
Qualité des eaux de surface, non radiologique À long terme, en aval, la qualité des eaux de surface devrait s'améliorer, les charges de contaminants	Des systèmes de collecte et de traitement des eaux souterraines, des eaux pluviales et des eaux de drainage, y compris le	Aucun effet négatif résiduel.	L'échantillonnage requis des eaux souterraines, des eaux pluviales et des eaux de drainage a eu lieu pendant les activités de construction de l'IGLTD de PH.	Vérifier si les eaux de surface se sont améliorées comme prévu. Le promoteur doit s'assurer que le rejet n'est pas	Il n'y a pas eu de diminution observable des concentrations de contaminants dans le ruisseau Brand en aval; cependant, on ne s'attend	En 2013, avant les travaux de construction, on a réalisé une surveillance des eaux de surface du ruisseau du ravin de la promenade Highland Sud, du ruisseau Brewery et

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
dans les cours d'eau	contrôle du débit et de la			délétère pour le milieu	pas à ce que cela se produise	du ruisseau Alexander. Un
devraient diminuer et on ne	qualité, seront en place.		Aucun effet néfaste résiduel	aquatique (poissons) au	avant que le projet n'évolue,	échantillonnage de référence
devrait observer aucun			pour les travaux de	point de rejet et un suivi	et que les déchets ne soient	supplémentaire a eu lieu en
changement mesurable dans	Une digue et un écran anti-		construction de l'IGLTD de	approprié doit être effectué	assainis.	2022, en prévision du début
la rivière Ganaraska.	érosion isoleront les travaux		PH.	pour le confirmer.		de la construction sur divers
	portuaires du lac Ontario.			Après une tempête, pendant	En 2021, un échantillonnage	sites d'assainissement.
On ne s'attend pas à ce que			Un échantillon de	les travaux de nettoyage,	de confirmation a été	
l'écoulement des eaux	Il convient de noter que,		confirmation a été prélevé	surveiller les concentrations	prélevé dans le ruisseau du	Au port de Port Hope et au
pluviales qui traversent la	après l'acceptation de		au ruisseau du ravin de la	de contaminants dans le port	ravin de la promenade	confluent de la rivière
digue pendant le nettoyage	l'évaluation		promenade Highland Sud, au	et la rivière Ganaraska.	Highland Sud, le ruisseau	Ganaraska, les eaux de
du port augmente les	environnementale par les		ruisseau Brewery et au		Brewery et le ruisseau	surface ont fait l'objet d'une
concentrations de	autorités responsables, la		ruisseau Alexander , et	Surveiller le mercure et les	Alexander.	surveillance qui se
contaminants au-dessus des	conception préliminaire du		d'autres échantillons seront	niveaux d'autres		poursuivra en 2021.
PWQO dans le port ou la	projet de Port Hope a		prélevés en 2022.	contaminants		
rivière Ganaraska.	continué d'être peaufinée à			potentiellement		La surveillance des eaux de
	l'appui de la demande de			préoccupants (CPP) dans les		surface en aval de l'IGLTD (y
	permis et certains			tissus des poissons pour		compris le lac Ontario) est
Les eaux de surface qui	changements ont été			vérifier les prévisions.		effectuée chaque trimestre.
s'infiltrent dans les	apportés aux concepts de					Les travaux de construction
matériaux contaminés et	conception préliminaire.			Vérifier la réduction des		de l'IGLTD de PH ne
s'écoulent vers les eaux				charges de contaminants		semblent pas avoir eu
souterraines et les eaux de	Parmi les modifications			due au déversement des		d'incidence sur la qualité des
surface en aval devraient	apportées à la conception, la			lixiviats dans le lac Ontario.		eaux de surface. (Section
diminuer.	digue proposée pour séparer					10.3.3)
	le chenal d'approche et le			Surveiller l'entretien des		
Les charges de contaminants	bassin de retournement de			filtres à limon.		La surveillance des CPP dans
provenant des lixiviats de	l'avant-port pendant les					les tissus des poissons aura
l'IGLTD qui se déversent dans	opérations de dragage a été					lieu au cours de la phase
le lac seraient réduites de	remplacée par une série de					d'entretien et de surveillance
44 %.	rideaux de limon destinés à					du projet.
	prévenir la transmission de					
	solides en suspension hors					La surveillance de l'entretien
	du port pendant le dragage.					des filtres à limon se fera
	Un atténuateur de vague a					pendant la période de
	été installé pour dissiper					construction autour des
	l'énergie des vagues dans le					plans d'eau du ruisseau
	port, les rideaux sont ainsi					Alexander, du ruisseau de la
						promenade Highland Sud, du

Error! No text of specified style in document. Rev. Error! No text of specified style in document.

Page 147 de 159

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Qualité des sédiments (port)	protégés des dommages causés par les vagues. Cette modification (et toutes les autres améliorations de la conception), ainsi que les effets environnementaux potentiels associés à cette modification, a été décrite dans le rapport de synthèse sur les modifications techniques, qui a été soumis aux autorités responsables et approuvé par elles. Par conséquent, la barrière antiérosion et l'atténuateur de vagues sont incorporés dans le rapport de description de la conception détaillée. Les effets bénéfiques seront	Effet bénéfique.	La conception du port	Vérifier que les	Sans objet. Le projet devrait	ruisseau Brand, au besoin, et près du lac Ontario. La surveillance aura lieu
On prévoit une amélioration à long terme de la qualité des sédiments portuaires et des conditions d'habitat.	renforcés par les initiatives de mise en valeur de l'habitat du poisson qui seront intégrées à la conception détaillée du port.		prévoit des améliorations à l'habitat du poisson. La surveillance aura lieu pendant la phase d'entretien et de surveillance.	améliorations de la conception ont mis en valeur l'habitat du poisson. Surveiller la qualité des sédiments et les conditions de l'habitat.	avoir un effet bénéfique. La surveillance aura lieu pendant la phase d'entretien et de surveillance.	pendant la phase d'entretien et de surveillance.
Milieu géologique et phréatiq	ue					
Qualité du sol, radiologique On s'attend à ce que les concentrations supplémentaires moyennes de contaminants radiologiques soient inférieures à 10 % du niveau de fond aux sites de	À l'intérieur de l'IGLTD, réduire de 200 m à 50 m les distances de déplacement des équipements distribuant les contaminants déchargés.	Aucun effet négatif résiduel.	Le plan et les exigences de gestion de poussière [4] de l'IRPH ont été mis en œuvre pendant les activités de construction de l'IRPH-PH et les travaux d'assainissement du secteur riverain.	Mesurer les concentrations de tous les contaminants radiologiques sur tous les sites d'assainissement et à l'IGLTD afin de vérifier les prévisions de la modélisation.	Aucun effet négatif résiduel. IGDLT: En 2021, les concentrations de thorium 230 dans le sol n'ont pas augmenté par rapport aux valeurs de référence (section 10.3.3.3).	La surveillance des sols de surface pour les contaminants radiologiques d'intérêt autour de l'IGLTD- PH et du site d'enfouissement de la promenade Highland a été effectuée en 2021.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
restauration. Les concentrations supplémentaires à l'installation de gestion des déchets radioactifs à long terme seraient inférieures à 20 % des concentrations de référence. Le ²³⁰ Th fait exception, car sa concentration devrait augmenter de 63 % par rapport à la valeur de référence pendant la construction et l'aménagement de l'installation de gestion à long terme, pour atteindre une concentration moyenne prévue de 97,7 Bq/kg et une concentration maximale prévue de 141,9 Bq/kg.	Mise en œuvre d'un plan et d'exigences de gestion des poussières.		Le plan de gestion des poussières et des exigences [8] a été mis en œuvre et utilisé pour l'assainissement des petits sites des lots 3, 4 et 5 en 2021.	Surveiller les concentrations de 230Th à la clôture périphérique de l'IGLTD et dans les sols de surface adjacents à celle-ci.	Promenade Highland: Les activités d'assainissement n'ont pas commencé sur le site de la promenade Highland. Par conséquent, les données recueillies en 2021 peuvent être utilisées pour compléter les données de référence existantes.	Sur les deux sites, la surveillance aura lieu annuellement jusqu'à la fin du projet.
Qualité du sol, non radiologique Concerne la disposition potentielle des contaminants sur la surface au périmètre de l'IGLTD (voir la composante environnementale atmosphérique). Concentrations maximales prévues : arsenic - 4,7 mg/kg; cobalt - 6,67 mg/kg.	Voir la section consacrée à l'environnement atmosphérique.	Aucun effet négatif résiduel.	Les travaux de construction de l'IGLTD-PH n'ont eu aucun effet néfaste résiduel. Utilisation de camions d'arrosage et de techniques de pulvérisation dans les zones d'excavation.	Vérifier les concentrations prévues d'arsenic et de cobalt dans le sol au périmètre de l'IGLTD.	IGDLT: En 2021, les concentrations d'arsenic (5,3 μg/g et 19 μg/g) étaient supérieures aux concentrations prévues aux stations PH-WWMF-SS-01 et PH-WWWMF-SS-05, respectivement. Tous les autres sites d'échantillonnage étaient en dessous des concentrations prévues. (Section 10.3.3.3) Il n'y a pas de préoccupations	La surveillance des sols de surface pour les contaminants non radiologiques d'intérêt autour du périmètre de l'IGLTD-PH et du site d'enfouissement de la promenade Highland a eu lieu au printemps 2021. Les activités d'assainissement n'ont pas commencé sur le site de la promenade Highland. Par conséquent, les données recueillies en 2021 peuvent

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
					environnementales immédiates.	être utilisées pour compléter les données de référence existantes. Les résultats de 2021 sont semblables aux données recueillies les années précédentes. Sur les deux sites, la surveillance aura lieu annuellement jusqu'à la fin du projet.
Qualité des eaux souterraines – radiologique Avec l'élimination de la contamination à la source, les concentrations d'uranium sur les sites de la rue Mill et de la rue Alexander devraient baisser sous la valeur du critère applicable dans un délai d'environ 25 ans.	Il n'est pas nécessaire d'adopter des mesures d'atténuation.	Aucun effet résiduel	La surveillance des eaux souterraines précédant les travaux de construction sur le site de la rue Mill Sud a eu lieu en 2012-2013. La surveillance des sites restaurés sélectionnés aura lieu après la restauration pour vérifier les prévisions de l'EE.	Mesurer les concentrations d'uranium sur les sites assainis de la rue Mill et de la rue Alexander. Rendre compte annuellement des mesures pour vérifier les prédictions de modélisation.	Aucun effet négatif résiduel.	La surveillance des eaux souterraines précédant les travaux de construction sur le site de la rue Mill Sud a eu lieu en 2012-2013. La surveillance des sites restaurés sélectionnés aura lieu après la restauration pour vérifier les prévisions de l'EE.
Qualité des eaux souterraines Le volume des eaux souterraines collectées pour traitement dans le système de collecte des eaux de drainage de l'IGLTD diminuerait d'environ 30 %; les concentrations de contaminants devraient diminuer avec le temps.	L'eau souterraine recueillie sera traitée conformément aux exigences établies par la CCSN lors de la délivrance du permis de l'IGLTD.	Aucun effet négatif résiduel.	La construction de l'IGLTD a été achevée en 2016 - la mise en service active a débuté à l'automne 2016.	Mesurer annuellement le volume et les concentrations de contaminants dans le système de collecte des eaux souterraines de l'IGLTD afin de vérifier les prédictions.	La qualité et la quantité des eaux de drainage devraient changer dès le début des travaux d'assainissement. Il faut noter que les eaux de drainage du site sont traitées avant d'être rejetées dans l'environnement.	La surveillance du système de collecte des eaux souterraines et des eaux de drainage de l'IGLTD a eu lieu en 2021. Par rapport à 2020, en 2021, on a observé une augmentation des concentrations moyennes de métaux (y compris de l'arsenic et l'uranium). En 2021, il n'a pas été possible de prélever un échantillon à WC-SW4-02 en raison d'une pénurie d'eau. Cet endroit a toujours été intermittent et il n'est parfois pas possible d'y

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
						prélever des échantillons. La surveillance des eaux souterraines et des eaux de drainage se poursuivra tout au long de la phase de construction et de développement.
Volume des eaux de drainage On prévoit une réduction de 66 % du volume d'eau de drainage qui sera recueilli par le système de collecte et de traitement des eaux souterraines et des eaux de drainage, soit 27 380 m³/a après l'installation de la couverture à l'IGLTD. Une réduction de 92 110 m³/a à 116 280 m³/a est prévue pour la somme des eaux souterraines et des eaux de drainage, soit une réduction globale du volume de 44 %.	Sans objet.	Sans objet.	Sans objet.	Mesurer annuellement le volume des eaux de drainage à l'IGLTD afin de vérifier les prévisions.	Sans objet.	La surveillance des eaux souterraines et des eaux de drainage se poursuivra tout au long de la phase de construction et de développement.
Écoulement des eaux souterraines On prévoit que la nappe phréatique sera réduite de 10 m et que le monticule d'eau souterraine sous l'installation existante se dissipera. L'écoulement des eaux souterraines dans le ruisseau	Sans objet.	Sans objet.	Sans objet.	Confirmer l'abaissement de la nappe phréatique. Confirmer la dissipation du monticule en surveillant la nappe phréatique sous l'IGLTD et à proximité de celle-ci. Surveiller le débit du cours d'eau et effectuer une séparation du débit de fond	Aucun effet négatif résiduel.	Comme prévu, en 2021, les niveaux moyens des eaux dans les puits sentinelles sont à peu près les mêmes que par les années passées. La surveillance se poursuivra tout au long de la phase de construction et de développement. Le volume des effluents traités rejetés dans le lac

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Brand devrait enregistrer une diminution de 2 %. L'évacuation des eaux souterraines dans le système de drainage sur place devrait enregistrer une diminution de 30 %. Le volume d'effluent traité rejeté dans le lac Ontario devrait enregistrer une diminution de 42 %.				pour obtenir l'écoulement des eaux souterraines, afin de confirmer que la diminution de 2 % n'est pas dépassée, et qu'il y a une diminution de 30 % de l'écoulement des eaux souterraines dans le système de drainage sur place, et une diminution de 42 % du volume des effluents traités déversés dans le lac Ontario. Surveiller l'écoulement et la direction des eaux souterraines pour vérifier l'hypothèse d'évaluation. Poursuivre la surveillance pour améliorer la		Ontario est surveillé en permanence. Le volume mensuel d'effluents rejetés dans le lac Ontario figure à la section 4.1. 6. Le volume total des effluents en 2021 était de 125 000 m³.
Qualité et quantité des eaux souterraines Aucun changement mesurable de la qualité ou de la quantité des eaux souterraines et des eaux de drainage durant la construction de l'IGDLT. La percée maximale des contaminants potentiellement préoccupants (CPP) dans l'IGLTD serait de 1 % des critères des PWQO et des Normes de qualité de l'eau potable de l'Ontario (ODWS).	Sans objet.	Sans objet.	Sans objet.	compréhension. Surveiller la quantité et la qualité des eaux souterraines et des eaux de drainage interceptées pendant la construction pour confirmer qu'il n'y aura aucun changement mesurable.	Les résultats des échantillons prélevés en 2021 ne montrent aucun changement mesurable dans la qualité des eaux souterraines. (Section 10.3.3.1).	Les eaux de drainage et les eaux souterraines ont été surveillées en 2021 et continueront à l'être tout au long de la phase de construction et de développement.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Conception de l'IGLTD, y compris le revêtement et la couverture Les unités de revêtement primaire et secondaire auraient une conductivité hydraulique maximale de 1x10 ⁻⁷ cm/s. La couverture aurait une conductivité hydraulique maximale de 10 ⁸ /s. Le volume (annuel) de lixiviat généré dans l'IGLTD est estimé à 150 m³, selon l'hypothèse d'une fuite de 1 mm/a à travers la couverture.	Sans objet.	Sans objet.	Sans objet.	Surveiller les fuites à travers le revêtement primaire à l'aide du système de collecte installé entre les revêtements primaire et secondaire afin de vérifier la conductivité hydraulique des unités de revêtement. Surveiller le tassement de la couverture de l'IGLTD afin de confirmer l'hypothèse selon laquelle il n'y aura pas de tassement excessif des déchets sous la couverture qui compromettrait la performance de celle-ci. Surveiller le taux d'infiltration à travers la couverture de l'IGLTD pour vérifier la conductivité hydraulique de la couverture et confirmer le taux de fuite présumé à travers le système de couverture.	Sans objet jusqu'à l'entretien et la surveillance.	La surveillance aura lieu pendant la phase d'entretien et de surveillance.
Volumes de déchets excavés Les volumes de déchets excavés qui seront stockés dans l'IGLTD devraient être comme suit : 620 000 m³ de déchets radioactifs de faible activité (DRFA); 572 000 m³ de matières mélangées à des DFR; 51 250 m³ de déchets industriels ; et 150 000 m³ de déchets de déclassement et	Sans objet.	Sans objet.	Sans objet.	Vérifier le volume et les concentrations des déchets excavés avant leur mise en place dans l'IGLTD, afin de confirmer les volumes de terme source et les concentrations de contaminants utilisés pour prédire les effets environnementaux à long terme.	Le déplacement des déchets sur le site a eu lieu du 1 ^{er} janvier 2021 au 31 décembre 2021 (section 12.1.2).	Le volume des déchets fera l'objet d'une surveillance au fur et à mesure que les déchets seront placés dans les cellules de l'IGLTD-PH.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
de déchets stockés de Cameco. Les prévisions des						
concentrations de						
contaminants se trouvent dans les tableaux 9.2.2-1 et						
9.2.1-2 du rapport d'étude						
de l'EE.						
Environnement terrestre						
La préparation du site de	Le bassin de contrôle des	Aucun effet négatif résiduel.	Les LNC ont effectué une	Vérifier le déplacement du	Aucun effet négatif résiduel.	Surveillance prévue pour la
l'IGLTD entraînera une perte	eaux pluviales de l'IGLTD		surveillance régulière afin	bassin de gestion des eaux		phase active de construction.
temporaire de végétation de	sera déplacé pour être		d'assurer la conformité avec	pluviales.		
3 % dans la zone d'étude	éloigné de la zone boisée et		les plans de protection et de			Les LNC ont effectué une
locale et de 11 % dans la	installé dans un près couvert		gestion de l'environnement	Vérifier l'élaboration de		surveillance régulière afin
zone d'étude du site, avec	de végétation.		approuvés.	plans de protection et de		d'assurer la conformité avec
une transformation				réhabilitation de la		les plans de protection et de
permanente des couverts	Développement de nouvelles		Un produit anti-poussière	végétation des marais et des		gestion de l'environnement
végétaux dans 11 % de la	communautés végétales sur		approuvé par les LNC a été	plages sur le site de l'usine		approuvés.
zone d'étude locale et 47 %	le site de l'IGLTD, plutôt que		utilisé au besoin pour	hydraulique.		Pour plus de renseignements
de la zone d'étude du site.	de rétablir les conditions		faciliter la gestion de la	\/{*:5:**********************************		sur la surveillance de la
La rábabilitation dos sitos	prévalant avant la		poussière pendant les	Vérifier la mise en place de		conformité, voir la
La réhabilitation des sites	construction.		activités de construction.	structures de contrôle de l'érosion et des sédiments,		section 2.3.
dans le quartier 1 entraînera une perte temporaire de	Élaboration d'un plan de		Les travaux de construction	l'application de techniques		Un programme de
7,6 % de la végétation dans	protection et de		ont été réalisés après la	de suppression des		surveillance de la poussière a
la zone d'étude locale et de	réhabilitation de la		période de reproduction des	poussières et la		été réalisé par un
53 % dans la zone d'étude du	végétation du marais et de la		oiseaux migrateurs.	réhabilitation des sites.		entrepreneur indépendant
site.	plage sur le site des		olocuux iiigi uteurs.	l'enabilitation des sites.		(pas l'entrepreneur principal
5.55	aqueducs.		Un plan de réhabilitation et	Vérifier l'étendue et la durée		ni les LNC) pour les activités
La restauration des sites à			d'aménagement paysager	des pertes/changements		de l'IGLTD-PH afin de
l'extérieur de la zone d'étude	Mise en place de structures		spécifique au site sera créé à	temporaires et permanents.		s'assurer que les conflits
locale du site de la	de contrôle de l'érosion et		la fin des activités de			organisationnels perçus
promenade Highland	des sédiments autour des		construction et de	Confirmer qu'aucun		concernant les résultats de la
entraînera une perte	sites déblayés.		restauration.	défrichement de la		surveillance de la poussière
, i				végétation n'a lieu pendant		et les activités de travail

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
temporaire de 34 % (18,3 ha)	Application de techniques de			la saison de reproduction.		avaient été évités. Le niveau
de la végétation.	suppression de la poussière.			Dans les cas d'exception,		de poussière fait l'objet
de la vegetation.	suppression de la podssière.			confirmer que l'étude des		d'une surveillance soutenue
	Remise en état des sites			nids a été effectuée et		pendant les heures de travail
	après l'enlèvement des			examinée.		et les résultats sont
	déchets.					rapportés toutes les 15
				Examiner les plans de		minutes. Tout dépassement,
	Élaboration d'un plan			restauration propres au site		tel qu'identifié dans le <i>plan</i>
	paysager propre à chaque			pour confirmer		et les exigences de gestion de
	site de travail.			l'incorporation des qualités		la poussière [4], est
				et de la variabilité de		immédiatement signalé aux
	Le défrichage de la			l'habitat structurel.		LNC et à l'entrepreneur
	végétation ne doit pas avoir					principal afin de mettre en
	lieu dans l'habitat des					place des mesures
	oiseaux migrateurs pendant					correctives.
	la saison de reproduction.					
	Dans les cas exceptionnels,					Un dépoussiérant approuvé
	lorsque la saison de					par les LNC a été utilisé au
	reproduction ne peut être					besoin pour faciliter la
	évitée, un biologiste aviaire					gestion de la poussière dans
	effectuera un relevé des nids					le cadre des activités de
	immédiatement avant (p. ex.					construction de l'IGLTD.
	dans les deux jours) le début					
	des travaux susceptibles					Les activités de défrichage
	d'avoir un impact sur					sur le site de l'IGLTD-PH ont
	l'habitat des oiseaux					été réalisées de novembre à
	migrateurs, afin d'identifier					mars, en dehors de la
	et de localiser les nids actifs					période de reproduction des
	des espèces visées par la <i>Loi</i>					oiseaux migrateurs dans
	de 1994 sur la convention					cette région.
	concernant les oiseaux					
	migrateurs. Un plan					
	d'atténuation sera élaboré					
	pour traiter tout impact					
	potentiel sur les oiseaux					
	migrateurs ou les nids					
	occupés, et le plan sera					
	transmis pour examen à					

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
	Environnement Canada					
	avant la mise en œuvre.					
	Les plans de réhabilitation spécifiques aux sites intégreront des caractéristiques visant à					
	rétablir les qualités et la					
	variabilité de l'habitat					
	structurel (y compris au					
	marais de Sculthorpe si sa réhabilitation est justifiée).					
Milieu terrestre (marais Sculthorpe)	Si des mesures correctives sont prises (dans le marais),		Sans objet pour le moment, l'assainissement est toujours	Les mesures de suivi concernant le marais de	Sans objet pour le moment, l'assainissement est toujours	La restauration du marais de Sculthorpe fait toujours
1	un plan de protection et de		en cours de discussion avec	Sculthorpe, y compris la	en cours de discussion avec	l'objet d'une discussion avec
	restauration sera élaboré		la municipalité de Port Hope.	nécessité de le restaurer,	la municipalité de Port Hope.	la municipalité de Port Hope.
1	afin d'assurer qu'il n'y a pas		Une évaluation des risques	font l'objet d'un rapport	Une évaluation des risques	Une évaluation des risques
	de perte nette de la fonction		propre au site sera effectuée avant toute autre activité	distinct.	propres au site approuvée par le MECP sera effectuée	propre au site sera effectuée avant toute autre activité
	des terres humides, et il			Ci la ractauration du marais	avant toute activité de	d'assainissement.
	devrait comprendre les éléments suivants :		d'assainissement.	Si la restauration du marais de Sculthorpe s'avère nécessaire, la surveillance de	restauration.	a assamissement.
	Pas de travaux d'excavation			suivi de l'EE comprendra les		
	dans la barre de la plage Protection des saules le long			éléments suivants :		
	des sentiers publics, contre l'excavation ou le			Vérifier l'élaboration d'un plan de protection et de		
1	déplacement de machines			restauration qui soit		
	sur le site			acceptable pour les		
	Prévention de l'érosion Stabilisation accélérée du sol			organismes de réglementation provinciaux		
	et la croissance des plantes			et fédéraux.		
				Vérifier qu'il n'y a pas de perte nette des fonctions des		
Santé et sécurité humaines				terres humides.		

						Fage 130 de 135
Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
Travailleurs, non	(Voir la section consacrée à	Aucun effet négatif résiduel.	Les LNC ont examiné et	Contrôler le respect de la	Aucun effet négatif résiduel.	Les entrepreneurs en
radiologique	l'environnement		approuvé le plan des	législation fédérale		construction ont respecté les
Exposition maximale à la	atmosphérique).		entrepreneurs en matière de	pertinente en matière de		lois fédérales et provinciales
poussière de contaminants	Des équipements de		santé et de sécurité pour les	protection de la santé et de		relatives à la protection de la
conventionnels non	protection individuelle		projets de l'IGLTD-PH.	la sécurité.		santé et de la sécurité. Des
radiologiques - dans les	seraient fournis pour					contrôles de conformité ont
limites des critères moyens	atténuer les effets du bruit.		Les entrepreneurs en	Surveiller le taux d'accidents.		été effectués pendant les
pondérés établis (CQAA)	attender les effets du bruit.		construction ont respecté les			activités de l'IGLTD-PH. Les
pour les expositions aiguës	Tous les travailleurs		lois fédérales et provinciales	Vérifier l'élaboration d'une	Pour les activités de	principales tactiques sont
sur 8 heures.	recevraient et seraient tenus		relatives à la protection de la	politique opérationnelle, et	construction, il y a eu trois	décrites dans la section 9.
	d'appliquer les mesures de		santé et de la sécurité. Des	confirmer que les détails	accidents enregistrables en	
Pour les activités de	protection des travailleurs		contrôles de conformité ont	sont conformes aux	2021, dont aucun n'a	Les taux d'incidents font
construction : taux	définies dans le plan de		été effectués pendant les	éléments proposés comme	entraîné d'arrêt de travail.	l'objet d'une surveillance.
d'accident annuel de 2,0 à	santé et de sécurité du site		activités de l'IGLTD-PH. Les	mesures d'atténuation.		(Section 9).
3,0 accidents avec arrêt de	de Port Hope.		principales tactiques sont			
travail, et de 8,0 à 10,0	Mettre en œuvre une		décrites dans la section 9.	(Notez que certains éléments		Les entrepreneurs qui
accidents enregistrables	politique selon laquelle			de suivi dans		effectuent des travaux pour
totaux pour 100 travailleurs.	toutes les maladies et tous			l'environnement		le compte de l'IRPH ont
Cela équivaut à 24,4	les accidents du travail			atmosphérique sont		soumis des plans de santé et
accidents enregistrables	peuvent être évités et			également pertinents dans la		de sécurité à l'examen et à
pendant la construction et le	adopter un objectif			mesure où ils sont		l'acceptation des LNC afin de
développement, dont 7,3	opérationnel de zéro			fondamentalement destinés		s'assurer qu'ils répondent
accidents avec arrêt de	maladie et accident du			à la protection de la santé et		aux exigences du plan de SST
travail; 7,8 accidents	travail (pour plus de détails,		Mise en œuvre d'une	de la sécurité des		de l'IRPH [9].
enregistrables pendant les	voir les éléments particuliers		procédure de plan de santé	travailleurs).		
travaux de remise en état du	de cette politique énumérés		et de sécurité et d'un			En 2021, les LNC ont procédé
site, dont 2,3 accidents avec	dans les mesures		protocole de plan de			à quatre campagnes de
arrêt de travail.	d'atténuation du tableau		protection de			surveillance du bruit autour
	11.9.1 du Rapport d'examen		l'environnement pour la			de l'IGLTD-PH. En 2021, le
Les niveaux de bruit	préalable).		démolition des bâtiments et			niveau de bruit à quelque
atteindraient 88 à 96 dBA			la gestion appropriée des			peu augmenter, mais reste
dans les zones de	Mettre en œuvre une		débris générés par ces			inférieur à la fourchette
construction.	procédure de plan de santé		activités.			prévue de 12 dBA et aux
	et de sécurité et un		Les résidents ont été			lignes directrices de
	protocole de plan de		informés lorsque les activités			l'Organisation mondiale de la
	protection de		devaient entraîner une			santé relatives au niveau de
	l'environnement pour la		augmentation du bruit de 6			bruit communautaire, fixé à
	démolition des bâtiments et		dBA.			70 dBA sur une période de
	la gestion appropriée des					

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
	débris générés par ces activités. Prévenir les résidents lorsque les activités sont susceptibles d'entraîner une augmentation du bruit de 6 dBA. Mettre en place un protocole opérationnel permettant de maintenir les niveaux sonores aux limites du site en deçà de 70 dBA. Surveiller les niveaux sonores et empêcher l'accès du public aux endroits où les niveaux sonores pourraient		Les niveaux de bruit à la limite de l'IGLTD de Port Hope n'ont pas dépassé 70 dBA. L'accès du public au site de l'installation de gestion à long terme de Port Hope a été limité.			24 heures [5].
Membres du public, non radiologique Qualité de l'air, bruit et contaminants non radiologiques: Voir la section sur l'environnement atmosphérique pour avoir plus de renseignements sur les effets prévus, les mesures d'atténuation, les effets résiduels après que l'on a appliqué les mesures d'atténuation et les caractéristiques du programme de suivi. Santé et bien-être général. 22 % des personnes interrogées s'attendent à ce que leur niveau de	être supérieurs à 70 dBA. (Voir la section sur l'environnement atmosphérique) Mettre en œuvre des protocoles cohérents pour transmettre l'information aux résidents des zones d'études locales et régionales et pour être mis au courant de leurs préoccupations, et ce, dans l'objectif d'apaiser leurs inquiétudes au regard de leur santé, de leur bien-être, de leur sécurité personnelle, et d'améliorer leur niveau de satisfaction quant au fait de vivre dans cette collectivité.	Augmentation du stress et des effets négatifs sur la santé et le bien-être global, en raison d'une altération des sentiments des résidents relativement à leur santé, leur bien-être, leur sécurité personnelle et de leur satisfaction quant au fait de vivre dans cette collectivité.	En 2021, les LNC ont reçu 22 plaintes de niveau 1 qui ont toutes été résolues par les LNC. Ils ont également reçu cinq plaintes de niveau 2, dont deux ont été résolues par les LNC. Les trois autres plaintes sont en suspens et devraient faire l'objet d'une nouvelle évaluation au printemps 2022. L'enquête sur l'attitude du public a été réalisée en 2018. La prochaine enquête sur les attitudes du public devait avoir lieu en 2020 et 2021, mais elle a été reportée en raison de restrictions	Surveiller le protocole de communication. Sonder les membres du public pour évaluer leur niveau de satisfaction quant au fait de vivre dans cette collectivité.	L'enquête sur l'attitude du public a été réalisée en 2018. La prochaine enquête sur les attitudes du public aura lieu en 2022.	Depuis 2002, les LNC ont commandé des enquêtes semestrielles sur l'attitude du public afin d'effectuer un suivi du degré de sensibilisation du public à l'IRPH, de cerner les problèmes et les préoccupations, de déterminer les besoins du public en matière de communication et de fournir des données concernant les attitudes du public. La section 1 traite des interactions de l'IRPH au sein de la collectivité de Port Hope. La prochaine enquête sur l'attitude du public aura lieu en 2022.

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
satisfaction quant au fait de vivre dans cette collectivité augmente après le projet; 14 % s'attendent à ce qu'il diminue.		,	sanitaires.			
Travailleurs - radiologique Les travailleurs chargés de l'excavation des déchets sur le site et de la mise en place des déchets sur le site et hors site devraient recevoir des doses de rayonnement annuelles, comprises entre 1,6 et 2,7 mSv/a. Les travailleurs qui assèchent les sédiments pendant le nettoyage du port devraient recevoir des doses allant jusqu'à 7,6 mSv/a.	(Voir la section sur l'environnement atmosphérique) Le plan de radioprotection de l'IRPH comprend le principe ALARA. En vertu de ce plan, il faut aussi procéder à des évaluations de la radioprotection, utiliser un système de permis et d'évaluation de travail et de rotation des travailleurs assumant des fonctions qui pourraient les exposer à des doses plus élevées.	Aucun effet négatif résiduel.	L'assainissement du site s'est poursuivi en 2021. L'activité a impliqué le transport de déchets d'arsenic sur le site et d'une certaine quantité de déchets marginalement contaminés. Le transport des déchets hors site vers l'installation de gestion des déchets à long terme a commencé en 2018.	Surveiller les doses de rayonnement pour confirmer l'exactitude des prévisions. (Notez que certains éléments de suivi dans l'environnement atmosphérique sont également pertinents dans la mesure où ils sont fondamentalement destinés à la protection de la santé et de la sécurité des travailleurs).	Pour les sites de Port Hope, les doses annuelles par personne allaient de 0,01 mSv à 0,38 mSv. La dose de rayonnement collective était de 11,63 mSv par personne. La dose individuelle annuelle la plus élevée contrôlée était de 0,02 mSv.	La comparaison entre les doses réelles et prévues montre que les doses auxquelles les travailleurs ont été exposés étaient inférieures aux niveaux prévus. Cela prouve que les mesures d'atténuation ont été efficacement exécutées.
Membres du public - radiologique Pendant l'assainissement, résidents adjacents du quartier 1 : dose de rayonnement de 0,074 mSv/a pour un adulte suivant un régime médian, 0,16 mSv/a, pour un nourrisson suivant un régime supérieur. Pendant la construction et le développement, les résidents du quartier 1 0,06 mSv/pour un adulte, à 0,25 mSv/a pour un nourrisson. Résident du	(Voir la section sur l'environnement atmosphérique) Aucune autre mesure d'atténuation proposée.	Aucun effet négatif résiduel.	Les activités d'assainissement se poursuivent en 2021.	Surveiller les doses de rayonnement pour confirmer l'exactitude des prévisions. (Notez que certains éléments de suivi dans l'environnement atmosphérique sont également pertinents dans la mesure où ils sont fondamentalement destinés à la protection de la santé et de la sécurité du public).	La dose gamma de la ligne de clôture en 2021 a contribué à moins de 1 % de la dose annuelle limitée (de 1 mSv/a) pour les expositions professionnelles des membres du public. On a évalué la dose totale pour le public, en incluant l'exposition au radon au niveau de la ligne de clôture. La dose effective totale a été estimée à environ 2 % pour les expositions professionnelles du public.	La dose de rayonnement à laquelle est exposée le public a été mesurée à 0,02 mSv/a, ce , soit 2 % de la limite de dose annuelle pour les expositions professionnelles des membres du public de 1 mSv/a (1000 μSv/a).

Effets environnementaux possibles	Mesures d'atténuation	Effet environnemental résiduel (restant après atténuation)	État des mesures d'atténuation – 2021	Exigences relatives à la surveillance et au suivi de l'EE	Effets environnementaux possibles - 2021	État des engagements pris dans le cadre de l'EE - 2021
quartier 2 : 0,12 mSv/a, pour						
un adulte suivant un régime						
médian, à 0,25 mSv/a, pour						
un nourrisson suivant un						
régime supérieur.						
Effets cumulatifs (dans l'envir	onnement biophysique)	,				
radiologique	(Voir la section sur	Aucun effet négatif résiduel.	Les activités	Vérifier les concentrations de	La surveillance du radon a	L'évaluation des
Les concentrations	l'environnement		d'assainissement se	radon, les constituants	commencé à 4 endroits	concentrations moyennes de
moyennes annuelles	atmosphérique).		poursuivent en 2021.	radiologiques de la poussière	autour de l'installation de	radon à 2 km sera effectuée
supplémentaires de radon ne				remise en suspension, à une	gestion des déchets	sur une base trimestrielle
se distingueraient pas du				distance de 2 km et 1 km,	radioactifs de longue durée	afin de recevoir de
niveau de fond à une				respectivement.	de PH en 2018. Ces	meilleures statistiques.
distance de 2 km; les					emplacements ont été placés	
constituants radiologiques				(Cette obligation en matière	à une distance d'environ 2	Dès juillet 2018, à 1 km du
de la poussière remise en				de suivi est intégrée au	km de la limite clôturée de la	site, les LNC ont installé
suspension ne seraient pas				programme de suivi de	zone contrôlée de l'IGLTD.	chaque mois des collecteurs
mesurables au-delà				l'environnement	En 2021, la concentration	de poussière pour mesurer
d'environ 1 km.				atmosphérique).	moyenne de radon sur	les dépôts de poussière
					l'ensemble des sites a été	potentiels, conformément
					calculée à 26,4 Bq/m³. Le	aux exigences d'implantation
					niveau de concentration de	du MECP. L'emplacement
					radon le plus élevé était de	était situé à environ 1 km au
					37 Bq/m³, ce qui est inférieur	nord du site de l'IGLTD-PH.
					au seuil de déclenchement	Les collecteurs de poussière
					environnemental pour le	ont été installés jusqu'à ce
					radon (150 Bq/m³).	que l'on recueille des
						données sur un an, afin de
						vérifier les prévisions de l'EE,
						selon laquelle les
						constituants radiologiques
						de la poussière remise en
						suspension ne seront pas
						mesurables à plus d'un
						kilomètre du site environ.